Robotic-Assisted Ivor Lewis Esophagectomy Is Safe and Cost Equivalent Compared to Minimally Invasive Esophagectomy in a Tertiary Referral Center
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Perioperative Management
2.3. Analysis of Financial Expenses
2.4. Statistical Analysis
3. Results
3.1. Patient Baseline Characteristics
3.2. Perioperative Outcomes
3.3. Cost Analysis and Factors Associated with Increased Costs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biere, S.S.A.Y.; Van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.G.; Hollmann, M.W.; de Lange, E.S.; et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: A multicentre, open-label, randomised controlled trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Yibulayin, W.; Abulizi, S.; Lv, H.; Sun, W. Minimally invasive oesophagectomy versus open esophagectomy for resectable esophageal cancer: A meta-analysis. World J. Surg. Oncol. 2016, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Pather, K.; Mobley, E.M.; Guerrier, C.; Esma, R.; Kendall, H.; Awad, Z.T. Long-term survival outcomes of esophageal cancer after minimally invasive Ivor Lewis esophagectomy. World J. Surg. Oncol. 2022, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Low, D.E.; Kuppusamy, M.K.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.; Davies, A.; D’journo, X.B.; Gisbertz, S.S.; Griffin, S.M.; et al. Benchmarking Complications Associated with Esophagectomy. Ann. Surg. 2019, 269, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Knitter, S.; Andreou, A.; Hofmann, T.; Chopra, S.; Denecke, C.; Thuss-Patience, P.C.; Kröll, D.; Bahra, M.; Schmelzle, M.; Pratschke, J.; et al. Minimally Invasive Versus Open Ivor-Lewis Esophagectomy for Esophageal Cancer or Cancer of the Gastroesophageal Junction: Comparison of Postoperative Outcomes and Long-Term Survival Using Propensity Score Matching Analysis. Anticancer. Res. 2021, 41, 3499–3510. [Google Scholar] [CrossRef] [PubMed]
- Kauppila, J.H.; Helminen, O.; Kytö, V.; Gunn, J.; Lagergren, J.; Sihvo, E. Short-Term Outcomes Following Minimally Invasive and Open Esophagectomy: A Population-Based Study from Finland and Sweden. Ann. Surg. Oncol. 2018, 25, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, E.; Stuer, E.; Vanommeslaeghe, H.; Ceelen, W.; Pattyn, P.; Pape, E. Quality of Life after Minimally Invasive Esophagectomy: A Cross-Sectional Study. Dig. Surg. 2022, 39, 153–161. [Google Scholar] [CrossRef]
- Gottlieb-Vedi, E.; Kauppila, J.H.; Malietzis, G.; Nilsson, M.; Markar, S.R.; Lagergren, J. Long-term Survival in Esophageal Cancer After Minimally Invasive Compared to Open Esophagectomy: A Systematic Review and Meta-Analysis. Ann. Surg. 2019, 270, 1005–1017. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus, Langversion 3.1, 2022, AWMF-Registernummer: 021/023OL. 26 May 2023. Available online: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Oesophaguskarzinom/Version_3/LL_Ösophaguskarzinom_Langversion_3.1.pdf (accessed on 26 May 2023).
