Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape
Abstract
:Simple Summary
Abstract
1. A Moving Target
2. Symptomatology and Presentation
3. Historical Failures: In Need of a New Paradigm
4. Promise from New Clinical Trials
5. Current Standard of Care
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tosi, U.; Souweidane, M. Fifty years of dipg: Looking at the future with hope. Childs Nerv. Syst. 2023, 39, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Kuzan-Fischer, C.M.; Souweidane, M.M. The intersect of neurosurgery with diffuse intrinsic pontine glioma. J. Neurosurg. Pediatr. 2019, 24, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Dmetrichuk, J.M.; Pendleton, C.; Jallo, G.I.; Quiñones-Hinojosa, A. Father of neurosurgery: Harvey cushing’s early experience with a pediatric brainstem glioma at the johns hopkins hospital. J. Neurosurg. Pediatr. 2011, 8, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Tosi, U.; Souweidane, M. Convection enhanced delivery for diffuse intrinsic pontine glioma: Review of a single institution experience. Pharmaceutics 2020, 12, 660. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, N.; Habib, A.; Head, J.; Hameed, F.; Agnihotri, S.; Zinn, P.O. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol. Adv. 2023, 5, vdad040. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.J. Diffuse intrinsic pontine glioma (dipg): Time to biopsy again? Pediatr. Blood Cancer 2012, 58, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Pollack, I.F.; Agnihotri, S.; Broniscer, A. Childhood brain tumors: Current management, biological insights, and future directions. J. Neurosurg. Pediatr. 2019, 23, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 2017, 32, 520–537.e5. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 who classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Argersinger, D.P.; Rivas, S.R.; Shah, A.H.; Jackson, S.; Heiss, J.D. New developments in the pathogenesis, therapeutic targeting, and treatment of h3k27m-mutant diffuse midline glioma. Cancers 2021, 13, 5280. [Google Scholar] [CrossRef] [PubMed]
- Damodharan, S.; Abbott, A.; Kellar, K.; Zhao, Q.; Dey, M. Molecular characterization and treatment approaches for pediatric h3 k27-altered diffuse midline glioma: Integrated systematic review of individual clinical trial participant data. Cancers 2023, 15, 3478. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.J.; Ji, S.; Picca, A.; Sanson, M.; Garcia, M.; Snuderl, M.; Schüller, U.; Picart, T.; Ducray, F.; Green, A.L.; et al. Clinical, genomic, and epigenomic analyses of h3k27m-mutant diffuse midline glioma long-term survivors reveal a distinct group of tumors with mapk pathway alterations. Acta Neuropathol. 2023, 146, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. Cbtrus statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011–2015. Neuro Oncol. 2018, 20, iv1–iv86. [Google Scholar] [CrossRef]
- Hoffman, L.M.; Veldhuijzen van Zanten, S.E.M.; Colditz, N.; Baugh, J.; Chaney, B.; Hoffmann, M.; Lane, A.; Fuller, C.; Miles, L.; Hawkins, C.; et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (dipg): A collaborative report from the international and european society for pediatric oncology dipg registries. J. Clin. Oncol. 2018, 36, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, C.; Zeng, X. Risk factors for early hydrocephalus on post unilateral thalamic tumor resection. Front. Surg. 2022, 9, 814308. [Google Scholar] [CrossRef] [PubMed]
