The Challenges of Treating Patients with Breast Cancer and Obesity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systemic Chemotherapy
2.1. Chemotherapy Dosing and Toxicity
2.2. The Impact of Obesity on Chemotherapy Efficacy
2.3. Weight Gain following Chemotherapy
3. Endocrine Therapy
3.1. The Impact of Obesity on Choice and Duration of Adjuvant Endocrine Therapy
3.2. The Impact of Obesity on Endocrine Therapy in Metastatic Disease
3.3. Toxicities of Endocrine Therapy
4. HER2-Targeted Treatments
4.1. Trastuzumab Dosing and Efficacy
4.2. Trastuzumab Toxicity
4.3. Newer HER2-Targeted Agents
5. Targeted Therapies
5.1. CDK4/6 Inhibitors
5.2. mTOR/PI3K Inhibitors
5.3. PARP Inhibitors
5.4. Trop-2-Directed Antibody-Drug Conjugate
6. Immunotherapy
7. ASCO Guidelines
8. Clinical Considerations for Patients with Obesity
9. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Obesity. World Obesity Day 2022—Accelerating Action to Stop Obesity. 4 March 2022. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 1 December 2022).
- Centers for Disease Control and Prevention. Adult Obesity Facts. Overweight & Obesity. 17 May 2022. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 1 January 2023).
- American Cancer Society. Key Statistics for Breast Cancer. Key Statistics for Breast Cancer. 6 October 2022. Available online: https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html (accessed on 1 December 2022).
- Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.T.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.; Caan, B.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [Google Scholar] [CrossRef]
- Ewertz, M.; Jensen, M.-B.; Gunnarsdóttir, K.Á.; Højris, I.; Jakobsen, E.H.; Nielsen, D.; Stenbygaard, L.E.; Tange, U.B.; Cold, S. Effect of Obesity on Prognosis After Early-Stage Breast Cancer. J. Clin. Oncol. 2011, 29, 25–31. [Google Scholar] [CrossRef]
- Vernaci, G.; Dieci, M.V.; Manfrin, S.; Mantiero, M.; Falci, C.; Faggioni, G.; Mioranza, E.; Menichetti, A.; Tasca, G.; Griguolo, G.; et al. BMI is an independent prognostic factor for late outcome in patients diagnosed with early breast cancer: A landmark survival analysis. Breast 2019, 47, 77–84. [Google Scholar] [CrossRef] [PubMed]
- The Premenopausal Breast Cancer Collaborative Group. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol. 2018, 4, e181771. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, E.; Soldera, S.V.; Pimentel, I.; Ribnikar, D.; Ennis, M.; Amir, E.; Goodwin, P.J. Association of Obesity With Breast Cancer Outcome in Relation to Cancer Subtypes: A Meta-Analysis. JNCI J. Natl. Cancer Inst. 2021, 113, 1465–1475. [Google Scholar] [CrossRef]
- Chan, D.S.M.; Vieira, A.; Aune, D.; Bandera, E.; Greenwood, D.; McTiernan, A.; Rosenblatt, D.N.; Thune, I.; Norat, T. Body mass index and survival in women with breast cancer—Systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, H.; Iribarren, C.; Rana, J.S.; Cheng, R.; Nguyen-Huynh, M.; Rillamas-Sun, E.; Shi, Z.; Laurent, C.A.; Lee, V.S.; Roh, J.M.; et al. Risk of Cardiovascular Disease in Women With and Without Breast Cancer: The Pathways Heart Study. J. Clin. Oncol. 2022, 40, 1647–1658. [Google Scholar] [CrossRef]
- Argolo, D.F.; Hudis, C.A.; Iyengar, N.M. The Impact of Obesity on Breast Cancer. Curr. Oncol. Rep. 2018, 20, 47. [Google Scholar] [CrossRef]
- Yee, L.D.; Mortimer, J.E.; Natarajan, R.; Dietze, E.C.; Seewaldt, V.L. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front. Endocrinol. 2020, 11, 58. [Google Scholar] [CrossRef]
- Chu, D.-T.; Phuong, T.N.T.; Tien, N.L.B.; Tran, D.-K.; Nguyen, T.T.; Van Thanh, V.; Quang, T.L.; Minh, L.B.; Pham, V.H.; Ngoc, V.T.N.; et al. The Effects of Adipocytes on the Regulation of Breast Cancer in the Tumor Microenvironment: An Update. Cells 2019, 8, 857. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Majumder, S.; David, J.; Bunnell, B.A.; Miele, L. Obesity Modulates the Gut Microbiome in Triple-Negative Breast Cancer. Nutrients 2021, 13, 3656. [Google Scholar] [CrossRef]
