Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Population
2.2. Anesthesia
2.3. Multimodal Intraoperative Neurophysiological Monitoring
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Surgical Data
3.2. Monitorability of IONM
3.3. Intraoperative IONM Changes
3.3.1. D-Wave
3.3.2. SSEP
3.3.3. MEP
3.4. Sensitivity, Specificity, and ROC Curves
3.5. Factors-Related IONM Changes
4. Discussion
4.1. Monitorability, Accuracy, and Clinical Value of IONM
4.2. Limits of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamberlain, M.C.; Tredway, T.L. Adult primary intradural spinal cord tumors: A review. Curr. Neurol. Neurosci. Rep. 2011, 1, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Ambrossi, G.L.; McGirt, M.J.; Mehta, V.A.; Sciubba, D.M.; Witham, T.F.; Bydon, A.; Wolinksy, J.-P.; Jallo, G.I.; Gokaslan, Z.L. Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: Analysis of 101 consecutive cases. J. Neurosurg. Spine 2009, 11, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.G.; Lubelski, D.; Miller, J.; Steinmetz, M.P.; Shin, J.H.; Krishnaney, A.; Mroz, T.E.; Benzel, E.C. Progression free survival and functional outcome after surgical resection of intramedullary ependymomas. J. Clin. Neurosci. 2015, 22, 1933–1937. [Google Scholar] [CrossRef] [PubMed]
- Forster, M.T.; Marquardt, G.; Seifert, V.; Szelényi, A. Spinal cord tumor surgery–importance of continuous intraoperative neurophysiological monitoring after tumor resection. Spine 2012, 37, E1001–E1008. [Google Scholar] [CrossRef]
- Costa, P.; Peretta, P.; Faccani, G. Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur. Spine J. 2012, 22, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Brodke, D.S.; Norvell, D.C.; Dettori, J.R. The evidence for intraoperative neurophysiological monitoring in spine sur-gery: Does it make a difference? Spine 2010, 35 (Suppl. S9), S37–S46. [Google Scholar] [CrossRef] [PubMed]
- Hadley, M.N.; Shank, C.D.; Rozzelle, C.J.; Walters, B.C. Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2017, 81, 713–732. [Google Scholar] [CrossRef]
- Klekamp, J. Spinal ependymomas. Part 1: Intramedullary ependymomas. Neurosurg. Focus 2015, 39, E6. [Google Scholar] [CrossRef]
- Klekamp, J. Treatment of intramedullary tumors: Analysis of surgical morbidity and long-term results. J. Neurosurg. Spine 2013, 19, 12–26. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ando, K.; Ito, K.; Tsushima, M.; Morozumi, M.; Tanaka, S.; Machino, M.; Ota, K.; Ishiguro, N.; Imagama, S. Accuracy of intraoperative pathological diagnosis using frozen sections of spinal cord lesions. Clin. Neurol. Neurosurg. 2018, 167, 117–121. [Google Scholar] [CrossRef]
- Cannizzaro, D.; Mancarella, C.; Nasi, D.; Tropeano, M.P.; Anania, C.D.; Cataletti, G.; Milani, D.; Fava, E.M.; Ghadirpour, R.; Costa, F.; et al. Intramedullary spinal cord tumors: The value of intraoperative neurophysiological monitoring in a series of 57 cases from two Italian centers. J. Neurosurg. Sci. 2022, 66, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Deletis, V.; Sala, F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: A review focus on the corticospinal tracts. Clin. Neurophysiol. 