The Use of Low-Dose Chest Computed Tomography for the Diagnosis and Monitoring of Pulmonary Infections in Patients with Hematologic Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. CT Scanning Parameters and Data Reconstruction
2.3. Radiation Dose Measurements-Dose Metrics
2.4. Objective Analysis
- SNR = Density of ROIA/SD of ROIA
- CNR = Density of (ROIA − ROIB)/SDB
2.5. Subjective Analysis
2.5.1. Diagnostic Evaluation
- Consolidation
- Ground Glass Opacity
- Nodules (≥3 mm)
- Cavitation in nodule(s)
- Ground Glass halo in nodule(s)
- Pericardial effusion
- Diffuse Interlobular septal thickening
- Pleural effusion
- Lymphadenopathy
2.5.2. Statistical Analysis
3. Results
3.1. Description of Study Sample
3.2. Effective Dose
3.3. Objective Analysis
3.4. Subjective Analysis
3.5. Evaluation of Diagnostic Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donowitz, G.R.; Harman, C.; Pope, T.; Stewart, F.M. The role of the chest roentgenogram in febrile neutropenic patients. Arch. Intern. Med. 1991, 151, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Korones, D.N.; Hussong, M.R.; Gullace, M.A. Routine chest radiography of children with cancer hospitalized for fever and neutropenia: Is it really necessary? Cancer 1997, 80, 1160–1164. [Google Scholar] [CrossRef]
- Patsios, D.; Maimon, N.; Chung, T.; Roberts, H.; Disperati, P.; Minden, M.; Paul, N. Chest low-dose computed tomography in neutropenic acute myeloid leukaemia patients. Respir. Med. 2010, 104, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Heussel, C.P.; Kauczor, H.U.; Heussel, G.E.; Fischer, B.; Begrich, M.; Mildenberger, P.; Thelen, M. Pneumonia in febrile neutropenic patients and in bone marrow and blood stem-cell transplant recipients: Use of high-resolution computed tomography. J. Clin. Oncol. 1999, 17, 796–805. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Bushberg, J.T.; Fletcher, J.G.; Eckel, L.J. Answers to Common Questions About the Use and Safety of CT Scans. Mayo Clin. Proc. 2015, 90, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Caillot, D.; Couaillier, J.F.; Bernard, A.; Casasnovas, O.; Denning, D.W.; Mannone, L.; Lopez, J.; Couillault, G.; Piard, F.; Vagner, O.; et al. Increasing volume and changing characteristics of invasive pulmonary aspergillosis on sequential thoracic computed tomography scans in patients with neutropenia. J. Clin. Oncol. 2001, 19, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Sipsas, N.V.; Bodey, G.P.; Kontoyiannis, D.P. Perspectives for the management of febrile neutropenic patients with cancer in the 21st century. Cancer 2005, 103, 1103–1113. [Google Scholar] [CrossRef]
- Georgiadou, S.; Sipsas, N.V.; Marom, E.M.; Kontoyiannis, D.P. The diagnostic value of halo sign and reverse halo sign for pulmonary invasive mold infections in compromised hosts. Clin. Infect. Dis. 2011, 52, 1144–1155. [Google Scholar] [CrossRef]
- Joyce, S.; O’Connor, O.J.; Maher, M.M.; McEntee, M.F. Strategies for dose reduction with specific clinical indications during computed tomography. Radiography 2020, 26, 562–568. [Google Scholar] [CrossRef]
- Kalra, M.K.; Maher, M.M.; Toth, T.L.; Hamberg, L.M.; Blake, M.A.; Shepard, J.A.; Saini, S. Strategies for CT Radiation Dose Optimization. Radiology 2004, 230, 610–628. [Google Scholar] [CrossRef]
- Takahashi, M.; Maguire, W.M.; Ashtari, M.; Khan, A.; Papp, Z.; Alberico, R.; Campbell, W.; Eacobacci, T.; Herman, P.G. Low-dose spiral computed tomography of the thorax: Comparison with the standard-dose technique. Investig. Radiol. 1998, 33, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Larke, F.J.; Kruger, R.L.; Cagnon, C.H.; Flynn, M.J.; McNitt-Gray, M.N.; Wu, X.; Judy, P.F.; Cody, D.D. Estimated Radiation Dose Associated with Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial. Am. J. Roentgenol. 2011, 197, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 2004, 231, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Preston, D.L.; Ron, E.; Tokuoka, S.; Funamoto, S.; Nishi, N.; Soda, M.; Mabuchi, K.; Kodama, K. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 2007, 168, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Sakane, H.; Ishida, M.; Shi, L.; Fukumoto, W.; Sakai, C.; Miyata, Y.; Ishida, T.; Akita, T.; Okada, M.; Awad, K.; et al. Biological Effects of Low-Dose Chest CT on Chromosomal DNA. Radiology 2020, 295, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.K.; Paden, R.G.; Silva, A.C.; Kujak, J.L.; Lawder, H.J.; Pavlicek, W. Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study. Am. J. Roentgenol. 2009, 193, 764–771. [Google Scholar] [CrossRef]