- Goedert, J.J.; Jones, G.; Hua, X.; Xu, X.; Yu, G.; Flores, R.; Falk, R.T.; Gail, M.H.; Shi, J.; Ravel, J.; et al. Investigation of the Association Between the Fecal Microbiota and Breast Cancer in Postmenopausal Women: A Population-Based Case-Control Pilot Study. JNCI J. Natl. Cancer Inst. 2015, 107, djv147. [Google Scholar] [CrossRef] [PubMed]
- Hieken, T.J.; Chen, J.; Hoskin, T.L.; Walther-Antonio, M.; Johnson, S.; Ramaker, S.; Xiao, J.; Radisky, D.C.; Knutson, K.L.; Kalari, K.R.; et al. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Sci. Rep. 2016, 6, 30751. [Google Scholar] [CrossRef]
- Griggs, J.J.; Mangu, P.B.; Anderson, H.; Balaban, E.P.; Dignam, J.J.; Hryniuk, W.M.; Morrison, V.A.; Pini, T.M.; Runowicz, C.D.; Rosner, G.L.; et al. Appropriate Chemotherapy Dosing for Obese Adult Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2012, 30, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Griggs, J.J.; Bohlke, K.; Balaban, E.P.; Dignam, J.J.; Hall, E.T.; Harvey, R.D.; Hecht, D.P.; Klute, K.A.; Morrison, V.A.; Pini, T.M.; et al. Appropriate Systemic Therapy Dosing for Obese Adult Patients with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Hryniuk, W.; Levine, M.N. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J. Clin. Oncol. 1986, 4, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Faisal, W.; Tang, H.-M.; Tiley, S.; Kukard, C. Not All Body Surface Area Formulas Are the Same, but Does It Matter? J. Glob. Oncol. 2016, 2, 436–437. [Google Scholar] [CrossRef]
- de Man, F.M.; Veerman, G.M.; Hoop, E.O.-D.; Deenen, M.J.; Meulendijks, D.; Mandigers, C.M.; Soesan, M.; Schellens, J.H.; Van Meerten, E.; Van Gelder, T.; et al. Comparison of toxicity and effectiveness between fixed-dose and body surface area-based dose capecitabine. Adv. Med. Oncol. 2019, 11, 1758835919838964. [Google Scholar] [CrossRef]
- Foukakis, T.; Von Minckwitz, G.; Bengtsson, N.-O.; Brandberg, Y.; Wallberg, B.; Fornander, T.; Mlineritsch, B.; Schmatloch, S.; Singer, C.F.; Steger, G.; et al. Effect of Tailored Dose-Dense Chemotherapy vs Standard 3-Weekly Adjuvant Chemotherapy on Recurrence-Free Survival among Women with High-Risk Early Breast Cancer: A Randomized Clinical Trial. JAMA 2016, 316, 1888–1896. [Google Scholar] [CrossRef]
- Matikas, A.; Foukakis, T.; Moebus, V.; Greil, R.; Bengtsson, N.-O.; Steger, G.; Untch, M.; Johansson, H.; Hellström, M.; Malmström, P.; et al. Dose tailoring of adjuvant chemotherapy for breast cancer based on hematologic toxicities: Further results from the prospective PANTHER study with focus on obese patients. Ann. Oncol. 2019, 30, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, M.; Li, S.; Gelber, R.D.; Price, K.N.; Coates, A.S.; Castiglione-Gertsch, M.; Goldhirsch, A. Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet 2005, 366, 1108–1110. [Google Scholar] [CrossRef] [PubMed]
- Rosner, G.L.; Hargis, J.B.; Hollis, D.R.; Budman, D.R.; Weiss, R.B.; Henderson, I.C.; Schilsky, R.L. Relationship between toxicity and obesity in women receiving adjuvant chemotherapy for breast cancer: Results from cancer and leukemia group B study 8541. J. Clin. Oncol. 1996, 14, 3000–3008. [Google Scholar] [CrossRef] [PubMed]
- Budman, D.R.; Berry, D.A.; Cirrincione, C.T.; Henderson, I.C.; Wood, W.C.; Weiss, R.B.; Ferree, C.R.; Muss, H.B.; Green, M.R.; Norton, L.; et al. Dose and Dose Intensity as Determinants of Outcome in the Adjuvant Treatment of Breast Cancer. JNCI J. Natl. Cancer Inst. 1998, 90, 1205–1211. [Google Scholar] [CrossRef]
- Hourdequin, K.C.; Schpero, W.L.; McKenna, D.R.; Piazik, B.L.; Larson, R.J. Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: A systematic review and meta-analysis. Ann. Oncol. 2013, 24, 2952–2962. [Google Scholar] [CrossRef]
- Carroll, J.; Protani, M.; Walpole, E.; Martin, J.H. Effect of obesity on toxicity in women treated with adjuvant chemotherapy for early-stage breast cancer: A systematic review. Breast Cancer Res. Treat. 2012, 136, 323–330. [Google Scholar] [CrossRef]
