The Role of the Microbiota in Esophageal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Esophageal Cancer
3. Esophagus Microbiota in Healthy Conditions
4. Modulators of the Esophageal Microbiota and of the Esophageal Cancer Risk
5. Alterations in the Microbiota of Esophageal Premalignant Lesions
6. The Esophageal Microbiota in Esophageal Cancer
7. Non-Esophageal Microbiota and Esophageal Cancer
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Neto, A.G.; Whitaker, A.; Pei, Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin. Oncol. 2016, 43, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Netherway, T.; Frioux, C.; Ferretti, P.; Coelho, L.P.; Geisen, S.; Bork, P.; Hildebrand, F. Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environ. Microbiol. 2021, 23, 316–326. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K. The intestinal microbiota and its role in human health and disease. J. Med. Investig. 2016, 63, 27–37. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Lin, L.; Jin, D.; Du, Y.; Lyu, J. Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl. Microbiol. Biotechnol. 2021, 105, 4415–4425. [Google Scholar] [CrossRef]
- Sun, C.H.; Li, B.B.; Wang, B.; Zhao, J.; Zhang, X.Y.; Li, T.T.; Li, W.B.; Tang, D.; Qiu, M.J.; Wang, X.C.; et al. The role of Fusobacterium nucleatum in colorectal cancer: From carcinogenesis to clinical management. Chronic Dis. Transl. Med. 2019, 5, 178–187. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Global Burden of Disease Cancer, C.; Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef]
- Huang, F.L.; Yu, S.J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.L.; Xie, S.H.; Wahlin, K.; Lagergren, J. Global time trends in the incidence of esophageal squamous cell carcinoma. Clin. Epidemiol. 2018, 10, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; Whiteman, D.C. The incidence of esophageal adenocarcinoma continues to rise: Analysis of period and birth cohort effects on recent trends. Ann. Oncol. 2012, 23, 3155–3162. [Google Scholar] [CrossRef]
- Jain, S.; Dhingra, S. Pathology of esophageal cancer and Barrett’s esophagus. Ann. Cardiothorac. Surg. 2017, 6, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, J.; Shen, Z.; Zhang, Z.; Wang, S. Characterization of Esophageal Microbiota in Patients With Esophagitis and Esophageal Squamous Cell Carcinoma. Front. Cell Infect. Microbiol. 2021, 11, 774330. [Google Scholar] [CrossRef]
- Akhtar, S.; Sheikh, A.A.; Qureshi, H.U. Chewing areca nut, betel quid, oral snuff, cigarette smoking and the risk of oesophageal squamous-cell carcinoma in South Asians: A multicentre case-control study. Eur. J. Cancer 2012, 48, 655–661. [Google Scholar] [CrossRef]
- Morita, M.; Kumashiro, R.; Kubo, N.; Nakashima, Y.; Yoshida, R.; Yoshinaga, K.; Saeki, H.; Emi, Y.; Kakeji, Y.; Sakaguchi, Y.; et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: Epidemiology, clinical findings, and prevention. Int. J. Clin. Oncol. 2010, 15, 126–134. [Google Scholar] [CrossRef]
- Alsop, B.R.; Sharma, P. Esophageal Cancer. Gastroenterol. Clin. N. Am. 2016, 45, 399–412. [Google Scholar] [CrossRef]