- Gagner, M.; Begin, E.; Hurteau, R.; Pomp, A. Robotic interactive laparoscopic cholecystectomy. Lancet 1994, 343, 596–597. [Google Scholar] [CrossRef]
- Melvin, W.S.; Needleman, B.; Krause, K.; Schneider, C.; Wolf, R.; Michler, R.; Ellison, E. Computer-enhanced robotic telesurgery. Initial experience in foregut surgery. Surg. Endosc. 2002, 16, 1790–1792. [Google Scholar] [CrossRef]
- Ciria, R.; Berardi, G.; Alconchel, F.; Briceño, J.; Choi, G.H.; Wu, Y.; Sugioka, A.; Troisi, R.I.; Salloum, C.; Soubrane, O.; et al. The impact of robotics in liver surgery: A worldwide systematic review and short-term outcomes meta-analysis on 2,728 cases. J. Hepatobiliary Pancreat. Sci. 2020, 29, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Rocha Junior, E.; Terra, R.M. Robotic lung resection: A narrative review of the current role on primary lung cancer treatment. J. Thorac. Dis. 2022, 14, 5039–5055. [Google Scholar] [CrossRef] [PubMed]
- Safiejko, K.; Tarkowski, R.; Koselak, M.; Juchimiuk, M.; Tarasik, A.; Pruc, M.; Smereka, J.; Szarpak, L. Robotic-Assisted vs. Standard Laparoscopic Surgery for Rectal Cancer Resection: A Systematic Review and Meta-Analysis of 19,731 Patients. Cancers 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Dalager, T.; Jensen, P.T.; Eriksen, J.R.; Jakobsen, H.L.; Mogensen, O.; Søgaard, K. Surgeons’ posture and muscle strain during laparoscopic and robotic surgery. Br. J. Surg. 2020, 107, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Dalsgaard, T.; Jensen, M.D.; Hartwell, D.; Mosgaard, B.J.; Jorgensen, A.; Jensen, B.R. Robotic Surgery Is Less Physically Demanding Than Laparoscopic Surgery: Paired Cross Sectional Study. Ann. Surg. 2020, 271, 106–113. [Google Scholar] [CrossRef] [PubMed]
- He, Z.F.; Zheng, T.L.; Liu, D.L.; Yang, Y.; Zhu, D.Y.; Wu, K.; Wang, L.P.; Zhao, S. Comparison of short-term and long-term efficacy between robot-assisted and thoracoscopy-laparoscopy-assisted radical esophageal cancer surgery. Zhonghua Wei Chang. Wai Ke Za Zhi 2020, 23, 390–395. [Google Scholar] [PubMed]
- Mederos, M.A.; de Virgilio, M.J.; Shenoy, R.; Ye, L.; Toste, P.A.; Mak, S.S.; Booth, M.S.; Begashaw, M.M.; Wilson, M.; Gunnar, W.; et al. Comparison of Clinical Outcomes of Robot-Assisted, Video-Assisted, and Open Esophagectomy for Esophageal Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2021, 4, e2129228. [Google Scholar] [CrossRef]
- Mejia, A.; Cheng, S.S.; Vivian, E.; Shah, J.; Oduor, H.; Archarya, P. Minimally invasive liver resection in the era of robotics: Analysis of 214 cases. Surg. Endosc. 2020, 34, 339–348. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, J.S.; Han, D.H.; Choi, G.H.; Kim, K.S.; Choi, J.S.; Yoon, D.S. Robotic versus laparoscopic left lateral sectionectomy of liver. Surg. Endosc. 2016, 30, 4756–4764. [Google Scholar] [CrossRef]
- Salloum, C.; Lim, C.; Lahat, E.; Gavara, C.G.I.; Levesque, E.; Compagnon, P.; Azoulay, D. Robotic-Assisted Versus Laparoscopic Left Lateral Sectionectomy: Analysis of Surgical Outcomes and Costs by a Propensity Score Matched Cohort Study. World J. Surg. 2017, 41, 516–524. [Google Scholar] [CrossRef]