- Sparano, J.A.; Wang, M.; Zhao, F.; Stearns, V.; Martino, S.; Ligibel, J.A.; Perez, E.A.; Saphner, T.; Wolff, A.C.; Sledge, G.W., Jr.; et al. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer 2012, 118, 5937–5946. [Google Scholar] [CrossRef]
- Desmedt, C.; Fornili, M.; Clatot, F.; Demicheli, R.; De Bortoli, D.; Di Leo, A.; Viale, G.; De Azambuja, E.; Crown, J.; Francis, P.; et al. Differential Benefit of Adjuvant Docetaxel-Based Chemotherapy in Patients With Early Breast Cancer According to Baseline Body Mass Index. J. Clin. Oncol. 2020, 38, 2883–2891. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Porcu, L.; Agbor-Tarh, D.; Cinieri, S.; Franzoi, M.A.; De Santis, M.C.; Saura, C.; Huober, J.; Fumagalli, D.; Izquierdo, M.; et al. Effect of body mass index on response to neo-adjuvant therapy in HER2-positive breast cancer: An exploratory analysis of the NeoALTTO trial. Breast Cancer Res. 2020, 22, 115. [Google Scholar] [CrossRef]
- van den Berg, M.M.G.A.; Winkels, R.M.; De Kruif, J.T.C.M.; Van Laarhoven, H.W.M.; Visser, M.; De Vries, J.H.; De Vries, Y.C.; Kampman, E. Weight change during chemotherapy in breast cancer patients: A meta-analysis. BMC Cancer 2017, 17, 259. [Google Scholar] [CrossRef]
- Nyrop, K.A.; Deal, A.M.; Shachar, S.S.; Park, J.; Choi, S.K.; Lee, J.T.; O’hare, E.A.; Wheless, A.; Carey, L.A.; Muss, H.B. Weight trajectories in women receiving systemic adjuvant therapy for breast cancer. Breast Cancer Res. Treat. 2020, 179, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Dieli-Conwright, C.M.; Wong, L.; Waliany, S.; Bernstein, L.; Salehian, B.; Mortimer, J.E. An observational study to examine changes in metabolic syndrome components in patients with breast cancer receiving neoadjuvant or adjuvant chemotherapy. Cancer 2016, 122, 2646–2653. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Bracken, M.B.; Sanft, T.B.; Ligibel, J.A.; Harrigan, M.; Irwin, M.L. Weight Gain After Breast Cancer Diagnosis and All-Cause Mortality: Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2015, 107, djv275. [Google Scholar] [CrossRef] [PubMed]
- Nechuta, S.; Chen, W.Y.; Cai, H.; Poole, E.M.; Kwan, M.L.; Flatt, S.W.; Patterson, R.E.; Pierce, J.P.; Caan, B.J.; Shu, X.O. A pooled analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor–positive breast cancer prognosis. Int. J. Cancer 2016, 138, 2088–2097. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, E.E.; Lacunza, E.; Güerci, A.M. Clinical factors affecting the determination of radiotherapy-induced skin toxicity in breast cancer. Radiat. Oncol. J. 2021, 39, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Panayi, C.; Agha, R.A.; Sieber, B.A.; Orgill, D.P. Impact of Obesity on Outcomes in Breast Reconstruction: A Systematic Review and Meta-Analysis. J. Reconstr. Microsurg. 2018, 34, 363–375. [Google Scholar] [CrossRef]
- Avis, N.E.; Crawford, S.; Manuel, J. Quality of Life Among Younger Women With Breast Cancer. J. Clin. Oncol. 2005, 23, 3322–3330. [Google Scholar] [CrossRef]
- Goodwin, P.J. Obesity and endocrine therapy: Host factors and breast cancer outcome. Breast 2013, 22, S44–S47. [Google Scholar] [CrossRef]
- Cauley, J.A.; Gutai, J.P.; Kuller, L.H.; LeDonne, D.; Powell, J.G. The epidemiology of serum sex hormones in postmenopausal women. Am. J. Epidemiol. 1989, 129, 1120–1131. [Google Scholar] [CrossRef]
- Folkerd, E.J.; Dixon, J.M.; Renshaw, L.; A’Hern, R.P.; Dowsett, M. Suppression of Plasma Estrogen Levels by Letrozole and Anastrozole Is Related to Body Mass Index in Patients with Breast Cancer. J. Clin. Oncol. 2012, 30, 2977–2980. [Google Scholar] [CrossRef]
- Pfeiler, G.; Königsberg, R.; Hadji, P.; Fitzal, F.; Maroske, M.; Dressel-Ban, G.; Zellinger, J.; Exner, R.; Seifert, M.; Singer, C.; et al. Impact of body mass index on estradiol depletion by aromatase inhibitors in postmenopausal women with early breast cancer. Br. J. Cancer 2013, 109, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Barone, I.; Caruso, A.; Gelsomino, L.; Giordano, C.; Bonofiglio, D.; Catalano, S.; Andò, S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes. Rev. 2022, 23, e13358. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.A.; Bhat-Nakshatri, P.; Patel, N.M.; Constantinidou, D.; Ali, S.; Nakshatri, H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: A new model for anti-estrogen resistance. J. Biol. Chem. 2001, 276, 9817–9824. [Google Scholar] [CrossRef] [PubMed]