- Song, Y.; Li, L.; Ou, Y.; Gao, Z.; Li, E.; Li, X.; Zhang, W.; Wang, J.; Xu, L.; Zhou, Y.; et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 2014, 509, 91–95. [Google Scholar] [CrossRef]
- Caspa Gokulan, R.; Garcia-Buitrago, M.T.; Zaika, A.I. From genetics to signaling pathways: Molecular pathogenesis of esophageal adenocarcinoma. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 37–48. [Google Scholar] [CrossRef]
- Coleman, H.G.; Xie, S.H.; Lagergren, J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018, 154, 390–405. [Google Scholar] [CrossRef] [PubMed]
- Mansour, N.M.; Groth, S.S.; Anandasabapathy, S. Esophageal Adenocarcinoma: Screening, Surveillance, and Management. Annu. Rev. Med. 2017, 68, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.L.; Corley, D.A. A review of the epidemiology of Barrett’s oesophagus and oesophageal adenocarcinoma. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 29–39. [Google Scholar] [CrossRef]
- Elliott, D.R.F.; Walker, A.W.; O’Donovan, M.; Parkhill, J.; Fitzgerald, R.C. A non-endoscopic device to sample the oesophageal microbiota: A case-control study. Lancet Gastroenterol. Hepatol. 2017, 2, 32–42. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network; Kim, J.; Bowlby, R.; Mungall, A.J.; Robertson, A.G.; Odze, R.D.; Cherniack, A.D.; Shih, J.; Pedamallu, C.S.; Cibulskis, C.; et al. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Vuik, F.; Dicksved, J.; Lam, S.Y.; Fuhler, G.M.; van der Laan, L.; van de Winkel, A.; Konstantinov, S.R.; Spaander, M.; Peppelenbosch, M.P.; Engstrand, L.; et al. Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals. United Eur. Gastroenterol. J. 2019, 7, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Pendergraft, A.; VanDerPol, W.; Wilcox, C.M.; Kyanam Kabir Baig, K.R.; Morrow, C.; Izard, J.; Mannon, P.J. Mucosa-Associated Microbiota in Barrett’s Esophagus, Dysplasia, and Esophageal Adenocarcinoma Differ Similarly Compared With Healthy Controls. Clin. Transl. Gastroenterol. 2020, 11, e00199. [Google Scholar] [CrossRef]
- Yin, J.; Dong, L.; Zhao, J.; Wang, H.; Li, J.; Yu, A.; Chen, W.; Wei, W. Composition and consistence of the bacterial microbiome in upper, middle and lower esophagus before and after Lugol’s iodine staining in the esophagus cancer screening. Scand. J. Gastroenterol. 2020, 55, 1467–1474. [Google Scholar] [CrossRef]
- Li, D.; He, R.; Hou, G.; Ming, W.; Fan, T.; Chen, L.; Zhang, L.; Jiang, W.; Wang, W.; Lu, Z.; et al. Characterization of the Esophageal Microbiota and Prediction of the Metabolic Pathways Involved in Esophageal Cancer. Front. Cell Infect. Microbiol. 2020, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dou, L.; Zhang, Y.; He, S.; Zhao, D.; Hao, C.; Song, G.; Zhang, W.; Liu, Y.; Wang, G. Characterization of the Oral and Esophageal Microbiota in Esophageal Precancerous Lesions and Squamous Cell Carcinoma. Front. Cell Infect. Microbiol. 2021, 11, 714162. [Google Scholar] [CrossRef]
- Su, Q.; Liu, Q. Factors Affecting Gut Microbiome in Daily Diet. Front. Nutr. 2021, 8, 644138. [Google Scholar] [CrossRef] [PubMed]