- Sham, J.G.; Richards, M.K.; Seo, Y.D.; Pillarisetty, V.G.; Yeung, R.S.; Park, J.O. Efficacy and cost of robotic hepatectomy: Is the robot cost-prohibitive? J. Robot. Surg. 2016, 10, 307–313. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Chittawadagi, B.; Misra, S.; Ramakrishnan, P.; Chinnusamy, P. Propensity matched analysis of short term oncological and perioperative outcomes following robotic and thoracolaparoscopic esophagectomy for carcinoma esophagus- the first Indian experience. J. Robot. Surg. 2022, 16, 97–105. [Google Scholar] [CrossRef]
- Urbanski, A.; Babic, B.; Schroeder, W.; Schiffmann, L.; Mueller, D.T.; Bruns, C.J.; Fuchs, H.F. New techniques and training methods for robot-assisted surgery and cost-benefit analysis of Ivor Lewis esophagectomy. Chirurg 2021, 92, 97–101. [Google Scholar] [CrossRef]
- Ross, S.B.; Rayman, S.; Thomas, J.; Peek, G.; Crespo, K.; Syblis, C.; Sucandy, I.; Rosemurgy, A. Evaluating the Cost for Robotic vs “Non-Robotic” Transhiatal Esophagectomy. Am. Surg. 2022, 88, 389–393. [Google Scholar] [CrossRef]
- Rebecchi, F.; Ugliono, E.; Allaix, M.E.; Morino, M. Why pay more for robot in esophageal cancer surgery? Updates Surg. 2023, 75, 367–372. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Maas, K.W.; Cuesta, M.A.; Henegouwen, M.I.v.B.; Roig, J.; Bonavina, L.; Rosman, C.; Gisbertz, S.S.; Biere, S.S.A.Y.; van der Peet, D.L. Quality of Life and Late Complications After Minimally Invasive Compared to Open Esophagectomy: Results of a Randomized Trial. World J. Surg. 2015, 39, 1986–1993. [Google Scholar] [CrossRef]
- Straatman, J.; Van Der Wielen, N.; Cuesta, M.A.; Daams, F.; Garcia, J.R.; Bonavina, L.; Rosman, C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Van Der Peet, D.L. Minimally Invasive Versus Open Esophageal Resection: Three-Year Follow-Up of the Previously Reported Randomized Controlled Trial: The TIME Trial. Ann. Surg. 2017, 266, 232–236. [Google Scholar] [CrossRef]
- Guo, W.; Ma, X.; Yang, S.; Zhu, X.; Qin, W.; Xiang, J.; Lerut, T.; Li, H. Combined thoracoscopic-laparoscopic esophagectomy versus open esophagectomy: A meta-analysis of outcomes. Surg. Endosc. 2016, 30, 3873–3881. [Google Scholar] [CrossRef]
- Xiong, W.L.; Li, R.; Lei, H.K.; Jiang, Z.Y. Comparison of outcomes between minimally invasive oesophagectomy and open oesophagectomy for oesophageal cancer. ANZ J. Surg. 2017, 87, 165–170. [Google Scholar] [CrossRef]
- Takeuchi, H.; Miyata, H.; Ozawa, S.; Udagawa, H.; Osugi, H.; Matsubara, H.; Konno, H.; Seto, Y.; Kitagawa, Y. Comparison of Short-Term Outcomes between Open and Minimally Invasive Esophagectomy for Esophageal Cancer Using a Nationwide Database in Japan. Ann. Surg. Oncol. 2017, 24, 1821–1827. [Google Scholar] [CrossRef]
- Burdall, O.C.; Boddy, A.P.; Fullick, J.; Blazeby, J.; Krysztopik, R.; Streets, C.; Hollowood, A.; Barham, C.P.; Titcomb, D. A comparative study of survival after minimally invasive and open oesophagectomy. Surg. Endosc. 2015, 29, 431–437. [Google Scholar] [CrossRef]