- Surmacz, E.; Burgaud, J.L. Overexpression of insulin receptor substrate 1 (IRS-1) in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin. Cancer Res. 1995, 1, 1429–1436. [Google Scholar] [PubMed]
- Mahalingaiah, P.K.S.; Ponnusamy, L.; Singh, K.P. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 2015, 153, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Kastrati, I.; Joosten, S.E.P.; Semina, S.E.; Alejo, L.H.; Brovkovych, S.D.; Stender, J.D.; Horlings, H.M.; Kok, M.; Alarid, E.T.; Greene, G.L.; et al. The NF-κB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen Receptor-Positive Breast Cancers. Mol. Cancer Res. 2020, 18, 1018–1027. [Google Scholar] [CrossRef]
- Xuan, Q.; Wang, J.-X.; Nanding, A.; Wang, Z.-P.; Liu, H.; Lian, X.; Zhang, Q.-Y. Tumor-associated macrophages are correlated with tamoxifen resistance in the postmenopausal breast cancer patients. Pathol. Oncol. Res. 2014, 20, 619–624. [Google Scholar] [CrossRef]
- Sestak, I.; Distler, W.; Forbes, J.F.; Dowsett, M.; Howell, A.; Cuzick, J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: An exploratory analysis from the ATAC trial. J. Clin. Oncol. 2010, 28, 3411–3415. [Google Scholar] [CrossRef]
- Pfeiler, G.; Königsberg, R.; Fesl, C.; Mlineritsch, B.; Stoeger, H.; Singer, C.F.; Pöstlberger, S.; Steger, G.G.; Seifert, M.; Dubsky, P.; et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: An analysis of the prospective ABCSG-12 trial. J. Clin. Oncol. 2011, 29, 2653–2659. [Google Scholar] [CrossRef]
- Ewertz, M.; Gray, K.P.; Regan, M.M.; Ejlertsen, B.; Price, K.N.; Thürlimann, B.; Bonnefoi, H.; Forbes, J.F.; Paridaens, R.J.; Rabaglio, M.; et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1-98 trial. J. Clin. Oncol. 2012, 30, 3967. [Google Scholar] [CrossRef]
- Seynaeve, C.; Hille, E.; Hasenburg, A.; Rea, D.; Markopoulos, C.; Hozumi, Y.; Putter, H.; Nortier, H.; Van Nes, J.; Dirix, L.; et al. Abstract S2–3: The Impact of Body Mass Index (BMI) on the Efficacy of Adjuvant Endocrine Therapy in Postmenopausal Hormone Sensitive Breast Cancer (BC) Patients; Exploratory Analysis from the TEAM Study. Cancer Res. 2010, 70, S2–S3. [Google Scholar] [CrossRef]
- Buzdar, U.; Jonat, W.; Howell, A.; Plourde, P.V. ARIMIDEX: A potent and selective aromatase inhibitor for the treatment of advanced breast cancer. J. Steroid Biochem. Mol. Biol. 1997, 61, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Medeiros Alencar, V.H.; Badran, A.; Bonfill, X.; et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805–816. [Google Scholar] [CrossRef]
- Jin, H.; Tu, D.; Zhao, N.; Shepherd, L.E.; Goss, P.E. Longer-term outcomes of letrozole versus placebo after 5 years of tamoxifen in the NCIC CTG MA.17 trial: Analyses adjusting for treatment crossover. J. Clin. Oncol. 2012, 30, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Li, Z.; Zimmerman, B.S.; Fink, M.Y.; Wells, J.D.; Zhou, X.; Ayers, K.; Redfern, A.; Newman, S.; Schadt, E.; et al. Impact of body mass index on the efficacy of aromatase inhibitors in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2022, 192, 313–319. [Google Scholar] [CrossRef]
- Zewenghiel, L.; Lindman, H.; Valachis, A. Impact of body mass index on the efficacy of endocrine therapy in patients with metastatic breast cancer—A retrospective two-center cohort study. Breast 2018, 40, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, A.; Bregni, G.; Galli, G.; Ganzinelli, M.; Martinetti, A.; Vullo, S.L.; Mariani, L.; Festinese, F.; Sottotetti, E.; de Braud, F.; et al. Body Mass Index and Clinical Benefit of Fulvestrant in Postmenopausal Women with Advanced Breast Cancer. Tumori 2016, 102, e11–e14. [Google Scholar] [CrossRef]