- Hitch, T.C.A.; Hall, L.J.; Walsh, S.K.; Leventhal, G.E.; Slack, E.; de Wouters, T.; Walter, J.; Clavel, T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal. Immunol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Matejcic, M.; Gunter, M.J.; Ferrari, P. Alcohol metabolism and oesophageal cancer: A systematic review of the evidence. Carcinogenesis 2017, 38, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.; Lin, Z.; Liu, S.; Zhang, Z.; Xie, Q.; Chen, H.; Lin, X.; Chen, Y.; Yang, H.; Yu, K.; et al. Association between alcohol consumption and oesophageal microbiota in oesophageal squamous cell carcinoma. BMC Microbiol. 2021, 21, 73. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Long, E.; Beales, I.L. The role of obesity in oesophageal cancer development. Therap. Adv. Gastroenterol. 2014, 7, 247–268. [Google Scholar] [CrossRef]
- Münch, N.S.; Fang, H.Y.; Ingermann, J.; Maurer, H.C.; Anand, A.; Kellner, V.; Sahm, V.; Wiethaler, M.; Baumeister, T.; Wein, F.; et al. High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett’s Esophagus via Interleukin 8 and Alterations to the Gut Microbiome. Gastroenterology 2019, 157, 492–506.e492. [Google Scholar] [CrossRef]
- Nobel, Y.R.; Snider, E.J.; Compres, G.; Freedberg, D.E.; Khiabanian, H.; Lightdale, C.J.; Toussaint, N.C.; Abrams, J.A. Increasing Dietary Fiber Intake Is Associated with a Distinct Esophageal Microbiome. Clin. Transl. Gastroenterol. 2018, 9, 199. [Google Scholar] [CrossRef]
- Kaakoush, N.O. Microbiome and Esophageal Adenocarcinoma-Letter. Cancer Res. 2018, 78, 1574. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef]
- Gall, A.; Fero, J.; McCoy, C.; Claywell, B.C.; Sanchez, C.A.; Blount, P.L.; Li, X.; Vaughan, T.L.; Matsen, F.A.; Reid, B.J.; et al. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett’s Esophagus Cohort. PLoS ONE 2015, 10, e0129055. [Google Scholar] [CrossRef]
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J.M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shi, G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med. 2019, 17, 225. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, E.; Flores, R.; Yu, G.; Freedman, N.D.; Shi, J.; Gail, M.H.; Dye, B.A.; Wang, G.Q.; Klepac-Ceraj, V.; Paster, B.J.; et al. Association between tobacco use and the upper gastrointestinal microbiome among Chinese men. Cancer Causes Control 2015, 26, 581–588. [Google Scholar] [CrossRef]
- Lv, J.; Guo, L.; Liu, J.J.; Zhao, H.P.; Zhang, J.; Wang, J.H. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J. Gastroenterol. 2019, 25, 2149–2161. [Google Scholar] [CrossRef] [PubMed]
- Vesper, B.J.; Jawdi, A.; Altman, K.W.; Haines, G.K., 3rd; Tao, L.; Radosevich, J.A. The effect of proton pump inhibitors on the human microbiota. Curr. Drug Metab. 2009, 10, 84–89. [Google Scholar] [CrossRef]
- Amir, I.; Konikoff, F.M.; Oppenheim, M.; Gophna, U.; Half, E.E. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ. Microbiol. 2014, 16, 2905–2914. [Google Scholar] [CrossRef]