- Dantoc, M.; Cox, M.R.; Eslick, G.D. Evidence to support the use of minimally invasive esophagectomy for esophageal cancer: A meta-analysis. Arch. Surg. 2012, 147, 768–776. [Google Scholar] [CrossRef]
- Van der Sluis, P.C.; van der Horst, S.; May, A.M.; Schippers, C.; Brosens, L.A.A.; Joore, H.C.A.; Kroese, C.C.; Haj Mohammad, N.; Mook, S.; Vleggaar, F.P.; et al. Robot-assisted Minimally Invasive Thoracolaparoscopic Esophagectomy Versus Open Transthoracic Esophagectomy for Resectable Esophageal Cancer: A Randomized Controlled Trial. Ann. Surg. 2019, 269, 621–630. [Google Scholar] [CrossRef]
- Tagkalos, E.; van der Sluis, P.C.; Berlth, F.; Poplawski, A.; Hadzijusufovic, E.; Lang, H.; Henegouwen, M.I.v.B.; Gisbertz, S.S.; Müller-Stich, B.P.; Ruurda, J.P.; et al. Robot-assisted minimally invasive thoraco-laparoscopic esophagectomy versus minimally invasive esophagectomy for resectable esophageal adenocarcinoma, a randomized controlled trial (ROBOT-2 trial). BMC Cancer 2021, 21, 1060. [Google Scholar] [CrossRef]
- Chao, Y.K.; Li, Z.G.; Wen, Y.W.; Kim, D.J.; Park, S.Y.; Chang, Y.L.; van der Sluis, P.C.; Ruurda, J.P.; van Hillegersberg, R. Robotic-assisted Esophagectomy vs Video-Assisted Thoracoscopic Esophagectomy (REVATE): Study protocol for a randomized controlled trial. Trials 2019, 20, 346. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Li, B.; Hua, R.; He, Y.; Ye, B.; Guo, X.; Sun, Y.; Li, Z. Short- and mid-term outcomes of robotic versus thoraco-laparoscopic McKeown esophagectomy for squamous cell esophageal cancer: A propensity score-matched study. Dis. Esophagus 2020, 33, doz080. [Google Scholar] [CrossRef]
- Naffouje, S.A.; Salloum, R.H.; Khalaf, Z.; Salti, G.I. Outcomes of Open Versus Minimally Invasive Ivor-Lewis Esophagectomy for Cancer: A Propensity-Score Matched Analysis of NSQIP Database. Ann. Surg. Oncol. 2019, 26, 2001–2010. [Google Scholar] [CrossRef]
- Tsunoda, S.; Obama, K.; Hisamori, S.; Nishigori, T.; Okamura, R.; Maekawa, H.; Sakai, Y. Lower Incidence of Postoperative Pulmonary Complications Following Robot-Assisted Minimally Invasive Esophagectomy for Esophageal Cancer: Propensity Score-Matched Comparison to Conventional Minimally Invasive Esophagectomy. Ann. Surg. Oncol. 2021, 28, 639–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, D.; Cao, Y.; Huang, M.; Li, J.; Zhang, J.; Lin, J.; Sarkaria, I.S.; Toni, L.; David, R.; et al. Robotic Versus Conventional Minimally Invasive Esophagectomy for Esophageal Cancer: A Meta-Analysis. Ann. Surg. 2023, 278, 39–50. [Google Scholar] [CrossRef]
- Xu, C.; Guo, L.; Liao, Z.; Wang, Y.; Liu, X.; Zhao, S.; Wang, J.; Yuan, Z.; Wang, P.; Lin, S.H. Heart and lung doses are independent predictors of overall survival in esophageal cancer after chemoradiotherapy. Clin. Transl. Radiat. Oncol. 2019, 17, 17–23. [Google Scholar] [CrossRef]
- Niezink, A.G.H.; de Jong, R.A.; Muijs, C.T.; Langendijk, J.A.; Widder, J. Pulmonary Function Changes after Radiotherapy for Lung or Esophageal Cancer: A Systematic Review Focusing on Dose-Volume Parameters. Oncologist 2017, 22, 1257–1264. [Google Scholar] [CrossRef]