- Baumueller, S.; Winklehner, A.; Karlo, C.; Goetti, R.; Flohr, T.; Russi, E.W.; Frauenfelder, T.; Alkadhi, H. Low-dose CT of the lung: Potential value of iterative reconstructions. Eur. Radiol. 2012, 22, 2597–2606. [Google Scholar] [CrossRef]
- Fletcher, J.G.; Yu, L.; Fidler, J.L.; Levin, D.L.; DeLone, D.R.; Hough, D.M.; Takahashi, N.; Venkatesh, S.K.; Sykes, A.-M.G.; White, D.; et al. Estimation of Observer Performance for Reduced Radiation Dose Levels in CT: Eliminating Reduced Dose Levels That Are Too Low Is the First Step. Acad. Radiol. 2017, 24, 876–889. [Google Scholar] [CrossRef]
- Hae, J.K.; So, Y.P.; Lee, H.Y.; Lee, K.S.; Shin, K.E.; Moon, J.W. Ultra-Low-Dose Chest CT in Patients with Neutropenic Fever and Hematologic Malignancy: Image Quality and Its Diagnostic Performance. Cancer Res. Treat. 2014, 46, 393–402. [Google Scholar]
- Kalra, M.; Woisetschläger, M.; Dahlström, N.; Singh, S.; Digumarthy, S.; Do, S.; Pien, H.; Quick, P.; Schmidt, B.; Sedlmair, M.; et al. Sonogram—Affirmed Iterative Reconstruction of Low-Dose Chest CT: Effect on Image Quality and Radiation Dose. Am. J. Radiol. 2013, 201, W235–W244. [Google Scholar]
- EN 16262; European Guidelines on Quality Criteria for CT. EU Publications: Luxemburg, 1999.
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection; 103. Ann. ICRP 37 (2–4); Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–332. [Google Scholar]
- National Diagnostic Reference Levels. GreekGazette 3176/Β/26-11-2014; Greek Atomic Energy Authority: Athens, Greece, 2014. [Google Scholar]
- Sun, J.; Yu, T.; Liu, J.; Duan, X.; Hu, D.; Peng, Y. Image quality improvement using model-based iterative reconstruction in low dose chest CT for children with necrotizing pneumonia. BMC Med. Imaging 2017, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Verdun, F.R.; Racine, D.; Ott, G.J.; Tapiovaara, M.J.; Toroi, P.; Bochud, F.O.; Veldkamp, W.J.H.; Schegerer, A.; Bouwman, R.W.; Hernandez Giron, I.; et al. Image quality in CT: From physical measurements to model observers. Phys. Medica 2015, 31, 823–843. [Google Scholar] [CrossRef] [PubMed]
- Sookpeng, S.; Martin, C.J.; Butdee, C. The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level. Indian J. Radiol. Imaging 2009, 29, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Gamaletsou, M.N.; Walsh, T.J.; Sipsas, N.V. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies. Turk. J. Hematol. 2018, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chamilos, G.; Lewis, R.E.; Kontoyiannis, D.P. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin. Infect. Dis. 2008, 47, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.; Lodewyck, T.; Donnelly, J.P.; Chantepie, S.; Robin, C.; Blijlevens, N.; Turlure, P.; Selleslag, D.; Baron, F.; Aoun, M.; et al. Infectious Diseases Group and the Acute Leukemia Group of the European Organization for Research and Treatment of Cancer. Empiric vs Preemptive Antifungal Strategy in High-Risk Neutropenic Patients on Fluconazole Prophylaxis: A Randomized Trial of the European Organization for Research and Treatment of Cancer. Clin. Infect. Dis. 2023, 76, 674–682. [Google Scholar] [PubMed]
- Von Eiff, M.; Zühlsdorf, M.; Roos, N.; Hesse, M.; Schulten, R.; van de Loo, J. Pulmonary fungal infections in patients with hematological malignancies–diagnostic approaches. Ann. Hematol. 1995, 70, 135–141. [Google Scholar] [CrossRef]
- Caillot, D.; Casasnovas, O.; Bernard, A.; Couaillier, J.F.; Durand, C.; Cuisenier, B.; Solary, E.; Piard, F.; Petrella, T.; Bonnin, A.; et al. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J. Clin. Oncol. 1997, 15, 139–147. [Google Scholar] [CrossRef]
- Hendee, W.R.; O’Connor, M.K. Radiation risks of medical imaging: Separating fact from fantasy. Radiology 2012, 264, 312–321. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development OECD. Health at a Glance 2021: OECD Indicators; OECD Publishing: Paris, France, 2021. [Google Scholar]
- World Health Organization. IAEA WHO Bonn Call for Action: 10 Actions to Improve Radiation Protection in Medicine in the Next Decade; Published Online; World Health Organization: Geneva, Switzerland, 2012; p. 16. [Google Scholar]
- European Society of Radiology EuroSafeImaging Home Page. Available online: https://www.eurosafeimaging.org/wp/wp-content/uploads/2020/03/CT_TipsTricks_02_20_Iterative-reconstruction-algorithms.pdf (accessed on 20 December 2020).