- de Gunzburg, J.; Ghozlane, A.; Ducher, A.; Le Chatelier, E.; Duval, X.; Ruppe, E.; Armand-Lefevre, L.; Sablier-Gallis, F.; Burdet, C.; Alavoine, L.; et al. Protection of the Human Gut Microbiome From Antibiotics. J. Infect. Dis. 2018, 217, 628–636. [Google Scholar] [CrossRef]
- Sawada, A.; Fujiwara, Y.; Nagami, Y.; Tanaka, F.; Yamagami, H.; Tanigawa, T.; Shiba, M.; Tominaga, K.; Watanabe, T.; Gi, M.; et al. Alteration of Esophageal Microbiome by Antibiotic Treatment Does Not Affect Incidence of Rat Esophageal Adenocarcinoma. Dig. Dis. Sci. 2016, 61, 3161–3168. [Google Scholar] [CrossRef]
- Yu, G.; Gail, M.H.; Shi, J.; Klepac-Ceraj, V.; Paster, B.J.; Dye, B.A.; Wang, G.Q.; Wei, W.Q.; Fan, J.H.; Qiao, Y.L.; et al. Association between upper digestive tract microbiota and cancer-predisposing states in the esophagus and stomach. Cancer Epidemiol. Biomark. Prev. 2014, 23, 735–741. [Google Scholar] [CrossRef]
- Macfarlane, S.; Furrie, E.; Macfarlane, G.T.; Dillon, J.F. Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin. Infect. Dis. 2007, 45, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ando, T.; Ishiguro, K.; Maeda, O.; Watanabe, O.; Funasaka, K.; Nakamura, M.; Miyahara, R.; Ohmiya, N.; Goto, H. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect. Dis. 2013, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, N.P.; Riordan, S.M.; Castano-Rodriguez, N.; Wilkins, M.R.; Kaakoush, N.O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome 2018, 6, 227. [Google Scholar] [CrossRef] [PubMed]
- Snider, E.J.; Compres, G.; Freedberg, D.E.; Khiabanian, H.; Nobel, Y.R.; Stump, S.; Uhlemann, A.C.; Lightdale, C.J.; Abrams, J.A. Alterations to the Esophageal Microbiome Associated with Progression from Barrett’s Esophagus to Esophageal Adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1687–1693. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Severgnini, M.; Pecere, S.; Ponziani, F.R.; Boskoski, I.; Larghi, A.; Quaranta, G.; Masucci, L.; Ianiro, G.; Camboni, T.; et al. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS ONE 2020, 15, e0231789. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Vogtmann, E.; Liu, A.; Qin, J.; Chen, W.; Abnet, C.C.; Wei, W. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer 2019, 125, 3993–4002. [Google Scholar] [CrossRef]
- Li, Z.; Shi, C.; Zheng, J.; Guo, Y.; Fan, T.; Zhao, H.; Jian, D.; Cheng, X.; Tang, H.; Ma, J. Fusobacterium nucleatum predicts a high risk of metastasis for esophageal squamous cell carcinoma. BMC Microbiol. 2021, 21, 301. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Tang, D.; Wan, P.; Peng, Z.; Sun, M.; Guo, X.; Liu, R. Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing. Appl. Microbiol. Biotechnol. 2022, 106, 3215–3229. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Lin, Y.; Chen, Y.; Peng, X.E.; He, F.; Liu, S.; Yan, S.; Huang, L.; Lu, W.; et al. Streptococcus and Prevotella are associated with the prognosis of oesophageal squamous cell carcinoma. J. Med. Microbiol. 2018, 67, 1058–1068. [Google Scholar] [CrossRef]
- Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017, 77, 6777–6787. [Google Scholar] [CrossRef]