- Markar, S.; Gronnier, C.; Duhamel, A.; Bigourdan, J.-M.; Badic, B.; du Rieu, M.C.; Lefevre, J.H.; Turner, K.; Luc, G.; Mariette, C. Pattern of Postoperative Mortality After Esophageal Cancer Resection According to Center Volume: Results from a Large European Multicenter Study. Ann. Surg. Oncol. 2015, 22, 2615–2623. [Google Scholar] [CrossRef]
- Baba, Y.; Yoshida, N.; Shigaki, H.; Iwatsuki, M.; Miyamoto, Y.; Sakamoto, Y.; Watanabe, M.; Baba, H. Prognostic Impact of Postoperative Complications in 502 Patients with Surgically Resected Esophageal Squamous Cell Carcinoma: A Retrospective Single-institution Study. Ann. Surg. 2016, 264, 305–311. [Google Scholar] [CrossRef]
- Saeki, H.; Tsutsumi, S.; Tajiri, H.; Yukaya, T.; Tsutsumi, R.; Nishimura, S.; Nakaji, Y.; Kudou, K.; Akiyama, S.; Kasagi, Y.; et al. Prognostic Significance of Postoperative Complications After Curative Resection for Patients With Esophageal Squamous Cell Carcinoma. Ann. Surg. 2017, 265, 527–533. [Google Scholar] [CrossRef]
- Yoshida, N.; Harada, K.; Iwatsuki, M.; Baba, Y.; Baba, H. Precautions for avoiding pulmonary morbidity after esophagectomy. Ann. Gastroenterol. Surg. 2020, 4, 480–484. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Gan, Q.; Xiang, J.; Jin, R.; Chen, K.; Che, J.; Hang, J.; Li, H. Early Outcomes of Robot-Assisted Versus Thoracoscopic-Assisted Ivor Lewis Esophagectomy for Esophageal Cancer: A Propensity Score-Matched Study. Ann. Surg. Oncol. 2019, 26, 1284–1291. [Google Scholar] [CrossRef]
- Deng, H.Y.; Luo, J.; Li, S.-X.; Li, G.; Alai, G.; Wang, Y.; Liu, L.-X.; Lin, Y.-D. Does robot-assisted minimally invasive esophagectomy really have the advantage of lymphadenectomy over video-assisted minimally invasive esophagectomy in treating esophageal squamous cell carcinoma? A propensity score-matched analysis based on short-term outcomes. Dis. Esophagus 2019, 32, doy110. [Google Scholar]
- Espinoza-Mercado, F.; Imai, T.A.; Borgella, J.D.; Sarkissian, A.; Serna-Gallegos, D.; Alban, R.F.; Soukiasian, H.J. Does the Approach Matter? Comparing Survival in Robotic, Minimally Invasive, and Open Esophagectomies. Ann. Thorac. Surg. 2019, 107, 378–385. [Google Scholar] [CrossRef]
- He, H.; Wu, Q.; Wang, Z.; Zhang, Y.; Chen, N.; Fu, J.; Zhang, G. Short-term outcomes of robot-assisted minimally invasive esophagectomy for esophageal cancer: A propensity score matched analysis. J. Cardiothorac. Surg. 2018, 13, 52. [Google Scholar] [CrossRef]
- Meredith, K.L.; Maramara, T.; Blinn, P.; Lee, D.; Huston, J.; Shridhar, R. Comparative Perioperative Outcomes by Esophagectomy Surgical Technique. J. Gastrointest. Surg. 2020, 24, 1261–1268. [Google Scholar] [CrossRef]
- Vonlanthen, R.; Slankamenac, K.; Breitenstein, S.; Puhan, M.A.; Muller, M.K.; Hahnloser, D.; Hauri, D.; Graf, R.; Clavien, P.-A. The impact of complications on costs of major surgical procedures: A cost analysis of 1200 patients. Ann Surg 2011, 254, 907–913. [Google Scholar] [CrossRef]
- Roach, E.; de la Maza, L.; Rieder, S.; Vigneswaran, L.; Maeda, A.; Okrainec, A.; Jackson, T.D. Cost of postoperative complications after general surgery at a major Canadian academic centre. Int. J. Qual. Health Care 2022, 34, mzac075. [Google Scholar] [CrossRef]