- Mileto, A.; Guimaraes, L.S.; McCollough, C.H.; Joel, G.; Fletcher, J.G.; Lifeng, Y. State of the Art in Abdominal CT: The Limits of Iterative Reconstruction Algorithms. Radiology 2019, 293, 491–503. [Google Scholar] [CrossRef]
- Paul, N.S.; Blobel, J.; Prezelj, E.; Burey, P.; Ursani, A.; Menezes, R.J.; Kashani, H.; Siewerdsen, J.H. The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT. Phys. Med. Biol. 2010, 55, 1363–1380. [Google Scholar] [CrossRef] [PubMed]
- Shorr, A.F.; Susla, G.M.; O’Grady, N.P. Pulmonary infiltrates in the non-HIV- infected immunocompromised patient: Etiologies, diagnostic strategies, and outcomes. Chest 2004, 125, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.; Kalra, M.K.; Digumarthy, S.R.; Hsieh, J.; Pien, H.; Singh, S.; Gilman, M.D.; Sheperd, J.-A.O. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: Initial experience. J. Comput. Assist. Tomogr. 2010, 34, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Lamba, R.; McGahan, J.P.; Corwin, M.T.; Li, C.-S.; Tran, T.; Seibert, J.A.; Boone, J.M. CT Hounsfield numbers of soft tissues on unenhanced abdominal CT scans: Variability between two different manufacturers’ MDCT scanners. Am. J. Roentgenol. 2014, 203, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, B.A.; Hindman, N.; Lee, J.; Babb, J.S. Multi-detector row CT attenuation measurements: Assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 2007, 242, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Pontana, F.; Pagniez, J.; Flohr, T.; Baptiste Faivre, J.; Duhamel, A.; Remy, J.; Remy-Jardin, M. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients. Eur. Radiol. 2011, 21, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Laqmani, A.; Buhk, J.H.; Henes, F.O.; Klink, T.; Sehner, S.; von Schultzendorff, H.C.; Hammerle, D.; Nagel, H.D.; Adam, G.; Regier, M. Impact of a 4th Generation Iterative Reconstruction Technique on Image Quality in Low-Dose Computed Tomography of the Chest in Immunocompromised Patients. Fortschr. Röntgenstr. 2013, 185, 749–757. [Google Scholar] [CrossRef]
- Vardhanabhuti, V.; Loader, R.J.; Mitchell, G.R.; Riordan, R.D.; Roobottom, C.A. Image Quality Assessment of Standard- and Low-Dose Chest CT Using Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and Novel Model-Based Iterative Reconstruction Algorithms. Am. J. Roentgenol. 2013, 200, 545–552. [Google Scholar] [CrossRef]
- Kubo, T.; Ohno, Y.; Nishino, M.; Lind, P.J.; Gautama, S.; Kauczor, H.U.; Hatabug, H. iLead study group. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. Eur. J. Radiol. Open 2016, 3, 86–94. [Google Scholar] [CrossRef]
- Picardi, M.; DellaPepa, R.; Giordano, C.; Pugliese, N.; Mortaruolo, C.; Trastulli, F.; Grimaldi, F.; Zacheo, I.; Raimondo, M.; Sirignano, C.; et al. (1-3)-β-D-Glucan serum increase and small-airway-invasive radiological findings as early signs of pulmonary aspergillosis in high-risk hematologic patients in the posaconazole era: Preliminary observations. Ann. Hematol. 2019, 98, 527–531. [Google Scholar] [CrossRef]