- Wang, Q.; Rao, Y.; Guo, X.; Liu, N.; Liu, S.; Wen, P.; Li, S.; Li, Y. Oral Microbiome in Patients with Oesophageal Squamous Cell Carcinoma. Sci. Rep. 2019, 9, 19055. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, H.M.; Mohammad, I.S.; Sher Muhammad, K.; Li, H.; Abbas, R.Z.; Din Sindhu, Z.U.; Ullah, S.; Fan, Y.; Sadiq, A.; Raza, M.A.; et al. Gut microbial dysbiosis and its association with esophageal cancer. J. Appl. Biomed. 2021, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, T.; Yan, Y.; Zhang, Y.; Li, Z.; Wang, Y.; Yang, J.; Xia, Y.; Xiao, H.; Han, H.; et al. Alterations of Oral Microbiota in Chinese Patients With Esophageal Cancer. Front. Cell Infect. Microbiol. 2020, 10, 541144. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Tang, D.; Hou, P.; Shen, W.; Li, H.; Wang, T.; Liu, R. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb. Pathog. 2021, 150, 104709. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, M.; Zhou, Q.; Shi, H. Associations of Changes in Intestinal Flora and Inflammatory Factors with Prognosis of Patients with Esophageal Cancer. J. Healthc. Eng. 2022, 2022, 2426301. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K.; Hamada, T.; Bullman, S.; Ugai, T.; Yachida, S.; Ogino, S. Cancer as microenvironmental, systemic and environmental diseases: Opportunity for transdisciplinary microbiomics science. Gut 2022, 71, 2107–2122. [Google Scholar] [CrossRef]
Reference | Country | No. Participants | Specimen and Measurement | Taxonomic Findings in Healthy Individuals * |
---|---|---|---|---|
Vuik et al. 2019 [26] | The Netherlands | HC (13) RE (1) | Biopsy specimens 16S rRNA gene sequencing | Veillonellacea (F) Psudomonadaceae (F) Streptoccaceae (F) |
Peter et al. 2020 [27] | USA | HC (10) IM (10) HGD (10) LGD (10) EAC (12) | Biopsy specimens 16S rRNA gene sequencing | At the phylum-level: Firmicutes Proteobacteria Bacteriodetes Actinobacteria Fusobacteria At the genus-level: Tissierella Streptococcus Lactobacillus Acinetobacter Prevotela Fusobacterium Staphylococcus Akkermansia Blautia |
Yin et al. 2020 [28] | China | HC (27) | Esophageal brush specimens 16S rRNA gene sequencing | At the phylum-level: Proteobacteria Firmicutes Bacteroidetes Actinobacteria Fusobacteria TM7 At the genus-level: Streptococcus Actinobacillus Sphingomonas unclassified Enterobacteriaceae Neisseria Haemophilus Prevotella Veillonella Porphyromonas |
Li et al. 2020 [29] | China | HC (16) ESCC (17) EGJ (11) | Esophageal brush specimens 16S rRNA gene sequencing | At the phylum-level: Proteobacteria Firmicutes Bacteroidetes Actinobacteria At the genus-level: Streptococcus Ralstonia Burkholderia–Caballeronia–Paraburkholderia Fusobacterium |
Li et al. 2021 [30] | China | HC (82) LGD (60) HGD (64) ESCC (70) | Esophageal brush specimens 16S rRNA gene sequencing | At the phylum-level: Firmicutes Proteobacteria Bacteroidetes Actinobacteria Fusobacteria At the genus-level: Streptococcus Neisseria Haemophilus Prevotella |
Reference | Country (N) | Specimen and Measurement | Diversity | Taxonomic Findings | |
---|---|---|---|---|---|