2008, 119, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Ghadirpour, R.; Nasi, D.; Iaccarino, C.; Romano, A.; Motti, L.; Sabadini, R.; Valzania, F.; Servadei, F. Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: Predictive value and relevance of D-wave amplitude on surgical outcome during a 10-year experience. J. Neurosurg. Spine 2019, 30, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rijs, K.; Klimek, M.; Boer, M.S.-D.; Biesheuvel, K.; Harhangi, B.S. Intraoperative Neuromonitoring in Patients with Intramedullary Spinal Cord Tumor: A Systematic Review, Meta-Analysis, and Case Series. World Neurosurg. 2019, 125, 498–510.e2. [Google Scholar] [CrossRef]
- Frankel, H.L.; O Hancock, D.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.S.; Walsh, J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Spinal Cord 1969, 7, 179–192. [Google Scholar] [CrossRef]
- McCormick, P.C.; Torres, R.; Post, K.D.; Stein, B.M. Intramedullary ependymoma of the spinal cord. J. Neurosurg. 1990, 72, 523–532. [Google Scholar] [CrossRef]
- Harel, R.; Schleifer, D.; Appel, S.; Attia, M.; Cohen, Z.R.; Knoller, N. Spinal intradural extramedullary tumors: The value of intraoperative neurophysiologic monitoring on surgical outcome. Neurosurg. Rev. 2017, 40, 613–619. [Google Scholar] [CrossRef]
- Behmanesh, B.; Gessler, F.; Quick-Weller, J.; Spyrantis, A.; Imöhl, L.; Seifert, V.; Marquardt, G. Regional spinal cord atrophy is associated with poor outcome after surgery on intramedullary spinal cord ependymoma: A new aspect of delayed neurological deterio-ration. World Neurosurg. 2017, 100, 250–255. [Google Scholar] [CrossRef]
- Skrap, B.; Tramontano, V.; Faccioli, F.; Meglio, M.; Pinna, G.; Sala, F. Surgery for intramedullary spinal cord ependymomas in the neuromonitoring era: Results from a consecutive series of 100 patients. J. Neurosurg. Spine 2022, 36, 858–868. [Google Scholar] [CrossRef]
- Sala, F.; Bricolo, A.; Faccioli, F.; Lanteri, P.; Gerosa, M. Surgery for intramedullary spinal cord tumors: The role of intraoperative (neurophysiological) monitoring. Eur. Spine J. 2007, 16 (Suppl. S2), S130–S139. [Google Scholar] [CrossRef]
- Quiñones-Hinojosa, A.; Lyon, R.; Zada, G.; Lamborn, K.R.; Gupta, N.; Parsa, A.T.; McDermott, M.W.; Weinstein, P.R. Changes in Transcranial Motor Evoked Potentials during Intramedullary Spinal Cord Tumor Resection Correlate with Postoperative Motor Function. Neurosurgery 2005, 56, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, Y.; Sakai, Y.; Katayama, Y.; Imagama, S.; Ito, Z.; Wakao, N.; Sato, K.; Kamiya, M.; Yukawa, Y.; Kanemura, T.; et al. Surgical results of intramedullary spinal cord tumor with spinal cord monitoring to guide extent of resection. J. Neurosurgery Spine 2009, 10, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Takami, T.; Naito, K.; Yamagata, T.; Ohata, K. Surgical Management of Spinal Intramedullary Tumors: Radical and Safe Strategy for Benign Tumors. Neurol. Med. Chir. 2015, 55, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Palandri, G.; Basso, E.; Lanteri, P.; Deletis, V.; Faccioli, F.; Bricolo, A. Motor Evoked Potential Monitoring Improves Outcome after Surgery for Intramedullary Spinal Cord Tumors: A Historical Control Study. Neurosurgery 2006, 58, 1129–1143. [Google Scholar] [CrossRef]
