Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nanotechnology
3. Brain Drug Delivery
4. Carbon Nanomaterials
Carbon Nanomaterials and Brain Tumors
5. Toxicity
5.1. Carbon Nanomaterials and Oxidative Stress
5.2. Carbon Nanomaterials and Genotoxicity
5.3. Carbon Nanomaterials and Neurotoxicity
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) Guideline on the Diagnosis and Treatment of Adult Astrocytic and Oligodendroglial Gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
- Caffo, M.; Barresi, V.; Caruso, G.; La, G.; Angela, M.; Raudino, G.; Alafaci, C.; Tomasello, F. Gliomas Biology: Angiogenesis and Invasion. In Evolution of the Molecular Biology of Brain Tumors and the Therapeutic Implications; Lichtor, T., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-0989-1. [Google Scholar]
- Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; Dewi, D.M.M.; Putri, I.Z.D.; Savitri, I.N.I. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022, 27, 7578. [Google Scholar] [CrossRef]
- Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; de la Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-Bacterial Activity of Graphene Oxide as a New Weapon Nanomaterial to Combat Multidrug-Resistance Bacteria. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 568–581. [Google Scholar] [CrossRef]
- Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical Applications of Carbon Nanomaterials: Drug and Gene Delivery Potentials. J. Cell Physiol. 2018, 234, 298–319. [Google Scholar] [CrossRef]
- Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Could Nanoparticle Systems Have a Role in the Treatment of Cerebral Gliomas? Nanomed. Nanotechnol. Biol. Med. 2011, 7, 744–752. [Google Scholar] [CrossRef]
- Kutty, R.V.; Wei Leong, D.T.; Feng, S.-S. Nanomedicine for the Treatment of Triple-Negative Breast Cancer. Nanomedicine 2014, 9, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chan, K.K.; Lin, W.-J.; Soehartono, A.M.; Lin, G.; Toh, H.; Yoon, H.S.; Chen, C.-K.; Yong, K.-T. Biodegradable Nanocarriers for Small Interfering Ribonucleic Acid (SiRNA) Co-Delivery Strategy Increase the Chemosensitivity of Pancreatic Cancer Cells to Gemcitabine. Nano Res. 2017, 10, 3049–3067. [Google Scholar] [CrossRef]
- Wu, C.; Li, H.; Zhao, H.; Zhang, W.; Chen, Y.; Yue, Z.; Lu, Q.; Wan, Y.; Tian, X.; Deng, A. Potentiating Antilymphoma Efficacy of Chemotherapy Using a Liposome for Integration of CD20 Targeting, Ultra-Violet Irradiation Polymerizing, and Controlled Drug Delivery. Nanoscale Res. Lett. 2014, 9, 447. [Google Scholar] [CrossRef]
- Bar-Zeev, M.; Livney, Y.D.; Assaraf, Y.G. Targeted Nanomedicine for Cancer Therapeutics: Towards Precision Medicine Overcoming Drug Resistance. Drug Resist. Updates 2017, 31, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ling, L.; Yao, Y.; Song, Q. One-Step Synthesis of Fluorescent Smart Thermo-Responsive Copper Clusters: A Potential Nanothermometer in Living Cells. Nano Res. 2015, 8, 1975–1986. [Google Scholar] [CrossRef]
- Guo, X.; Shi, C.; Wang, J.; Di, S.; Zhou, S. PH-Triggered Intracellular Release from Actively Targeting Polymer Micelles. Biomaterials 2013, 34, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef]
- Kwon, G.S. Polymeric Micelles for Delivery of Poorly Water-Soluble Compounds. Crit. Rev. Ther. Drug Carr. Syst. 2003, 20, 357–403. [Google Scholar] [CrossRef]
- Dubin, C.H. Special Delivery: Pharmaceutical Companies Aim to Target Their Drugs with Nano Precision. Mech. Eng.-CIME 2004, 126, S10. [Google Scholar]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Rapoport, N.; Marin, A.P.; Timoshin, A.A. Effect of a Polymeric Surfactant on Electron Transport in HL-60 Cells. Arch. Biochem. Biophys. 2000, 384, 100–108. [Google Scholar] [CrossRef]