- Pizzuti, L.; Natoli, C.; Gamucci, T.; Mauri, M.; Sergi, D.; Di Lauro, L.; Paoletti, G.; Ruggeri, E.; Iezzi, L.; Sperduti, I.; et al. Anthropometric, clinical and molecular determinants of treatment outcomes in postmenopausal, hormone receptor positive metastatic breast cancer patients treated with fulvestrant: Results from a real word setting. Oncotarget 2017, 8, 69025–69037. Available online: https://www.oncotarget.com/article/16982/text/ (accessed on 1 January 2017). [CrossRef]
- Amir, E.; Seruga, B.; Niraula, S.; Carlsson, L.; Ocaña, A. Toxicity of Adjuvant Endocrine Therapy in Postmenopausal Breast Cancer Patients: A Systematic Review and Meta-analysis. JNCI J. Natl. Cancer Inst. 2011, 103, 1299–1309. [Google Scholar] [CrossRef]
- Aleixo, G.F.P.; Valente, S.A.; Wei, W.; Moore, H.C.F. Association of sarcopenia with endocrine therapy toxicity in patients with early breast cancer. Breast Cancer Res. Treat. 2022, 196, 323–328. [Google Scholar] [CrossRef]
- Sestak, I.; Cuzick, J.; Sapunar, F.; Eastell, R.; Forbes, J.F.; Bianco, A.R.; Buzdar, A.U. Risk factors for joint symptoms in patients enrolled in the ATAC trial: A retrospective, exploratory analysis. Lancet Oncol. 2008, 9, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Boszkiewicz, K.; Piwowar, A.; Petryszyn, P. Aromatase Inhibitors and Risk of Metabolic and Cardiovascular Adverse Effects in Breast Cancer Patients—A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3133. [Google Scholar] [CrossRef]
- DeCensi, A.; Maisonneuve, P.; Rotmensz, N.; Bettega, D.; Costa, A.; Sacchini, V.; Salvioni, A.; Travaglini, R.; Oliviero, P.; D’aiuto, G.; et al. Effect of Tamoxifen on Venous Thromboembolic Events in a Breast Cancer Prevention Trial. Circulation 2005, 111, 650–656. [Google Scholar] [CrossRef]
- Xu, X.; Chlebowski, R.; Shi, J.; Barac, A.; Haque, R. Aromatase inhibitor and tamoxifen use and the risk of venous thromboembolism in breast cancer survivors. Breast Cancer Res. Treat. 2019, 174, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, Y.; Watanabe, T.; Omuro, Y.; Ando, M.; Katsumata, N.; Okumura, A.; Ohta, M.; Fujii, H.; Sasaki, Y.; Niwa, T.; et al. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br. J. Cancer 1999, 81, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, J.M.A.; Haanen, J.B.A.G.; Voest, E.E.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. Fixed Dosing of Monoclonal Antibodies in Oncology. Oncologist 2017, 22, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Moreno-Aspitia, A.; Ballman, K.V.; Dueck, A.C.; Pockaj, B.A.; Perez, E.A. Effect of body mass index on tumor characteristics and disease-free survival in patients from the HER2-positive adjuvant trastuzumab trial N9831. Cancer 2013, 119, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Maximiano, S.; Magalhães, P.; Guerreiro, M.P.; Morgado, M. Trastuzumab in the Treatment of Breast Cancer. BioDrugs 2016, 30, 75–86. [Google Scholar] [CrossRef]
- Ismael, G.; Hegg, R.; Muehlbauer, S.; Heinzmann, D.; Lum, B.; Kim, S.-B.; Pienkowski, T.; Lichinitser, M.; Semiglazov, V.; Melichar, B.; et al. Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I–III breast cancer (HannaH study): A phase 3, open-label, multicentre, randomised trial. Lancet Oncol. 2012, 13, 869–878. [Google Scholar] [CrossRef]
- Kolberg, H.-C.; Jackisch, C.; Hurvitz, S.A.; Winstone, J.; Barham, H.; Hanes, V.; Courmier, D. Is weight-based IV dosing of trastuzumab preferable to SC fixed-dose in some patients? A systematic scoping review. Breast 2021, 57, 95–103. [Google Scholar] [CrossRef]
- González García, J.; Nicolás, F.G.; Díaz, R.R.; Casariego, G.J.N.; Romero, M.M.V.; Martinez, M.L.; Muñoz, M.L.; López, J.N.B.; Sosa, A.J.; Lenza, I.C.; et al. Pharmacokinetics of Trastuzumab After Subcutaneous and Intravenous Administration in Obese Patients. Ann. Pharm. 2020, 54, 775–779. [Google Scholar] [CrossRef] [PubMed]
- FDA. Herceptin Hylecta Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761106s000lbl.pdf (accessed on 29 January 2023).