- Sutter, M.; Eggspuehler, A.; Grob, D.; Jeszenszky, D.; Benini, A.; Porchet, F.; Mueller, A.; Dvorak, J. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur. Spine J. 2007, 16, 197–208. [Google Scholar] [CrossRef]
- Lakomkin, N.; Mistry, A.M.; Zuckerman, S.L.; Ladner, T.; Kothari, P.; Lee, N.J.; Stannard, B.; Vasquez, R.A.; Cheng, J.S. Utility of intraoperative monitoring in the resection of spinal cord tumors: An analysis by tumor location and anatomical region. Spine 2018, 43, 287–294. [Google Scholar] [CrossRef]
- Choi, I.; Hyun, S.J.; Kang, J.K.; Rhim, S.C. Combined muscle motor and somatosensory evoked potentials for intramedullary spinal cord tumour surgery. Yonsei. Med. J. 2014, 55, 1063–1071. [Google Scholar] [CrossRef]
- Daniel, J.W.; Botelho, R.V.; Milano, J.B.; Dantas, F.R.; Onishi, F.J.; Neto, E.R.; de Freitas Bertolini, E.; Borgheresi, M.A.D.; Joaquim, A.F. Intraoperative neurophysiological monitoring in spine surgery: A systematic review and meta-analysis. Spine 2018, 43, 1154–1160. [Google Scholar] [CrossRef]
- Yanni, D.S.; Ulkatan, S.; Deletis, V.; Barrenechea, I.J.; Sen, C.; Perin, N.I. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J. Neurosurg. Spine 2010, 12, 623–628. [Google Scholar] [CrossRef]
- Calancie, B. Intraoperative Neuromonitoring and Alarm Criteria for Judging MEP Responses to Transcranial Electric Stimulation: The Threshold-Level Method. J. Clin. Neurophysiol. 2017, 34, 12–21. [Google Scholar] [CrossRef]
Parameter | Stimulation | Registration | Alarm Criteria |
---|---|---|---|
SSEPs |
|
|
|
MEPs |
|
Arm:
Leg:
|
|
D-Wave |
|
|
|
Grade | Description |
---|---|
A | Complete motor and sensory loss |
B | Complete motor loss, incomplete sensory loss |
C | Incomplete motor loss without practical use |
D | Incomplete motor loss, able to ambulate with or without aids |
E | Normal motor and sensory function |
Score | Description |
---|---|
I | Intact neurologically; normal ambulation; minimal dysesthesia |
II | Mild motor or sensory deficit; functional independence |
III | Moderate deficit; limitation of function; independent w/ external aid |
IV | Severe motor or sensory deficit; limited function; dependent |
V | Paraplegia or quadriplegia, even w/ flickering movement |
GTR | no tumor remnant detectable at the end of surgery or on postoperative MRI |
STR | complete resection of the tumor mass with a small remnant detectable on the postoperative MRI |
biopsy | less than 50% reduction in the tumor mass |
Clinical and Radiological Variables | No of Patients/Value (%) |
---|---|
Age (years) | |
Mean | 48.3 ± 14.55 |
Range | 17–79 |
Sex | |
Male | 35 |
Female | 31 |
Symptoms at presentation | |
Pain | 30 |
Motor weakness | 31 |
Sensory disturbance | 53 |
Gait ataxia | 31 |
Sphinteric function | 15 |
Duration of symptoms (mo) | |
Mean | 16.89 |
Range | 1–108 |
Preoperative Mc Cormick | |
I | 21 |
II | 23 |
III | 13 |
IV | 7 |
V | 0 |
Preoperative Frankel Grade | |
A | 0 |
B | 2 |
C | 6 |
D | 34 |
E | 22 |
Location | |
Cervical | 21 |
Cervico-thoracic | 9 |
Thoracic + conus | 34 |
No. of spine segments involved | |
Mean | 2.58 ± 1.30 |
Range | 1–6 |
Histology | |
---|---|
Ependymoma | |
Myxopapillary ependymoma | 2 |
WHO Grade II | 35 |
WHO Grade III | 1 |
Astrocytoma | |
WHO Grade I/II | 4 |