Alpha | Beta | ||||
Macfarlane et al. 2007 [51] | USA No BE (7) BE (7) | Biopsy; Aspirate 16S rRNA gene sequencing | ↑ BE | NS | ↑ Veillonella (G) ↑ Neisseria (G) ↑ Camplylobacter (G) ↑ Fusobacterium (G) ↑ Megasphaera (G) ↑ Staphylococcus (G) ↓ Lactobacillus (G) |
Yang et al. 2009 [40] | USA HC (12) ES (12) BE (10) | Biopsy 16S rRNA gene sequencing | ↑ Type II compared to type I | Distinguished Type I and Type II microbiome | Type I microbiome: Normal esophagus Type II microbiome: Abnormal esophagus Type II vs. Type I: ↑ Gram-negative bacteria ↑ Veillonella (G) ↑ Prevotella (G) ↑ Haemophilus (G) ↑ Neisseria (G) ↑ Rothia (G) ↑ Granulicatella (G) ↑ Campylobacter (G) ↑ Porphyromonas (G) ↑ Fusobacterium (G) ↑ Actinomyces (G) ↓ Firmicutes (P) ↓ Streptoccocus (G) |
Liu et al. 2013 [52] | Japan HC (6) ES (6) BE (6) | Biopsy 16S rRNA gene sequencing | NS | NS | ES/HC vs. BE: ↓ Streptococcus (G) ES/BE vs. HC: ↑ Veillonella (G) ↑ Neisseria (G) ↑ Fusobacterium (G) |
Yu et al. 2014 [50] | China No ESD (191) ESD (142) | Brush Human oral microbe identification microarray | ↓ ESD | Distinguished ESD and No ESD | Inverse association between microbial richness and ESD when comparing with non ESD |
Elliot et al. 2017 [24] | UK HC (20) NDBE (24) BE (23) EAC (19) | Biopsy, Brushing, Cytosponge 16S rRNA gene sequencing | NS | Distinguished HC and BE | ↑ Proteobacteria (P) |
Deshpande et al. 2018 [53] | Australia HC (59) GERD (29) GM (7) BE (5) EAC (1) EoE (1) | Esophageal brush specimens 16S rRNA gene sequencing Whole metagenome sequencing | NS | NS | GERD vs. HC: ↑ Flavobacteriaceae (F) ↑ Acetoanaerobium (G) ↑ Filifactor (G) ↑ Campylobacter (G) ↑ Prevotella intermedia (S) ↑ Prevotella micans (S) ↑ Neisseria macacae (S) ↑ Neisseria meningitidis (S) ↑ Haemophilus parainfluenzae (S) ↑ Treponema medium (S) BE vs. HC: ↑ Leptotrichia (G) ↑ Capnocytophaga (G) ↑ Gemella (G) ↑ Veillonella (G) ↑ Streptococcus sanguinis (S) |
Snider et al. 2019 [54] | USA HC (16) NDBE (14) LGD (6) HGD (5) EAC (4) | Brush 16S rRNA gene sequencing | NS | NS | HGD vs. LGD: ↑ Proteobacteria (P) ↓ Firmicutes (P) ↓ Veillonella (G) |
Lopetuso et al. 2020 [55] | Italy HC (10) BE (10) BEU (10) EAC (6) | Biopsy 16S rRNA gene sequencing | ↓ BE | Distinguished HC and BE | BE vs. HC: ↑ Fusobacteria (P) ↑ Leptotrichia (G) BE vs. BEU: ↓ Bacteroidetes (P) ↓ TM7 (P) ↓ Prevotellaceae (F) ↓ Veillonellaceae (F) ↓ Fusobacteriaceae (F) ↓ Lachnospiraceae (F) ↓ Campylobacteraceae (F) ↓ Prevotella (G) ↓ Fusobacterium (G) ↓ Campylobacter (G) ↓ Selenomonas (G) |
Li et al. 2021 [30] | China HC (82) LGD (60) HGD (64) ESCC (70) | Brush 16S rRNA gene sequencing | ↓ HGD compared to HC/LGD | Distinguished HC/LGD group and HGD | LGD vs. HC: ↑ Atopobium (G) ↑ Enterococcus (G) ↑ Granulicatella (G) ↑ Lachnnoanaerobaculum (G) ↑ Rothia (G) ↑ Solobacterium (G) ↑ Streptococcus (G) HGD vs. HC: ↑ Bacillus (G) ↑ Lactobacillus (G) ↑ Streptococcus (G) |
Reference | Country (N) | Specimen and Measurement | Diversity | Taxonomic Findings | |
---|---|---|---|---|---|
Alpha | Beta | ||||