- Wei, X.; Chen, X.; Ying, M.; Lu, W. Brain Tumor-Targeted Drug Delivery Strategies. Acta Pharm. Sin. B 2014, 4, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Fan, W.; Chen, H.; Yao, N.; Tang, W.; Tang, J.; Yuan, W.; Kuai, R.; Zhang, Z.; Wu, Y.; et al. In Vitro and in Vivo Investigation of Glucose-Mediated Brain-Targeting Liposomes. J. Drug Target. 2010, 18, 536–549. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Li, W.; Meng, G.; Wang, P.; Liao, W. Strategies for Transporting Nanoparticles across the Blood–Brain Barrier. Biomater. Sci. 2016, 4, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Wu, H.; McBride, J.L.; Jung, K.-E.; Hee Kim, M.; Davidson, B.L.; Kyung Lee, S.; Shankar, P.; Manjunath, N. Transvascular Delivery of Small Interfering RNA to the Central Nervous System. Nature 2007, 448, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, M.S.; Nishtala, P.S. An Overview of Pharmacodynamic Modelling, Ligand-Binding Approach and Its Application in Clinical Practice. Saudi Pharm. J. 2017, 25, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes. Biochemistry 2002, 5, 319–330. [Google Scholar]
- Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and Transferrin-Receptor-Antibody-Modified Nanoparticles Enable Drug Delivery across the Blood–Brain Barrier (BBB). Eur. J. Pharm. Biopharm. 2009, 71, 251–256. [Google Scholar] [CrossRef]
- Aktaş, Y.; Yemisci, M.; Andrieux, K.; Gürsoy, R.N.; Alonso, M.J.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quiñoá, E.; Riguera, R.; Sargon, M.F.; et al. Development and Brain Delivery of Chitosan−PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chem. 2005, 16, 1503–1511. [Google Scholar] [CrossRef]
- Caruso, G.; Merlo, L.; Tot, E.; Pignataro, C.; Caffo, M. Chapter 6—Nanotechnology and the New Frontiers of Drug Delivery in Cerebral Gliomas. In Nano- and Microscale Drug Delivery Systems; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 95–112. ISBN 978-0-323-52727-9. [Google Scholar]
- Wilson, B.; Lavanya, Y.; Priyadarshini, S.R.B.; Ramasamy, M.; Jenita, J.L. Albumin Nanoparticles for the Delivery of Gabapentin: Preparation, Characterization and Pharmacodynamic Studies. Int. J. Pharm. 2014, 473, 73–79. [Google Scholar] [CrossRef]
- Martins, S.M.; Sarmento, B.; Nunes, C.; Lúcio, M.; Reis, S.; Ferreira, D.C. Brain Targeting Effect of Camptothecin-Loaded Solid Lipid Nanoparticles in Rat after Intravenous Administration. Eur. J. Pharm. Biopharm. 2013, 85, 488–502. [Google Scholar] [CrossRef]
- Ke, W.; Shao, K.; Huang, R.; Han, L.; Liu, Y.; Li, J.; Kuang, Y.; Ye, L.; Lou, J.; Jiang, C. Gene Delivery Targeted to the Brain Using an Angiopep-Conjugated Polyethyleneglycol-Modified Polyamidoamine Dendrimer. Biomaterials 2009, 30, 6976–6985. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel, M.; Cárdenas, S.; Simonet, B.M.; Moliner-Martínez, Y.; Lucena, R. Carbon Nanostructures as Sorbent Materials in Analytical Processes. TrAC Trends Anal. Chem. 2008, 27, 34–43. [Google Scholar] [CrossRef]
- Scida, K.; Stege, P.W.; Haby, G.; Messina, G.A.; García, C.D. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review. Anal. Chim. Acta 2011, 691, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Chen, J.; Chen, X.; Xiao, C.; Nie, L.; Yao, S. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Boron-Doped Carbon Nanotubes Modified Electrode. Biosens. Bioelectron. 2008, 23, 1272–1277. [Google Scholar] [CrossRef]
- Benos, L.; Spyrou, L.A.; Sarris, I.E. Development of a New Theoretical Model for Blood-CNTs Effective Thermal Conductivity Pertaining to Hyperthermia Therapy of Glioblastoma Multiform. Comput. Methods Programs Biomed. 2019, 172, 79–85. [Google Scholar] [CrossRef]
- Mendes, R.G.; Bachmatiuk, A.; Büchner, B.; Cuniberti, G.; Rümmeli, M.H. Carbon Nanostructures as Multi-Functional Drug Delivery Platforms. J. Mater. Chem. B 2013, 1, 401–428. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon Nanostructures in Biology and Medicine. J. Mater. Chem. B 2017, 5, 6437–6450. [Google Scholar] [CrossRef]
- Porto, L.S.; Silva, D.N.; de Oliveira, A.E.F.; Pereira, A.C.; Borges, K.B. Carbon Nanomaterials: Synthesis and Applications to Development of Electrochemical Sensors in Determination of Drugs and Compounds of Clinical Interest. Rev. Anal. Chem. 2019, 38, 20190017. [Google Scholar] [CrossRef]