- FDA. CDER NDA/BLA Multi-Discipline Review and Evaluation for Herceptin Hylecta. Application No. 761106Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761106Orig1s000MultidisciplineR.pdf (accessed on 29 January 2023).
- Perez, E.A.; Rodeheffer, R. Clinical Cardiac Tolerability of Trastuzumab. J. Clin. Oncol. 2004, 22, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Guenancia, C.; Lefebvre, A.; Cardinale, D.; Yu, A.F.; Ladoire, S.; Ghiringhelli, F.; Zeller, M.; Rochette, L.; Cottin, Y.; Vergely, C. Obesity As a Risk Factor for Anthracyclines and Trastuzumab Cardiotoxicity in Breast Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2016, 34, 3157–3165. [Google Scholar] [CrossRef] [PubMed]
- Martel, S.; Lambertini, M.; Agbor-Tarh, D.; Ponde, N.F.; Gombos, A.; Paterson, V.; Hilbers, F.; Korde, L.; Manukyants, A.; Dueck, A.; et al. Body Mass Index and Weight Change in Patients With HER2-Positive Early Breast Cancer: Exploratory Analysis of the ALTTO BIG 2-06 Trial. J. Natl. Compr. Canc Netw. 2021, 19, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Quartino, A.; Li, J.; Jin, J.; Wada, D.R.; Li, H.; Cortés, J.; McNally, V.; Ross, G.; Visich, J.; et al. Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother. Pharmacol. 2014, 74, 819–829. [Google Scholar] [CrossRef]
- FDA. Tykerb Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022059s007lbl.pdf (accessed on 29 January 2023).
- FDA. Nerlynx Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208051s000lbl.pdf (accessed on 29 January 2023).
- FDA. Tukysa Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213411s000lbl.pdf (accessed on 29 January 2023).
- Lu, D.; Girish, S.; Gao, Y.; Wang, B.; Yi, J.-H.; Guardino, E.; Samant, M.; Cobleigh, M.; Rimawi, M.; Conte, P.; et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: Clinical implications of the effect of covariates. Cancer Chemother. Pharm. 2014, 74, 399–410. [Google Scholar] [CrossRef]
- Yin, O.; Xiong, Y.; Endo, S.; Yoshihara, K.; Garimella, T.; AbuTarif, M.; Wada, R.; LaCreta, F. Population Pharmacokinetics of Trastuzumab Deruxtecan in Patients With HER2-Positive Breast Cancer and Other Solid Tumors. Clin. Pharmacol. Ther. 2021, 109, 1314–1325. [Google Scholar] [CrossRef]
- Krasniqi, E.; Pizzuti, L.; Barchiesi, G.; Sergi, D.; Carpano, S.; Botti, C.; Kayal, R.; Sanguineti, G.; Marchetti, P.; Botticelli, A.; et al. Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumab emtansine. Real-world evidence. J. Cell. Physiol. 2020, 235, 7900–7910. [Google Scholar] [CrossRef]
- Swain, S.M.; Ewer, M.S.; Cortés, J.; Amadori, D.; Miles, D.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Baselga, J. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: A randomized, double-blind, placebo-controlled phase III study. Oncologist 2013, 18, 257–264. [Google Scholar] [CrossRef]
- Lee, A.; Larck, C.; Moore, D.C. Impact of obesity on safety outcomes and treatment modifications with ado-trastuzumab emtansine in breast cancer patients. J. Oncol. Pharm. Pract. 2022, 28, 49–54. [Google Scholar] [CrossRef]
- VanArsdale, T.; Boshoff, C.; Arndt, K.T.; Abraham, R.T. Molecular Pathways: Targeting the Cyclin D–CDK4/6 Axis for Cancer Treatment. Clin. Cancer Res. 2015, 21, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Abella, A.; Dubus, P.; Malumbres, M.; Rane, S.G.; Kiyokawa, H.; Sicard, A.; Vignon, F.; Langin, D.; Barbacid, M.; Fajas, L. Cdk4 promotes adipogenesis through PPARγ activation. Cell. Metab. 2005, 2, 239–249. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Y.; Li, W.; Hu, A.J.; Luo, C.; Zhou, W.; Hu, J.K.; Daniele, S.G.; Wang, J.; Sheng, J.; et al. CDK6 inhibits white to beige fat transition by suppressing RUNX1. Nat. Commun. 2018, 9, 1023. [Google Scholar] [CrossRef]
- Lopez-Mejia, C.; Castillo-Armengol, J.; Lagarrigue, S.; Fajas, L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell. Mol. Life Sci. 2018, 75, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Fajas, L. Re-thinking cell cycle regulators: The cross-talk with metabolism. Front. Oncol. 2013, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.; Kovatcheva, M.; Davis, L.E.; Tap, W.D.; Koff, A. CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell 2018, 34, 9–20. [Google Scholar] [CrossRef] [PubMed]
- FDA. Verzenio Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208716s000lbl.pdf (accessed on 29 January 2023).