Hematologic Malignancy | Total Number of Patients n = 164 | Total Number of Examinations n = 256 |
---|---|---|
Acute myeloid leukemia | 125 | 196 |
Acute lymphoblastic leukemia | 23 | 43 |
Hodgkin lymphoma | 9 | 9 |
Non Hodgkin lymphoma | 7 | 8 |
Standard-Dose Protocol vs. Low-Dose Protocol | ||
---|---|---|
CT Protocol | Standard Dose (SDCCT) | Low Dose (LDCCT) |
Exposure factors | ||
kV | CARE kV™ | 100 |
mAseff | CAREDose4D™ | 40 |
Rotation time | 0.5 s | 0.5 s |
Acquisition Parameters | ||
Slice collimation | 0.5 mm | 0.5 mm |
Pitch ratio | 1.2 | 1.2 |
Reconstruction Parameters | ||
Slice thickness | 1.0 mm | 1.0 mm |
Algorithm | SAFIRE™ | SAFIRE™ |
Strength (1–5) | 3 | 3 |
Radiation Dose Descriptors | ||
CTDIvol | Variable (AEC modulation depending on patient size) | 1.58 mGy |
Image Quality Component | Score | Description |
---|---|---|
Subjective Image Noise | ||
2: Minimal | -negligible noise levels not affecting diagnostic accuracy | |
1: Moderate | -tolerable noise levels not affecting diagnostic accuracy | |
0: High | -increased image noise, grainy image compromising diagnostic accuracy. | |
Subjective Image Quality | ||
2: Excellent | -clearly and well-defined anatomic details, increased diagnostic accuracy | |
1: Acceptable | -adequately defined anatomic details, not affecting diagnostic accuracy | |
0: Poor | -poorly defined anatomic details, compromising diagnostic accuracy | |
Artifacts | ||
2: Not affecting | -negligible artifact occurrence not affecting diagnostic accuracy | |
1: Minor | -tolerable artifact occurrence not affecting diagnostic accuracy | |
0: Major | -increased occurrence of artifacts compromising diagnostic accuracy. |
Variable | Standard Dose | Low Dose | Total | p-Value |
---|---|---|---|---|
n = 80 (48.78%) | n = 84 (51.22%) | n = 164 (100%) | ||
Sex | 0.875 | |||
– Female | 33 (41.25%) | 36 (42.86%) | 69 (42.07%) | |
– Male | 47 (58.75%) | 48 (57.14%) | 95 (57.93%) | |
Age (in groups—years) | 0.854 | |||
– 18–29 | 5 (6.25%) | 4 (4.76%) | 9 (5.49%) | |
– 30–39 | 10 (12.50%) | 8 (9.52%) | 18 (10.98%) | |
– 40–49 | 4 (5.00%) | 9 (10.71%) | 13 (7.93%) | |
– 50–59 | 13 (16.25%) | 11 (13.10%) | 24 (14.63%) | |
– 60–69 | 23 (28.75%) | 25 (29.76%) | 48 (29.27%) | |
– 70–79 | 19 (23.75%) | 19 (22.62%) | 38 (23.17%) | |
– 80+ | 6 (7.50%) | 8 (9.52%) | 14 (8.54%) | |
Age (years)—Median (IQR) | 64.0 (50.0, 70.0) | 67.0 (51.0, 71.0) | 64.5 (50.0, 71.0) | 0.381 |
BMI WHO categories | 0.011 | |||
– Underweight | 1 (1.25%) | 2 (2.38%) | 3 (1.83%) | |
– Normal | 60 (75.00%) | 43 (51.19%) | 103 (62.80%) | |
– Overweight | 17 (21.25%) | 33 (39.29%) | 50 (30.49%) | |
– Obese | 2 (2.50%) | 6 (7.14%) | 8 (4.88%) | |
BMI (kg/m2)—Median (IQR) | 23.0 (21.0, 24.0) | 24.0 (22.0, 26.0) | 23.5 (21.0, 25.0) | 0.002 |