- Caffo, M.; Merlo, L.; Marino, D.; Caruso, G. Graphene in Neurosurgery: The Beginning of a New Era. Nanomedicine 2015, 10, 615–625. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, X.; Zhang, M.; Fan, Z.; Sun, Y.; Han, M.; Fan, L. The Uptake Mechanism and Biocompatibility of Graphene Quantum Dots with Human Neural Stem Cells. Nanoscale 2014, 6, 5799–5806. [Google Scholar] [CrossRef]
- Shapira, C.; Itshak, D.; Duadi, H.; Harel, Y.; Atkins, A.; Lipovsky, A.; Lavi, R.; Lellouche, J.P.; Fixler, D. Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Ex Vivo Experiments. ACS Nano 2022, 16, 15760–15769. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Wang, J.T.-W.; Morfin, J.-F.; Khanum, T.; To, W.; Sosabowski, J.; Tóth, E.; Al-Jamal, K.T. Functionalised Carbon Nanotubes Enhance Brain Delivery of Amyloid-Targeting Pittsburgh Compound B (PiB)-Derived Ligands. Nanotheranostics 2018, 2, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, S.D.; Graham, R.M.; Mintz, K.J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R.M. Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors. Nanoscale 2019, 11, 6192–6205. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Guo, S.; Xu, P.; Li, X.; Zhao, Y.; Gu, W.; Xue, M. Hydrothermal Synthesis of Nitrogen-Doped Carbon Dots with Real-Time Live-Cell Imaging and Blood-Brain Barrier Penetration Capabilities. Int. J. Nanomed. 2016, 11, 6325–6336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Alizadeh, D.; Zhang, L.; Liu, W.; Farrukh, O.; Manuel, E.; Diamond, D.J.; Badie, B. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clin. Cancer Res. 2011, 17, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Shen, S.; Wang, D.; Xi, Z.; Guo, L.; Pang, Z.; Qian, Y.; Sun, X.; Jiang, X. The Targeted Delivery of Anticancer Drugs to Brain Glioma by PEGylated Oxidized Multi-Walled Carbon Nanotubes Modified with Angiopep-2. Biomaterials 2012, 33, 3324–3333. [Google Scholar] [CrossRef]
- You, Y.; Wang, N.; He, L.; Shi, C.; Zhang, D.; Liu, Y.; Luo, L.; Chen, T. Designing Dual-Functionalized Carbon Nanotubes with High Blood–Brain-Barrier Permeability for Precise Orthotopic Glioma Therapy. Dalton Trans. 2019, 48, 1569–1573. [Google Scholar] [CrossRef]
- Li, S.; Peng, Z.; Dallman, J.; Baker, J.; Othman, A.M.; Blackwelder, P.L.; Leblanc, R.M. Crossing the Blood–Brain–Barrier with Transferrin Conjugated Carbon Dots: A Zebrafish Model Study. Colloids Surf. B Biointerfaces 2016, 145, 251–256. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Qian, M.; Jiang, H.; Shi, W.; Chen, J.; Lächelt, U.; Wagner, E.; Lu, W.; Wang, Y.; et al. Augmented Glioma-Targeted Theranostics Using Multifunctional Polymer-Coated Carbon Nanodots. Biomaterials 2017, 141, 29–39. [Google Scholar] [CrossRef]
- Liyanage, P.Y.; Zhou, Y.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Vanni, S.; Graham, R.M.; Leblanc, R.M. Pediatric Glioblastoma Target-Specific Efficient Delivery of Gemcitabine across the Blood–Brain Barrier via Carbon Nitride Dots. Nanoscale 2020, 12, 7927–7938. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- McCallion, C.; Burthem, J.; Rees-Unwin, K.; Golovanov, A.; Pluen, A. Graphene in Therapeutics Delivery: Problems, Solutions and Future Opportunities. Eur. J. Pharm. Biopharm. 2016, 104, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-P.; Lu, Y.-J.; Hung, S.-C.; Chen, J.-P.; Wei, K.-C. Improving Thermal Stability and Efficacy of BCNU in Treating Glioma Cells Using PAA-Functionalized Graphene Oxide. Int. J. Nanomed. 2012, 7, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Shen, H.; Mao, J.; Zhang, L.; Jiang, Z.; Sun, T.; Lan, Q.; Zhang, Z. Transferrin Modified Graphene Oxide for Glioma-Targeted Drug Delivery: In Vitro and in Vivo Evaluations. ACS Appl. Mater. Interfaces 2013, 5, 6909–6914. [Google Scholar] [CrossRef]