Elliott et al. 2017 [24] * | UK HC (20) NDBE (24) BE (23) EAC (19) | Biopsy, Brushing, Cytosponge 16S rRNA gene sequencing | ↓ EAC in comparison with HC | Distinguished EAC and HC | EAC vs. HC: ↑ Lactobacillales (O) ↑ Coriobacteriacea (F) ↑ Lactobacillaceae (F) ↑ Streptococcus (G) ↑ Lactobacillus (G) |
Shao et al. 2019 [56] ** | China ESCC (67) NAM (67) | Biopsy 16S rRNA gene sequencing | NS | Distinguished ESCC and NAM | ESCC vs. NAM: ↑ Fusobacteria (P) ↓ Firmicutes (P) ↓ Fusobacterium (G) ↓ Streptococcus (G) |
Snider et al. 2019 [54] * | USA HC (16) NDBE (14) LGD (6) HGD (5) EAC (4) | Brush 16S rRNA gene sequencing | ↓ EAC in comparison with NDBE, LGD and HGD | NS | HGD/EAC vs. NDBE/LGD: ↓ Firmicutes (P) ↑ Proteobacteria (P) ↑ Enterobacteriacea (F) ↑ Akkermansia muciniphila (S) ↓ Veillonella (G) |
Lopetuso et al. 2020 [55] * | Italy HC (10) BE (10) EAC (6) | Biopsy 16S rRNA gene sequencing | ↑ EAC in comparison with HC | Distinguished EAC and HC | EAC vs. HC: ↑ Prevotella (G) ↑ Leptotrichia (G) ↑ Veillonella (G) ↑ Bacteroidetes (G) ↓ Streptococcus (G) ↓ Granulicatella (G) |
Li et al. 2020 [29] * | China HC (16) RE (15) EGJ (11) ESCC (17) | Brush 16S rRNA gene sequencing | ↓ ESCC and EGJ in comparison with HC | Distinguished ESCC and HC | ESCC vs. HC: ↑ Fusobacteria (P) ↓ Actinobacteria (P) |
Peter et al. 2020 [27] * | USA IM (10) LGD (10) HGD (10) EAC (12) HC (10) | Biopsy 16S rRNA gene sequencing | NS | NS | EAC vs. HC: ↓ Planctomycetes (P) ↓ Crenachaeota (P) ↓ Siphonobacter (G) ↓ Nitrosopumilus (G) ↓ Planctomyces (G) |
Li et al. 2021 [30] * | China HC (82) LGD (60) HGD (64) ESCC (70) | Brush 16S rRNA gene sequencing | ↓ ESCC in comparison with HC | Distinguished ESCC and HC | ESCC vs. HC: ↑ Peptoniphilus (G) ↑ Petostreptococcus (G) ↑ Lachnospiraceae_[G9] (G) ↑ Bosea (G) ↑ Gemella (G) ↑ Solabacterium (G) ↑ Streptococcus (G) |
Li et al. 2021 [57] ** | China ESCC (41) NAM (41) | Biopsy 16S rRNA gene sequencing | ↓ ESCC in comparison with NAM | Distinguished ESCC and NAM | ESCC vs. NAM: ↑ Bacteroidetes (P) ↑ Fusobacteria (P) ↑ Spirochaetae (P) ↓ Proteobacteria (P) ↓ Firmicutes (P) ↓ Actinobacteria (P) ↑ Streptococcus (G) ↑ Fusobacterium (G) ↑ Prevotella (G) ↓ Butyrivibrio (G) ↓ Lactobacillus (G) |
Jiang et al. 2021 [15] * | China HC (21) ES (15) ESCC (32) | Biopsy 16S rRNA gene sequencing | ↑ ESCC in comparison with HC | Distinguished ESCC and HC | ESCC vs. HC: ↓ Fusobacteria (P) ↑ Streptococcus (G) ↑ Actinobacillus (G) ↑ Peptostreptococcus (G) ↑ Fusobacterium (G) ↑ Prevotella (G) ↓ Bacteroides (G) ↓ Faecalibacterium (G) ↓ Curvibacter (G) ↓ Blautia (G) |
Shen 2022 et al. [58] ** | China ESCC (51) NAM (51) | Biopsy 16S rRNA gene sequencing Species-specific qPCR | NS | NS | ESCC vs. NAM: ↓ Deinococcus-Thermus (P) ↑ Spirochaetes (P) ↑ Tenericutes (P) ↓ Actinobacteria (P) ↓ Verrumicrobia (P) ↑ Lentimicrobiaceae (F) ↑ Treponema (G) ↑ Selenomonas (G) ↑ Peptonaerobacter (G) ↓ Methylobacter (G) ↓ Akkermansia (G) ↑ Blautia (G) ↑ Labrys ginsengisoli (S) ↑ Peptoanaerobacter stomatis (S) ↑ Selenomonas sputigena (S) ↑ Streptococcus constellatus (S) ↑ Fusobacterium periodonticum (S) ↓ Lactobacillus murinus (S) ↓ Escherichia coli (S) |