Number of examinations/patient | 0.058 | |||
– 1 | 57 (71.25%) | 54 (64.29%) | 111 (67.68%) | |
– 2 | 18 (22.50%) | 16 (19.05%) | 34 (20.73%) | |
– 3 | 1 (1.25%) | 10 (11.90%) | 11 (6.71%) | |
– 4+ | 4 (5.00%) | 4 (4.76%) | 8 (4.88%) | |
Number of examinations/patient—Mean (SD) | 1.4 (0.8) | 1.7 (1.4) | 1.6 (1.2) | 0.217 |
Variable | Standard Dose | Low Dose | Overall | p-Value * |
---|---|---|---|---|
n = 107 (41.80%) | n = 149 (58.20%) | n = 256 (100%) | ||
Sex | 0.704 | |||
– Female | 48 (44.86%) | 71 (47.65%) | 119 (46.48%) | |
– Male | 59 (55.14%) | 78 (52.35%) | 137 (53.52%) | |
Age (years)—Median (IQR) | 62.0 (40.0, 70.0) | 64.0 (41.0, 71.0) | 63.5 (40.5, 70.0) | 0.462 |
BMI (Kg/m2)—Median (IQR) | 23.0 (20.0, 24.0) | 24.0 (22.0, 27.0) | 23.0 (21.0, 26.0) | <0.001 |
Variable | Standard Dose | Low Dose |
---|---|---|
n = 107 (41.80%) | n = 149 (58.20%) | |
Mean Attenuation Lung—Median (IQR) | −501.50 (−511.00, −490.50) | −503.00 (−519.00, −486.50) |
Mean Image Noise Lung—Mean (SD) | 76.09 (17.93) | 88.99 (24.34) |
Average SNR Lung—Median (IQR) | 6.63 (5.62, 8.11) | 5.85 (4.94, 7.25) |
CNR Lung—Median (IQR) | 7.96 (6.85, 9.92) | 6.95 (5.38, 8.84) |
Variable | Difference (95% CI) | p-Value | Adj. Difference (95% CI) | Adj. p-Value |
---|---|---|---|---|
Mean Attenuation Lung | −1.5 (−8.1, 5.1) | 0.656 | −2.7 (−9.8, 4.4) | 0.457 |
Mean Image Noise Lung | 12.5 (7.1, 18.0) | <0.001 | 11.8 (6.2, 17.3) | <0.001 |
Average SNR Lung | −0.8 (−1.4, −0.2) | 0.013 | −0.7 (−1.3, -0.0) | 0.046 |
CNR Lung | −1.0 (−1.8, −0.2) | 0.015 | −0.8 (−1.7, 0.1) | 0.083 |
Variable | Standard Dose | Low Dose |
---|---|---|
n = 107 (41.80%) | n = 149 (58.20%) | |
VGA Subjective Image Noise Lung RG2 | ||
– Moderate | 17 (15.89%) | 82 (55.03%) |
– Minimal | 90 (84.11%) | 67 (44.97%) |
VGA Subjective Image Quality Lung RG2 | ||
– Acceptable | 15 (14.02%) | 31 (20.81%) |
– Excellent | 92 (85.98%) | 118 (79.19%) |
Artifacts IR RG2 | ||
– Minor | 25 (23.36%) | 63 (42.28%) |
– Not affecting diagnosis | 82 (76.64%) | 86 (57.72%) |
Variable | Odds Ratio (95% CI) | p-Value | Adj. Odds Ratio (95% CI) | Adj. p-Value |
---|---|---|---|---|
VGA Subjective Image Noise Lung | 0.15 (0.08, 0.28) | <0.001 | 0.17 (0.08, 0.34) | <0.001 |
VGA Subjective Image Quality Lung | 0.60 (0.29, 1.24) | 0.168 | 0.63 (0.30, 1.33) | 0.222 |
Artifacts IR | 0.42 (0.24, 0.72) | 0.002 | 0.38 (0.21, 0.68) | 0.001 |
Variable | Standard Dose | Low Dose |
---|---|---|
n = 107 (41.80%) | n = 149 (58.20%) | |
Consolidation RD1 | ||
– No | 58 (54.21%) | 108 (72.48%) |
– Yes | 49 (45.79%) | 41 (27.52%) |
Ground Glass Opacity RD1 | ||
– No | 19 (17.76%) | 53 (35.57%) |
– Yes | 88 (82.24%) | 96 (64.43%) |
Nodules (≥3 mm) RD1 | ||
– No | 32 (29.91%) | 67 (44.97%) |
– Yes | 75 (70.09%) | 82 (55.03%) |
Cavitation in nodule(s) RD1 | ||
– No | 102 (95.33%) | 139 (93.29%) |