- Lu, C.-T.; Zhao, Y.-Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.-Q. Current Approaches to Enhance CNS Delivery of Drugs across the Brain Barriers. Int. J. Nanomed. 2014, 9, 2241–2257. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Surhland, C.; Sanchez, Z.; Chaudhary, P.; Suresh Kumar, M.A.; Lee, S.; Peña, L.A.; Waring, M.; Sitharaman, B.; Naidu, M. Graphene Nanoribbons as a Drug Delivery Agent for Lucanthone Mediated Therapy of Glioblastoma Multiforme. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 109–118. [Google Scholar] [CrossRef]
- Song, M.-M.; Xu, H.-L.; Liang, J.-X.; Xiang, H.-H.; Liu, R.; Shen, Y.-X. Lactoferrin Modified Graphene Oxide Iron Oxide Nanocomposite for Glioma-Targeted Drug Delivery. Mater. Sci. Eng. C 2017, 77, 904–911. [Google Scholar] [CrossRef]
- Szczepaniak, J.; Sosnowska, M.; Wierzbicki, M.; Witkowska-Pilaszewicz, O.; Strojny-Cieslak, B.; Jagiello, J.; Fraczek, W.; Kusmierz, M.; Grodzik, M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. Materials 2022, 15, 5843. [Google Scholar] [CrossRef]
- Szczepaniak, J.; Jagiello, J.; Wierzbicki, M.; Nowak, D.; Sobczyk-Guzenda, A.; Sosnowska, M.; Jaworski, S.; Daniluk, K.; Szmidt, M.; Witkowska-Pilaszewicz, O.; et al. Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int. J. Mol. Sci. 2021, 22, 515. [Google Scholar] [CrossRef]
- Sharma, A.; Panwar, V.; Thomas, J.; Chopra, V.; Roy, H.S.; Ghosh, D. Actin-Binding Carbon Dots Selectively Target Glioblastoma Cells While Sparing Normal Cells. Colloids Surf. B Biointerfaces 2021, 200, 111572. [Google Scholar] [CrossRef] [PubMed]
- Mengesha, A.E.; Youan, B.-B.C. 8—Nanodiamonds for Drug Delivery Systems. In Diamond-Based Materials for Biomedical Applications; Narayan, R., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2013; pp. 186–205. ISBN 978-0-85709-340-0. [Google Scholar]
- Li, T.-F.; Xu, Y.-H.; Li, K.; Wang, C.; Liu, X.; Yue, Y.; Chen, Z.; Yuan, S.-J.; Wen, Y.; Zhang, Q.; et al. Doxorubicin-Polyglycerol-Nanodiamond Composites Stimulate Glioblastoma Cell Immunogenicity through Activation of Autophagy. Acta Biomater. 2019, 86, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Samanta, P.N.; Das, K.K. Noncovalent Interaction Assisted Fullerene for the Transportation of Some Brain Anticancer Drugs: A Theoretical Study. J. Mol. Graph. Model. 2017, 72, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Tykhomyrov, A.A.; Nedzvetsky, V.S.; Klochkov, V.K.; Andrievsky, G.V. Nanostructures of Hydrated C60 Fullerene (C60HyFn) Protect Rat Brain against Alcohol Impact and Attenuate Behavioral Impairments of Alcoholized Animals. Toxicology 2008, 246, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.-Y.; Zhilenkov, A.V.; Voronov, I.I.; Khakina, E.A.; Mischenko, D.V.; Troshin, P.A.; Hsu, S. Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl. Mater. Interfaces 2017, 9, 11482–11492. [Google Scholar] [CrossRef]
- Akçan, R.; Aydogan, H.C.; Yildirim, M.Ş.; Taştekin, B.; Sağlam, N. Nanotoxicity: A Challenge for Future Medicine. Turk. J. Med. Sci. 2020, 50, 1180–1196. [Google Scholar] [CrossRef]
- Caruso, G.; Merlo, L.; Caffo, M. Innovative Brain Tumor Therapy, 1st ed.; Woodhead Publishing: Waltham, MA, USA, 2014; ISBN 978-1-907568-59-6. [Google Scholar]
- Rinaldi, M.; Caffo, M.; Minutoli, L.; Marini, H.; Abbritti, R.; Squadrito, F.; Trichilo, V.; Valenti, A.; Barresi, V.; Altavilla, D.; et al. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies. IJMS 2016, 17, 984. [Google Scholar] [CrossRef]
- Horie, M.; Tabei, Y. Role of Oxidative Stress in Nanoparticles Toxicity. Free. Radic. Res. 2021, 55, 331–342. [Google Scholar] [CrossRef]
- Yamawaki, H.; Iwai, N. Cytotoxicity of Water-Soluble Fullerene in Vascular Endothelial Cells. Am. J. Physiol.-Cell Physiol. 2006, 290, C1495–C1502. [Google Scholar] [CrossRef]