- Ludbrook, G.L. The Hidden Pandemic: The Cost of Postoperative Complications. Curr. Anesthesiol. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
Characteristics | RAMIE (n = 37) | MIE (n = 91) | p |
---|---|---|---|
Male sex, n (%) | 32 (87) | 75 (82) | 0.573 |
Median age at resection, years (range) | 64 (44–81) | 63 (44–82) | 0.948 |
Age ≥ 65 years, n (%) | 17 (46) | 38 (42) | 0.664 |
Median BMI, kg/m2 (range) | 25.8 (15.7–36.1) | 25.1 (16.1–36.4) | 0.673 |
BMI ≥ 30 kg/m2, n (%) | 4 (11) | 15 (17) | 0.375 |
Comorbidities | |||
Diabetes, n (%) | 6 (16) | 12 (13) | 0.655 |
Cardiovascular disease, n (%) | 4 (11) | 9 (10) | 1 |
Arterial hypertension, n (%) | 20 (54) | 55 (60) | 0.506 |
Pulmonary disease, n (%) | 4 (11) | 14 (15) | 0.500 |
Liver cirrhosis, n (%) | 0 (0) | 0 (0) | - |
ASA physical status, n (%) | 0.920 | ||
I | 2 (5) | 6 (7) | |
II | 15 (41) | 37 (41) | |
III | 20 (54) | 47 (52) | |
IV | 0 (0) | 1 (1) | |
Preoperative therapy, n (%) | 0.045 | ||
None | 2 (5) | 8 (9) | |
Chemotherapy | 29 (78) | 50 (55) | |
Radiochemotherapy | 6 (16) | 33 (36) | |
Tumor location, n (%) | 0.893 | ||
Esophagus | 20 (54) | 48 (53) | |
Gastroesophageal junction | 17 (46) | 43 (47) | |
T category, n (%) | 0.837 | ||
T0 | 11 (30) | 26 (29) | |
T1 | 8 (22) | 20 (22) | |
T2 | 7 (19) | 14 (15) | |
T3 | 11 (30) | 28 (31) | |
T4 | 0 (0) | 3 (3) | |
N category, n (%) | 0.516 | ||
N0 | 22 (60) | 58 (64) | |
N1 | 6 (16) | 10 (11) | |
N2 | 5 (14) | 18 (20) | |
N3 | 4 (11) | 5 (6) | |
UICC stage, n (%) | 0.972 | ||
I | 20 (54) | 49 (54) | |
II | 4 (11) | 9 (10) | |
III | 9 (24) | 25 (27) | |
IV | 4 (11) | 8 (9) | |
Lymphangiosis carcinomatosa, n (%) | 7 (19) | 16 (17) | 0.741 |
Histologic type, n (%) | 0.140 | ||
Adenocarcinoma | 30 (81) | 62 (68) | |
Squamous cell carcinoma | 7 (19) | 29 (32) | |
Tumor grading (G), n (%) | 0.845 | ||
G1 | 1 (4) | 3 (4) | |
G2 | 16 (64) | 42 (58) | |
G3 | 8 (32) | 28 (38) | |
Smoking status, n (%) | 16 (57) | 51 (69) | 0.264 |
Characteristics | RAMIE (n = 37) | MIE (n = 91) | p |
---|---|---|---|
Median duration of resection (range), min | 421 (305–543) | 372 (205–570) | <0.001 |
Median number of lymph nodes removed (range) | 34 (22–61) | 32 (9–72) | 0.177 |
Positive resection margins, n (%) | 2 (5) | 5 (6) | 1 |
Median duration of ICU stay (range), days | 4 (1–10) | 3 (1–67) | 0.528 |
Median duration of hospital stay (range), days | 15 (8–80) | 17 (9–110) | 0.205 |
Need for intraoperative RBC transfusions, n (%) | 0 (0) | 9 (10) | 0.058 |
Anastomotic leak, n (%) | 4 (11) | 13 (14) | 0.776 |
Postoperative pneumonia, n (%) | 3 (8) | 23 (25) | 0.029 |
Readmission to ICU, n (%) | 7 (19) | 21 (23) | 0.606 |
Overall morbidity, n (%) | 14 (38) | 49 (54) | 0.101 |
Major morbidity, n (%) | 13 (35) | 42 (46) | 0.254 |
30-day mortality, n (%) | 0 (0) | 0 (0) | - |
90-day mortality, n (%) | 0 (0) | 1 (1) | 1 |
Parameters Costs, EUR, Median (Range) | RAMIE (n = 37) | MIE (n = 91) | p |
---|---|---|---|
Surgery | 12,370 (9862–19,046) | 10,059 (6589–20,170) | <0.001 |
Anesthesia | 3375 (1691–6746) | 3106 (0–9816) | 0.090 |