– Yes | 5 (4.67%) | 10 (6.71%) |
GG halo in nodule(s) RD1 | ||
– No | 97 (90.65%) | 144 (96.64%) |
– Yes | 10 (9.35%) | 5 (3.36%) |
Diffuse Interlobular septal thickening RD1 | ||
– No | 71 (66.36%) | 104 (69.80%) |
– Yes | 36 (33.64%) | 45 (30.20%) |
Pleural effusion RD1 | ||
– No | 59 (55.14%) | 83 (55.70%) |
– Yes | 48 (44.86%) | 66 (44.30%) |
Pericardial effusion RD1 | ||
– No | 96 (89.72%) | 132 (88.59%) |
– Yes | 11 (10.28%) | 17 (11.41%) |
Lymphadenopathy RD1 | ||
– No | 74 (69.16%) | 103 (69.13%) |
– Yes | 33 (30.84%) | 46 (30.87%) |
Variable | Odds Ratio (95% CI) | p-Value | Adj. Odds Ratio (95% CI) | Adj. p-Value |
---|---|---|---|---|
Consolidation | 0.34 (0.16, 0.74) | 0.006 | 0.32 (0.15, 0.71) | 0.005 |
Ground Glass Opacity | 0.30 (0.13, 0.68) | 0.004 | 0.31 (0.13, 0.71) | 0.006 |
Nodules (≥3 mm) | 0.50 (0.25, 1.02) | 0.056 | 0.50 (0.24, 1.04) | 0.063 |
Cavitation in nodule(s) | 1.34 (0.35, 5.16) | 0.674 | 1.28 (0.31, 5.22) | 0.735 |
GG halo in nodule(s) | 0.28 (0.07, 1.06) | 0.062 | 0.30 (0.07, 1.33) | 0.114 |
Diffuse Interlobular septal thickening | 0.57 (0.22, 1.51) | 0.258 | 0.69 (0.27, 1.76) | 0.436 |
Pleural effusion | 1.04 (0.51, 2.12) | 0.916 | 1.04 (0.49, 2.22) | 0.911 |
Pericardial effusion | 3.57 (0.18, 70.48) | 0.403 | 3.32 (0.27, 41.28) | 0.351 |
Lymphadenopathy | 0.42 (0.11, 1.61) | 0.205 | 0.45 (0.13, 1.59) | 0.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agadakos, E.; Zormpala, A.; Zaios, N.; Kapsiocha, C.; Gamaletsou, M.N.; Voulgarelis, M.; Sipsas, N.V.; Moulopoulos, L.A.; Koutoulidis, V. The Use of Low-Dose Chest Computed Tomography for the Diagnosis and Monitoring of Pulmonary Infections in Patients with Hematologic Malignancies. Cancers 2024, 16, 186. https://doi.org/10.3390/cancers16010186
Agadakos E, Zormpala A, Zaios N, Kapsiocha C, Gamaletsou MN, Voulgarelis M, Sipsas NV, Moulopoulos LA, Koutoulidis V. The Use of Low-Dose Chest Computed Tomography for the Diagnosis and Monitoring of Pulmonary Infections in Patients with Hematologic Malignancies. Cancers. 2024; 16(1):186. https://doi.org/10.3390/cancers16010186
Chicago/Turabian StyleAgadakos, Efthimios, Alexandra Zormpala, Nikolaos Zaios, Chrysoula Kapsiocha, Maria N. Gamaletsou, Michael Voulgarelis, Nikolaos V. Sipsas, Lia Angela Moulopoulos, and Vassilis Koutoulidis. 2024. "The Use of Low-Dose Chest Computed Tomography for the Diagnosis and Monitoring of Pulmonary Infections in Patients with Hematologic Malignancies" Cancers 16, no. 1: 186. https://doi.org/10.3390/cancers16010186
APA StyleAgadakos, E., Zormpala, A., Zaios, N., Kapsiocha, C., Gamaletsou, M. N., Voulgarelis, M., Sipsas, N. V., Moulopoulos, L. A., & Koutoulidis, V. (2024). The Use of Low-Dose Chest Computed Tomography for the Diagnosis and Monitoring of Pulmonary Infections in Patients with Hematologic Malignancies. Cancers, 16(1), 186. https://doi.org/10.3390/cancers16010186