- Paital, B.; Chainy, G.B.N. Seasonal Variability of Antioxidant Biomarkers in Mud Crabs (Scylla serrata). Ecotoxicol. Environ. Saf. 2013, 87, 33–41. [Google Scholar] [CrossRef]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Q.; Zou, W.; Hu, X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environ. Sci. Technol. 2017, 51, 7861–7871. [Google Scholar] [CrossRef] [PubMed]
- Dziewięcka, M.; Karpeta-Kaczmarek, J.; Augustyniak, M.; Majchrzycki, Ł.; Augustyniak-Jabłokow, M.A. Evaluation of in Vivo Graphene Oxide Toxicity for Acheta Domesticus in Relation to Nanomaterial Purity and Time Passed from the Exposure. J. Hazard. Mater. 2016, 305, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity: Miniperspective. J. Med. Chem. 2016, 59, 8149–8167. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-W.; Lin, Z.-Q.; Wei, B.-F.; Zeng, Q.; Han, B.; Wei, C.-X.; Fan, X.-J.; Hu, C.-L.; Liu, L.-H.; Huang, J.-H. Single-Walled Carbon Nanotube Induction of Rat Aortic Endothelial Cell Apoptosis: Reactive Oxygen Species Are Involved in the Mitochondrial Pathway. Int. J. Biochem. Cell Biol. 2011, 43, 564–572. [Google Scholar] [CrossRef]
- Jović, D.; Jaćević, V.; Kuča, K.; Borišev, I.; Mrdjanovic, J.; Petrovic, D.; Seke, M.; Djordjevic, A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. Nanomaterials 2020, 10, 1508. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R.-S.; Chang, Y.-Z.; Chen, C. The Triggering of Apoptosis in Macrophages by Pristine Graphene through the MAPK and TGF-Beta Signaling Pathways. Biomaterials 2012, 33, 402–411. [Google Scholar] [CrossRef]
- Pacurari, M.; Yin, X.J.; Zhao, J.; Ding, M.; Leonard, S.S.; Schwegler-Berry, D.; Ducatman, B.S.; Sbarra, D.; Hoover, M.D.; Castranova, V.; et al. Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and Activate MAPKs, AP-1, NF-KappaB, and Akt in Normal and Malignant Human Mesothelial Cells. Environ. Health Perspect. 2008, 116, 1211–1217. [Google Scholar] [CrossRef]
- Shvedova, A.; Castranova, V.; Kisin, E.; Schwegler-Berry, D.; Murray, A.; Gandelsman, V.; Maynard, A.; Baron, P. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells. J. Toxicol. Environ. Health Part A 2003, 66, 1909–1926. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.-E.; Kim, D.; Woo, C.G.; Pikhitsa, P.V.; Cho, M.-H.; Choi, M. Comparison of Cellular Toxicity between Multi-Walled Carbon Nanotubes and Onion-like Shell-Shaped Carbon Nanoparticles. J. Nanopart Res. 2015, 17, 378. [Google Scholar] [CrossRef]
- Manshian, B.B.; Jenkins, G.J.S.; Williams, P.M.; Wright, C.; Barron, A.R.; Brown, A.P.; Hondow, N.; Dunstan, P.R.; Rickman, R.; Brady, K.; et al. Single-Walled Carbon Nanotubes: Differential Genotoxic Potential Associated with Physico-Chemical Properties. Nanotoxicology 2013, 7, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, H.; Wang, Y.; Chen, M.; Ye, S.; Hou, Z.; Ren, L. Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes. PLoS ONE 2013, 8, e65756. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Lim, W.T.; Park, J.; Kim, Y. Effect of PH on Fenton and Fenton-like Oxidation. Environ. Technol. 2009, 30, 183–190. [Google Scholar] [CrossRef]
- Kagan, V.E.; Tyurina, Y.Y.; Tyurin, V.A.; Konduru, N.V.; Potapovich, A.I.; Osipov, A.N.; Kisin, E.R.; Schwegler-Berry, D.; Mercer, R.; Castranova, V.; et al. Direct and Indirect Effects of Single Walled Carbon Nanotubes on RAW 264.7 Macrophages: Role of Iron. Toxicol. Lett. 2006, 165, 88–100. [Google Scholar] [CrossRef]
- Wang, H.; Wu, F.; Meng, W.; White, J.C.; Holden, P.A.; Xing, B. Engineered Nanoparticles May Induce Genotoxicity. Environ. Sci. Technol. 2013, 47, 13212–13214. [Google Scholar] [CrossRef]
- Firme, C.P.; Bandaru, P.R. Toxicity Issues in the Application of Carbon Nanotubes to Biological Systems. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 245–256. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of Genotoxicity. A Review of in Vitro and in Vivo Studies with Engineered Nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA Damage: Mechanisms, Mutation, and Disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Mrđanović, J.; Šolajić, S.; Bogdanović, V.; Stankov, K.; Bogdanović, G.; Djordjevic, A. Effects of Fullerenol C60(OH)24 on the Frequency of Micronuclei and Chromosome Aberrations in CHO-K1 Cells. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2009, 680, 25–30. [Google Scholar] [CrossRef]