- FDA. Kisqali Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209092s000lbl.pdf (accessed on 29 January 2023).
- FDA. Ibrance Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212436lbl.pdf (accessed on 29 January 2023).
- Pfeiler, G.; Hlauschek, D.; Mayer, E.L.; Deutschmann, C.; Kacerovsky-Strobl, S.; Martin, M.; Meisel, J.L.; Zdenkowski, N.; Loibl, S.; Balic, M.; et al. Impact of body mass index on treatment and outcomes in patients with early hormone receptor-positive breast cancer receiving endocrine therapy with or without palbociclib in the PALLAS trial. J. Clin. Oncol. 2022, 40, 518. [Google Scholar] [CrossRef]
- Franzoi, A.; Lambertini, M.; Ceppi, M.; Bruzzone, M.; de Azambuja, E. Implication of body mass index (BMI) on the biological and clinical effects of endocrine therapy plus abemaciclib as neoadjuvant therapy for early breast cancer patients. Breast Cancer Res. Treat. 2022, 192, 457–462. [Google Scholar] [CrossRef]
- Franzoi, A.; Eiger, D.; Ameye, L.; Ponde, N.; Caparica, R.; De Angelis, C.; Brandão, M.; Desmedt, C.; Di Cosimo, S.; Kotecki, N.; et al. Clinical Implications of Body Mass Index in Metastatic Breast Cancer Patients Treated With Abemaciclib and Endocrine Therapy. J. Natl. Cancer Inst. 2021, 113, 462–470. [Google Scholar] [CrossRef]
- Çağlayan, D.; Kocak, M.Z.; Geredeli, C.; Tatli, A.M.; Eryılmaz, M.K.; Göksu, S.S.; Araz, M.; Artac, M. The effect of BMI on the outcomes of CDK 4/6 inhibitor therapy in HR-positive metastatic breast cancer patients. J. Clin. Oncol. 2022, 40, e13010. [Google Scholar] [CrossRef]
- Knudsen, E.S.; Schultz, E.; Hamilton, D.; Attwood, K.; Edge, S.; O’connor, T.; Levine, E.; Witkiewicz, A.K. Real-World Experience with CDK4/6 Inhibitors for Metastatic HR+/HER2− Breast Cancer at a Single Cancer Center. Oncologist 2022, 27, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Franzoi, A.; Vandeputte, C.; Eiger, D.; Caparica, R.; Brandão, M.; De Angelis, C.; Hendlisz, A.; Awada, A.; Piccart, M.; de Azambuja, E. Computed tomography-based analyses of baseline body composition parameters and changes in breast cancer patients under treatment with CDK 4/6 inhibitors. Breast Cancer Res. Treat. 2020, 181, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef]
- Shah, J.; Wang, Z.; Hunter, T. Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces IRS1/2 Depletion, Insulin Resistance, and Cell Survival Deficiencies. Curr. Biol. 2004, 14, 1650–1656. [Google Scholar] [CrossRef]
- Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.-G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010, 59, 1338–1348. [Google Scholar] [CrossRef]
- Corona, S.P.; Giudici, F.; Jerusalem, G.; Ciruelos, E.; Strina, C.; Sirico, M.; Bernocchi, O.; Milani, M.; Dester, M.; Ziglioli, N.; et al. Impact of BMI on the outcome of metastatic breast cancer patients treated with everolimus: A retrospective exploratory analysis of the BALLET study. Oncotarget 2020, 11, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, G.I.; Meier-Wiedenbach, I.; Manns, M.P. Clinical Pharmacokinetics of Everolimus. Clin. Pharmacokinet. 2004, 43, 83–95. [Google Scholar] [CrossRef] [PubMed]
- FDA. Piqray Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/212526s006lbl.pdf (accessed on 29 January 2023).