Reference | Country (N) | Specimen and Measurement | Diversity | Taxonomic Findings | |
---|---|---|---|---|---|
Alpha | Beta | ||||
Peters et al. 2017 [60] | USA HC (210) ESCC (25) EAC (81) | Mouthwash 16S rRNA gene sequencing | NS | NS | EAC: ↑ Selenomonas (G) ↑ Veillonella (G) ↑ Tannerella forsythia (S) ↑ Actinomyces cardiffensis (S) ESCC: ↑ Bergeyella (G) ↑ Porphyromonas gingivales (S) ↑ Prevotella nanceiensis (S) ↑ Neisseria weaver (S) ↑ Treponema vincentii (S) |
Wang et al. 2019 [61] | China HC (21) ESCC (20) | Saliva 16S rRNA gene sequencing | NS | Distinguished HC and ESCC | ESCC vs. HC: ↑ Firmicutes (P) ↓ Gammaproteobacteria (C) ↑ Bacillus (G) ↑ Lactobacillus (G) |
Ishaq et al. 2021 [62] | China HC (10) EC (15) | Biopsy DGGE 16S rRNA gene sequencing | ↑ EC | Distinguished HC and EC | EC vs. HC: ↑ Bacteroidetes (P) ↑ Bacteroidaceae (F) ↑ Enterobacteriaceae (F) ↑ Bacteroides (G) ↑ Escherichia-Shigella (G) ↓ Prevotellaceae (F) ↓ Veillonellaceae (F) ↓ Prevotella (G) ↓ Dialister (G) |
Chen et al. 2021 [6] | Taiwan HC (18) ESCC (34) | Oral biofilm; Biopsy P. gingivalis qPCR; 16S rRNA gene sequencing | ↓ ESCC | Distinguished HC and ESCC | ESCC vs. HC: Oral biofilm: ↑ Streptococcus (G) ↑ Veillonella (G) ↑ Porphyromonas gingivalis (S) Biopsy: ↑ P. gingivalis (S) |
Zhao et al. 2020 [63] | China HC (51) EC (49) | Saliva 16S rRNA gene sequencing | NS | Distinguished HC and EC | EC vs. HC: ↑ Firmicutes (P) ↓ Proteobacteria (P) ↑ Negativicutes (C) ↓ Betaproteobacteria (C) ↑ Selenomonadales (O) ↓ Neisseriales (O) ↑ Veillonellaceae (F) ↑ Prevotellaceae (F) ↓ Neisseriaceae (F) ↑ Prevotella (G) ↓ Neisseria (G) |
Deng et al. 2021 [64] | China HC (23) EC (23) | Stool 16S rRNA gene sequencing | ↑ richness in EC | Distinguished HC and EC | EC vs. HC: ↓ Bacteroides (P) ↑ Streptococcus (G) ↑ Bifidobacterium (G) ↑ Subdoligranulum (G) ↑ Blautia (G) ↑ Romboutsia (G) ↑ Collinsella (G) ↑ Paeniclostridium (G) ↑ Dorea (G) ↑ Atopobium (G) ↓ Lachnospira (G) ↓ Bacteroides (G) ↓ Agathobacter (G) ↓ Lachnoclostridium (G) ↓ Parabacteroides (G) ↓ Paraprevotella (G) ↓ Butyricicoccus (G) ↓ Tyzzerella (G) ↓ Fusicatenibacter (G) ↓ Sutterella (G) |
Wu et al. 2022 [65] | China HC (40) EC (40) | Stool Culture | – | – | EC vs. HC: ↑ Enterococcus (G) ↑ Escherichia coli (S) ↓ Bifidobacterium (G) ↓ Lactobacillus (G) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, C.; Figueiredo, C.; Ferreira, R.M. The Role of the Microbiota in Esophageal Cancer. Cancers 2023, 15, 2576. https://doi.org/10.3390/cancers15092576
Moreira C, Figueiredo C, Ferreira RM. The Role of the Microbiota in Esophageal Cancer. Cancers. 2023; 15(9):2576. https://doi.org/10.3390/cancers15092576
Chicago/Turabian StyleMoreira, Clara, Ceu Figueiredo, and Rui Manuel Ferreira. 2023. "The Role of the Microbiota in Esophageal Cancer" Cancers 15, no. 9: 2576. https://doi.org/10.3390/cancers15092576
APA StyleMoreira, C., Figueiredo, C., & Ferreira, R. M. (2023). The Role of the Microbiota in Esophageal Cancer. Cancers, 15(9), 2576. https://doi.org/10.3390/cancers15092576