- Sumi, N.; Chitra, K.C. Cytogenotoxic Effects of Fullerene C60 in the Freshwater Teleostean Fish, Anabas Testudineus (Bloch, 1792). Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2019, 847, 503104. [Google Scholar] [CrossRef] [PubMed]
- Samadian, H.; Salami, M.S.; Jaymand, M.; Azarnezhad, A.; Najafi, M.; Barabadi, H.; Ahmadi, A. Genotoxicity Assessment of Carbon-Based Nanomaterials; Have Their Unique Physicochemical Properties Made Them Double-Edged Swords? Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2020, 783, 108296. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Baweja, L.; Gurbani, D.; Pandey, A.K.; Dhawan, A. Interaction of C 60 Fullerene with the Proteins Involved in DNA Mismatch Repair Pathway. J. Biomed. Nanotechnol. 2011, 7, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Karpeta-Kaczmarek, J.; Kędziorski, A.; Augustyniak-Jabłokow, M.A.; Dziewięcka, M.; Augustyniak, M. Chronic Toxicity of Nanodiamonds Can Disturb Development and Reproduction of Acheta domesticus L. Environ. Res. 2018, 166, 602–609. [Google Scholar] [CrossRef]
- Dworak, N.; Wnuk, M.; Zebrowski, J.; Bartosz, G.; Lewinska, A. Genotoxic and Mutagenic Activity of Diamond Nanoparticles in Human Peripheral Lymphocytes in Vitro. Carbon 2014, 68, 763–776. [Google Scholar] [CrossRef]
- Mao, Z.; Zheng, Y.-L.; Zhang, Y.-Q. Behavioral Impairment and Oxidative Damage Induced by Chronic Application of Nonylphenol. Int. J. Mol. Sci. 2010, 12, 114–127. [Google Scholar] [CrossRef]
- Facciolà, A.; Visalli, G.; La Maestra, S.; Ceccarelli, M.; D’Aleo, F.; Nunnari, G.; Pellicanò, G.F.; Di Pietro, A. Carbon Nanotubes and Central Nervous System: Environmental Risks, Toxicological Aspects and Future Perspectives. Environ. Toxicol. Pharmacol. 2019, 65, 23–30. [Google Scholar] [CrossRef]
- Kim, M.; Eom, H.-J.; Choi, I.; Hong, J.; Choi, J. Graphene Oxide-Induced Neurotoxicity on Neurotransmitters, AFD Neurons and Locomotive Behavior in Caenorhabditis Elegans. Neurotoxicology 2020, 77, 30–39. [Google Scholar] [CrossRef]
- Bardi, G.; Nunes, A.; Gherardini, L.; Bates, K.; Al-Jamal, K.T.; Gaillard, C.; Prato, M.; Bianco, A.; Pizzorusso, T.; Kostarelos, K. Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses. PLoS ONE 2013, 8, e80964. [Google Scholar] [CrossRef]
- Kafa, H.; Wang, J.T.-W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J.E.; Abbott, N.J.; Al-Jamal, K.T. The Interaction of Carbon Nanotubes with an in Vitro Blood-Brain Barrier Model and Mouse Brain in Vivo. Biomaterials 2015, 53, 437–452. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Q.; Zheng, G.; Han, S.; Zhao, F.; Hu, Q.; Fu, Z. Developmental Neurotoxicity and Immunotoxicity Induced by Graphene Oxide in Zebrafish Embryos. Environ. Toxicol. 2018, 34, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, S.; Hwang, K.S.; Lim, N.R.; Oh, H.B.; Cho, I.-J.; Kim, J.; Kim, K.H.; Kim, H.N. Effect of Carbon Nanomaterial Dimension on the Functional Activity and Degeneration of Neurons. Biomaterials 2021, 279, 121232. [Google Scholar] [CrossRef] [PubMed]
- Caffo, M.; Caruso, G.; Curcio, A.; Laera, R.; Crisafulli, C.; Fazzari, E.; Passalacqua, M.; Germanò, A. The Role of Nanotechnologies in Brain Tumors. In Human Brain and Spinal Cord Tumors: From Bench to Bedside. Volume 1; Rezaei, N., Hanaei, S., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2023; Volume 1394, pp. 181–192. ISBN 978-3-031-14731-9. [Google Scholar]
- Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of Engineered Nanoparticles on the Innate Immune System. Semin. Immunol. 2017, 34, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Baldrighi, M.; Trusel, M.; Tonini, R.; Giordani, S. Carbon Nanomaterials Interfacing with Neurons: An In Vivo Perspective. Front. Neurosci. 2016, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. Properties and Behavior of Carbon Nanomaterials When Interfacing Neuronal Cells: How Far Have We Come? Carbon 2019, 143, 430–446. [Google Scholar] [CrossRef]