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Rugo, H.S.; Lacouture, M.E.; Goncalves, M.D.; Masharani, U.; Aapro, M.S.; O’Shaughnessy, J.A. A multidisciplinary approach to optimizing care of patients treated with alpelisib. Breast 2022, 61, 156–167. [Google Scholar] [CrossRef]
- Alaklabi, S.; Roy, A.M.; Attwood, K.; George, A.; O’connor, T.; Early, A.; Levine, E.G.; Gandhi, S. Real world outcomes with alpelisib in metastatic hormone receptor-positive breast cancer patients: A single institution experience. Front. Oncol. 2022, 12, 1012391. [Google Scholar] [CrossRef]
- Shen, S.; Chen, Y.; Carpio, A.; Chang, C.; Iyengar, N.M. Characterization of alpelisib-associated hyperglycemia in metastatic breast cancer. J. Clin. Oncol. 2022, 40, 1016. [Google Scholar] [CrossRef]
- Ge, X.; Behrendt, C.E.; Yost, S.E.; Patel, N.; Samoa, R.; Stewart, D.B.; Sedrak, M.S.; Lavasani, S.M.; Waisman, J.R.; Yuan, Y.; et al. Predicting hyperglycemia among patients receiving alpelisib plus fulvestrant for metastatic breast cancer. J. Clin. Oncol. 2022, 40, 1060. [Google Scholar] [CrossRef]
- Szántó, M.; Bai, P. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes. Dev. 2020, 34, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Litton, K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Tutt, N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- Bruin, C.; Sonke, G.S.; Beijnen, J.H.; Huitema, A.D.R. Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in Oncology. Clin. Pharmacokinet. 2022, 61, 1649–1675. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortes, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Sacituzumab Govitecan in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. J. Clin. Oncol. 2022, 40, 3365–3376. [Google Scholar] [CrossRef]
- Sathe, G.; Singh, I.; Singh, P.; Diderichsen, P.; Wang, X.; Chang, P.; Phan, S.-C.; Girish, S.; Othman, A. 189P Pharmacokinetics (PK) of sacituzumab govitecan (SG) in patients (Pts) with metastatic triple-negative breast cancer (mTNBC) and other solid tumors. Ann. Oncol. 2022, 33, S214. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- FDA. Keytruda Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125514s089s114lbl.pdf (accessed on 29 January 2023).
- Indini, A.; Rijavec, E.; Ghidini, M.; Tomasello, G.; Cattaneo, M.; Barbin, F.; Bareggi, C.; Galassi, B.; Gambini, D.; Grossi, F. Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 2628. [Google Scholar] [CrossRef]
- An, Y.; Wu, Z.; Wang, N.; Yang, Z.; Li, Y.; Xu, B.; Sun, M. Association between body mass index and survival outcomes for cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Transl. Med. 2020, 18, 235. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Monjazeb, A.M.; Decock, J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front. Immunol. 2019, 10, 1940. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Guidelines Version 4.2022; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2022. [Google Scholar]
- Cho, S.-J.; Yoon, I.-S.; Kim, D.-D. Obesity-related physiological changes and their pharmacokinetic consequences. J. Pharm. Investig. 2013, 43, 161–169. [Google Scholar] [CrossRef]
Systemic Treatment | Mechanisms Related to Obesity | Dosing Strategy | Treatment Concerns in Patients with Obesity | Considerations for Patients with Obesity |
---|---|---|---|---|
Chemotherapy |
| BSA-based dosing |
|
|
Endocrine therapy |
| Fixed-dose |
|
|
Trastuzumab | Further research is needed | Weight-based (IV); fixed-dose (SC) |
|
|
Pertuzumab | Further research is needed | Fixed-dose | NA |
|
Antibody-drug conjugates (T-DM1, fam-trastuzumab deruxtecan) | Further research is needed | Weight-based |
|
|
Tyrosine kinase inhibitors (lapatinib, neratinib, tucatinib) | Further research is needed | Fixed-dose | NA |
|
CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) | Fixed-dose | NA |
| |
mTOR and PI3K inhibitor (everolimus and alpelisib, respectively) | Fixed-dose |
|
| |
PARP inhibitors (olaparib, talazoparib) |
| Fixed-dose | NA |
|
Trop-2-directed antibody-drug conjugate (sacituzumab govitecan-hziy) | Further research is needed | Weight-based | NA |
|
Immunotherapy (pembrolizumab) |
| Fixed-dose | NA |
|
Prevention |
|
Treatment |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LeVee, A.; Mortimer, J. The Challenges of Treating Patients with Breast Cancer and Obesity. Cancers 2023, 15, 2526. https://doi.org/10.3390/cancers15092526
LeVee A, Mortimer J. The Challenges of Treating Patients with Breast Cancer and Obesity. Cancers. 2023; 15(9):2526. https://doi.org/10.3390/cancers15092526
Chicago/Turabian StyleLeVee, Alexis, and Joanne Mortimer. 2023. "The Challenges of Treating Patients with Breast Cancer and Obesity" Cancers 15, no. 9: 2526. https://doi.org/10.3390/cancers15092526
APA StyleLeVee, A., & Mortimer, J. (2023). The Challenges of Treating Patients with Breast Cancer and Obesity. Cancers, 15(9), 2526. https://doi.org/10.3390/cancers15092526