ICU | 4248 (548–126,105) | 4981 (696–206,750) | 0.236 |
Dialysis | 0 (0–0) | 0 (0–29,785) | 0.084 |
Normal ward | 6708 (3177–25,709) | 6412 (705–41,230) | 0.758 |
Laboratory tests | 1684 (1080–5481) | 1748 (688–12,232) | 0.795 |
Cardiology | 0 (0–2142) | 0 (0–3937) | 0.152 |
Radiology | 540 (117–4671) | 803 (118–8161) | 0.109 |
Endoscopy | 339 (0–14,045) | 587 (0–14,024) | 0.228 |
Other diagnostics | 212 (0–384) | 215 (0–1078) | 0.732 |
Other therapeutics | 355 (68–2427) | 360 (0–6282) | 0.476 |
Patient admission | 0 (0–67) | 0 (0–200) | 0.625 |
Daily costs | 2023 (1051–4180) | 1818 (811–3365) | 0.246 |
Total costs | 30,510 (22,256–185,871) | 29,180 (18,649–303,453) | 0.460 |
Parameters | UV | MV | Total Cost/Stay, EUR, Median (Range) % | |||
---|---|---|---|---|---|---|
<42,990 EUR per Case (n = 96) | ≥42,990 EUR per Case (n = 32) | p | HR (95% CI) | p | ||
Male sex, n (%) | 81 (84) | 26 (81) | 0.679 | |||
Age ≥ 65 years, n (%) | 39 (41) | 16 (50) | 0.354 | |||
BMI ≥ 30 kg/m2, n (%) | 15 (16) | 4 (13) | 1 | |||
ASA score ≥ 3, n (%) | 49 (52) | 20 (65) | 0.229 | |||
Length of procedure ≥ 386 min &, n (%) | 51 (53) | 13 (41) | 0.221 | |||
Readmission to ICU, n (%) | 8 (8) | 20 (63) | <0.001 | 7.0 (1.7–29.6) | 0.008 | 54,712 (28,012–303,453) |
Length of ICU stay ≥ 4 days &, n (%) | 44 (46) | 21 (66) | 0.052 | NS | ||
Length of hospital stay ≥16 days &, n (%) | 37 (39) | 31 (97) | <0.001 | 13.5 (1.5–118.5) | 0.019 | 40,759 (19,196–303,453) |
Anastomotic leak, n (%) | 2 (2) | 15 (47) | <0.001 | 17.0 (2.6–109.1) | 0.003 | 64,103 (26,748–303,453) |
Postoperative pneumonia, n (%) | 10 (10) | 16 (50) | <0.001 | 5.4 (1.4–21.7) | 0.017 | 56,900 (19,203–303,453) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knitter, S.; Maurer, M.M.; Winter, A.; Dobrindt, E.M.; Seika, P.; Ritschl, P.V.; Raakow, J.; Pratschke, J.; Denecke, C. Robotic-Assisted Ivor Lewis Esophagectomy Is Safe and Cost Equivalent Compared to Minimally Invasive Esophagectomy in a Tertiary Referral Center. Cancers 2024, 16, 112. https://doi.org/10.3390/cancers16010112
Knitter S, Maurer MM, Winter A, Dobrindt EM, Seika P, Ritschl PV, Raakow J, Pratschke J, Denecke C. Robotic-Assisted Ivor Lewis Esophagectomy Is Safe and Cost Equivalent Compared to Minimally Invasive Esophagectomy in a Tertiary Referral Center. Cancers. 2024; 16(1):112. https://doi.org/10.3390/cancers16010112
Chicago/Turabian StyleKnitter, Sebastian, Max M. Maurer, Axel Winter, Eva M. Dobrindt, Philippa Seika, Paul V. Ritschl, Jonas Raakow, Johann Pratschke, and Christian Denecke. 2024. "Robotic-Assisted Ivor Lewis Esophagectomy Is Safe and Cost Equivalent Compared to Minimally Invasive Esophagectomy in a Tertiary Referral Center" Cancers 16, no. 1: 112. https://doi.org/10.3390/cancers16010112
APA StyleKnitter, S., Maurer, M. M., Winter, A., Dobrindt, E. M., Seika, P., Ritschl, P. V., Raakow, J., Pratschke, J., & Denecke, C. (2024). Robotic-Assisted Ivor Lewis Esophagectomy Is Safe and Cost Equivalent Compared to Minimally Invasive Esophagectomy in a Tertiary Referral Center. Cancers, 16(1), 112. https://doi.org/10.3390/cancers16010112