- Fan, Z.; Zhu, P.; Zhu, Y.; Wu, K.; Li, C.Y.; Cheng, H. Engineering Long-Circulating Nanomaterial Delivery Systems. Curr. Opin. Biotechnol. 2020, 66, 131–139. [Google Scholar] [CrossRef]
- Yang, S.-T.; Luo, J.; Zhou, Q.; Wang, H. Pharmacokinetics, Metabolism and Toxicity of Carbon Nanotubes for Biomedical Purposes. Theranostics 2012, 2, 271–282. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Nakajima, H.; Yudasaka, M.; Iijima, S.; Okazaki, T. Diameter-Dependent Degradation of 11 Types of Carbon Nanotubes: Safety Implications. ACS Appl. Nano Mater. 2019, 2, 4293–4301. [Google Scholar] [CrossRef]
- Roman, J.A.; Niedzielko, T.L.; Haddon, R.C.; Parpura, V.; Floyd, C.L. Single-Walled Carbon Nanotubes Chemically Functionalized with Polyethylene Glycol Promote Tissue Repair in a Rat Model of Spinal Cord Injury. J. Neurotrauma 2011, 28, 2349–2362. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon Nanomaterials and Their Application to Electrochemical Sensors: A Review. Nanotechnol. Rev. 2018, 7, 19–41. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.; Jeevanandam, J.; Hussien, E.; Mekkawy, S.; Salah, M.A.; Omran, M.; Abdalla, M.; Bechelany, M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Hone, J.; Llaguno, M.C.; Biercuk, M.J.; Johnson, A.T.; Batlogg, B.; Benes, Z.; Fischer, J.E. Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials. Appl. Phys. A 2002, 74, 339–343. [Google Scholar] [CrossRef]
- Simpson, S.; Schelfhout, A.; Golden, C.; Vafaei, S. Nanofluid Thermal Conductivity and Effective Parameters. Appl. Sci. 2018, 9, 87. [Google Scholar] [CrossRef]
- Chadha, U.; Sinha, S.; Jonna, J.; Goswami, M.; Ghani, H.; Nair, K.; Pandey, N.; Kataray, T.; Selvaraj, S.K.; Bhardwaj, P.; et al. Review—Chemical Structures and Stability of Carbon-Doped Graphene Nanomaterials and the Growth Temperature of Carbon Nanomaterials Grown by Chemical Vapor Deposition for Electrochemical Catalysis Reactions. ECS J. Solid State Sci. Technol. 2022, 11, 041003. [Google Scholar] [CrossRef]
- Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nat. Commun. 2019, 10, 3040. [Google Scholar] [CrossRef] [PubMed]
- Orozco, F.; Salvatore, A.; Sakulmankongsuk, A.; Gomes, D.R.; Pei, Y.; Araya-Hermosilla, E.; Pucci, A.; Moreno-Villoslada, I.; Picchioni, F.; Bose, R.K. Electroactive Performance and Cost Evaluation of Carbon Nanotubes and Carbon Black as Conductive Fillers in Self-Healing Shape Memory Polymers and Other Composites. Polymer 2022, 260, 125365. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Hosseini Fouladi, M.; Yong, P.V.C.; Chinna, K.; Palanisamy, N.K.; Wong, E.H. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem. Res. Toxicol. 2021, 34, 24–46. [Google Scholar] [CrossRef]
- Yao, H.; Huang, Y.; Li, X.; Li, X.; Xie, H.; Luo, T.; Chen, J.; Chen, Z. Underlying Mechanisms of Reactive Oxygen Species and Oxidative Stress Photoinduced by Graphene and Its Surface-Functionalized Derivatives. Environ. Sci. Nano 2020, 7, 782–792. [Google Scholar] [CrossRef]
- Hurt, R.H.; Monthioux, M.; Kane, A. Toxicology of Carbon Nanomaterials: Status, Trends, and Perspectives on the Special Issue. Carbon 2006, 44, 1028–1033. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-Based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed]
Molecule | Cellular Ligand | Effect |
---|---|---|
Angiopeptin2 (Angiopep2) | Low-density lipoprotein receptor-related protein (LRP) | Transcytosis of BBB |
Polyethylene Glycol (PEG)/ Phospholipid-PEG (PL-PEG)/ 1,2-distearoyl-sn-glycero-3phosphoethanolamine-N-[amino(polyethylene glycol)] (PEG-DSPE) | Avoid recognition by the reticuloendothelial system. Increases solubility and stability | |