WHO Grade III/IV | 3 |
Hemangioblastoma | 6 |
Cavernous angioma | 6 |
Metastatic lesions | 3 |
Miscellaneous | 4 |
Surgical Data | |
---|---|
Duration of hospitalization in days | |
Mean ± SD | 14.25 ± 10.15 |
Range | 5–56 |
Extent of tumor resection | |
Gross total resection | 48 |
Subtotal resection | 12 |
Biopsy | 4 |
Operative time (min) | |
Mean ± SD | 231.65 ± 60.98 |
Range | 135–503 |
Multimodal IONM (SSEP + MEP + D-Wave) | SSEP | MEP | D-Wave | |
---|---|---|---|---|
True negative | 44 | 40 | 33 | 45 |
True positive | 7 | 10 | 16 | 7 |
False negative | 0 | 6 | 10 | 0 |
False positive | 2 | 8 | 5 | 5 |
Sensitivity | 100.00% | 71.42% | 62.50% | 100.00% |
Specificity | 95.65% | 17.39% | 13.89% | 85.10% |
Positive predictive value | 77.75% | 55.55% | 75.00% | 60.00% |
Negative predictive value | 100% | 90.47% | 77.50% | 100% |
Likelihood ratio + | 23 | 0.86 | 0.725 | 6.67 |
Likelihood ratio − | 0 | 1.64 | 2.69 | 0 |
AUC | 0.978 | 0.542 | 0.798 | 0.992 |
95%CI | 0.894–0.997 | 0.399–0.68 | 0.5820–0.836 | 0.878–0.996 |
p Value | 0.0001 | 0.71 | 0.002 | 0.0001 |
Value | |
---|---|
D-wave vs. SSEP | |
D-wave AUC | 0.992 |
SSEP AUC | 0.542 |
95% CI | 0.357–0.901 |
p value | 0.0018 |
D-wave vs. MEP | |
D-wave AUC | 0.992 |
MEP AUC | 0.798 |
95% CI | 0.048–0.908 |
p value | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Predictor | Hazard Ratio | 95% CI | p Value | Hazard Ratio | 95% CI | p Value |
Age > 65 | 0.99 | 0.95–1.02 | 0.03 | 0.98 | 0.85–1.05 | 0.001 |
Sex 1 | 0.6 | 0.2–1.6 | 0.85 | 0.89 | 0.1–1.9 | 0.75 |
Histology * | 0.001 | 0.001 | ||||
Astrocitoma | 9.1 | 2.36–35.6 | 0.001 | 8.01 | 1.44–42.35 | 0.0027 |
Hemangioblastoma | 1.6 | 0.18–13.71 | 0.62 | 3.2 | 0.5–19.8 | 0.1 |
Others | 1.5 | 0.29–7.8 | 0.66 | 0.24 | 0.14–4.2 | 0.33 |
Preop Frankel Grade | 0.45 | 0.17–1.20 | 0.11 | 0.72 | 0.51–4.79 | 0.44 |
Preop McCormick score | 1.56 | 0.75–2.66 | 0.86 | 1.03 | 0.37–1.38 | 0.32 |
Region of spinal cord ∫ | 0.32 | 0.41 | ||||
Thoracic | 2.5 | 0.75–8.48 | 0.13 | 2.5 | 0.58–12.2 | 0.24 |
Conus medullaris | 4.5 | 0.49–41.3 | 0.17 | 35.13 | 1.09–11.32 | 0.51 |
No, of spine segments involved | 0.7 | 0.65–1.23 | 0.58 | 0.67 | 0.44–1.005 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropeano, M.P.; Rossini, Z.; Franzini, A.; Capo, G.; Olei, S.; De Robertis, M.; Milani, D.; Fornari, M.; Pessina, F. Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience. Cancers 2024, 16, 111. https://doi.org/10.3390/cancers16010111
Tropeano MP, Rossini Z, Franzini A, Capo G, Olei S, De Robertis M, Milani D, Fornari M, Pessina F. Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience. Cancers. 2024; 16(1):111. https://doi.org/10.3390/cancers16010111
Chicago/Turabian StyleTropeano, Maria Pia, Zefferino Rossini, Andrea Franzini, Gabriele Capo, Simone Olei, Mario De Robertis, Daniela Milani, Maurizio Fornari, and Federico Pessina. 2024. "Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience" Cancers 16, no. 1: 111. https://doi.org/10.3390/cancers16010111
APA StyleTropeano, M. P., Rossini, Z., Franzini, A., Capo, G., Olei, S., De Robertis, M., Milani, D., Fornari, M., & Pessina, F. (2024). Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience. Cancers, 16(1), 111. https://doi.org/10.3390/cancers16010111