Transcriptional Activator (TAT) | Inhibits Occludin Expression; reduce Occludin via matrix metalloproteinase-9 | |
Biotin (B) | Sodium-dependent multivitamin transporters (SMVT) | Increase uptake inside cancer cell. (SMVT is overexpressed in cancer cell) |
Polyethyleneimine (PEI) | Promote endosomal escape | |
Transferrin | Transferrin receptor | Transcytosis of BBB; endocytosis in GB (receptor is over expressed in brain tumor cells) |
IL6 fragment | IL-6 receptor (IL-6R) | Transcytosis of BBB; endocytosis on GB; Block the IL-6-mediated pathway |
Polyacrylic acid (PAA) | Enhances drug solubility; decreases drug hydrolysis rate | |
1,2-distearoyl-sn-glycero-3phosphoethanolamine-N-[amino(polyethylene glycol)] (PEG-DSPE) | Increases solubility and stability | |
Lactoferrin | Lactoferrin receptor | Transcytosis of BBB; endocytosis in GB (receptor is over expressed in brain tumor cells) |
Polyglycerol | Reduce uptake and toxicity in macrophages; increases solubility and stability |
Molecule | Anti-Cancer Drug Delivered | Carbon NP | Author |
---|---|---|---|
SWCNT-cPG | Cytosine-guanosine-motif * | SWCNT | Zhao et al., 2011 [48] |
MWCNT-PEG-Angiopep2 | DOX | MWCNT | Ren et al. [49] |
TAT-PEI-B-MCWTN@OXA | OXA | MWCNT | You et al. [50] |
C-Dots–Trans–Dox | DOX | CD | Li et al. [51] |
pCDPID | DOX | CD | Wang et al. [52] |
C-dots-trans-temo-epi (C-DT) | Epirubicin + TMZ | CD | Hettiarachchi et al. [46] |
CN–GM–Tf | Gemcitabine | CD | Liyanage et al. [53] |
PAA–GO–BCNU | BCNU | Ox-Graphene | Chen et al. [56] |
PEG-GP-transferrin-Doxorubicin | DOX | Ox-Graphene | Liu et al. [57] |
phospholipid-PEG-graphenenanoribbon-Doxorubicin | DOX | Graphene nanoribbon | Lu et al. [58] |
Graphenenanoribbon-PEG-DSPE-Lucanthone | Lucanthone * | Ox-Graphene nanoribbon | Chowdhury et al. [59] |
Lactoferrin-graphene oxide-iron oxide-Doxorubicin | DOX | Ox-Graphene | Song et al. [60] |
Doxorubicin-polyglycerol-nanodiamond | DOX | ND | Li et al. [65] |
Ideal molecule, still not synthetized | TMZ; Procarbazine; Carmustine; Lomustine | Fullerene | Samantha and Das [66] |
Quality | Other Nanoparticles | Carbon-Based Nanoparticles |
---|---|---|
Immunotoxicity | Deficiency in immune system’s capacity [108] | High biocompatibility [109] |
Acute toxicity | acute host damage [108] | Despite their accumulation in several organs and despite long half-life no acute toxicity is present [110] |
Half-life | Quick Degradation [111] | Long half-life [112,113] |
Tissue selectivity | Privileged interactions with neuronal cells (CNT) [110] | |
Interaction with neuron | Sustain neuronal survivor [114] | |
Bioavaibility | reduced bioavailability of the drug (Liposomes for example) [115] | able to cross the Blood–Brain Barrier (BBB) and accumulate inside the brain tissue [109] |
Volume | High surface-to-volume ratio [116] | |
Shape | Ad hoc engineered [110] | |
Size | Include all particle 1–100 nm | Smallest dimension [117] |
Thermal property | Thermal properties [118,119] | |
Chemical property | Chemical stability [120] Excellent electrical conductors | |
Mechanical property | Mechanical strength [121] | |
Production cost | Expensive production [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caffo, M.; Curcio, A.; Rajiv, K.; Caruso, G.; Venza, M.; Germanò, A. Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers 2023, 15, 2575. https://doi.org/10.3390/cancers15092575
Caffo M, Curcio A, Rajiv K, Caruso G, Venza M, Germanò A. Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers. 2023; 15(9):2575. https://doi.org/10.3390/cancers15092575
Chicago/Turabian StyleCaffo, Maria, Antonello Curcio, Kumar Rajiv, Gerardo Caruso, Mario Venza, and Antonino Germanò. 2023. "Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas" Cancers 15, no. 9: 2575. https://doi.org/10.3390/cancers15092575
APA StyleCaffo, M., Curcio, A., Rajiv, K., Caruso, G., Venza, M., & Germanò, A. (2023). Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers, 15(9), 2575. https://doi.org/10.3390/cancers15092575