- Koziarski, A.; Zieliński, G.; Podgórski, J.K.; Warczyńska, A. One stage removal of periaqueductal glioma in adult via infratentorial supracerebellar and transaqueductal approaches. Acta Neurochir 2004, 146, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Rojas, P.; Maeder, P.; Borruat, F.X. Teaching video neuroimages: Minimal anomalies of dorsal midbrain syndrome (parinaud syndrome). Neurology 2017, 88, e8. [Google Scholar] [CrossRef]
- Vallero, S.G.; Bertero, L.; Morana, G.; Sciortino, P.; Bertin, D.; Mussano, A.; Ricci, F.S.; Peretta, P.; Fagioli, F. Pediatric diffuse midline glioma h3k27-altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front. Oncol. 2022, 12, 1082062. [Google Scholar] [CrossRef]
- Lee, J.; Chen, M.M.; Liu, H.L.; Ucisik, F.E.; Wintermark, M.; Kumar, V.A. Mr perfusion imaging for gliomas. Magn. Reson. Imaging Clin. N. Am. 2024, 32, 73–83. [Google Scholar] [CrossRef]
- Thenuwara, G.; Curtin, J.; Tian, F. Advances in diagnostic tools and therapeutic approaches for gliomas: A comprehensive review. Sensors 2023, 23, 9842. [Google Scholar] [CrossRef] [PubMed]
- Dorfer, C.; Czech, T.; Gojo, J.; Hosmann, A.; Peyrl, A.; Azizi, A.A.; Kasprian, G.; Dieckmann, K.; Filbin, M.G.; Haberler, C.; et al. Infiltrative gliomas of the thalamus in children: The role of surgery in the era of h3 k27m mutant midline gliomas. Acta Neurochir. 2021, 163, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Kathrani, N.; Chauhan, R.S.; Kotwal, A.; Kulanthaivelu, K.; Bhat, M.D.; Saini, J.; Prasad, C.; Chakrabarti, D.; Santosh, V.; Uppar, A.M.; et al. Diffusion and perfusion imaging biomarkers of h3 k27m mutation status in diffuse midline gliomas. Neuroradiology 2022, 64, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Lazow, M.A.; Fuller, C.; DeWire, M.; Lane, A.; Bandopadhayay, P.; Bartels, U.; Bouffet, E.; Cheng, S.; Cohen, K.J.; Cooney, T.M.; et al. Accuracy of central neuro-imaging review of dipg compared with histopathology in the international dipg registry. Neuro Oncol. 2022, 24, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhang, M.; Xiao, X.; Kong, L.; Wu, Y.; Zhao, X.; Sun, T.; Zhang, P.; Geng, Y.; Zuo, P.; et al. A multimodal imaging-based classification for pediatric diffuse intrinsic pontine gliomas. Neurosurg. Rev. 2023, 46, 151. [Google Scholar] [CrossRef] [PubMed]
- Harward, S.; Harrison Farber, S.; Malinzak, M.; Becher, O.; Thompson, E.M. T2-weighted images are superior to other mr image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity. Childs Nerv. Syst. 2018, 34, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, F.; Nishibuchi, I.; Karakawa, S.; Kaichi, Y.; Kolakshyapati, M.; Takano, M.; Yonezawa, U.; Imano, N.; Taguchi, A.; Shimomura, M.; et al. T2-flair mismatch sign and response to radiotherapy in diffuse intrinsic pontine glioma. Pediatr. Neurosurg. 2021, 56, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Zhou, M.; Du, J.; Zeng, G. Pediatric spinal cord diffuse midline glioma with h3 k27m-alteration with leptomeningeal dissemination: A rare case with intracranial hypertension onset and no spinal cord-related symptom. Childs Nerv. Syst. 2023, 39, 1663–1666. [Google Scholar] [CrossRef]
- Saluja, S.; Razzaq, B.; Servider, J.A.; Seidman, R.; Mushlin, H. Diffuse midline glioma, h3k27-altered, of the conus medullaris presenting as acute urinary retention: Illustrative case. J. Neurosurg. Case Lessons 2023, 5, CASE22529. [Google Scholar] [CrossRef]
- Sultana, N.; Jabeen, S.; Rima, S.; Nag, U.K.; Sarkar, S.K. Magnetic resonance imaging evaluation of common spinal intramedullary tumours: Ependymoma and astrocytoma. Mymensingh Med. J. 2023, 32, 749–756. [Google Scholar]
- Cheng, R.; Li, D.P.; Zhang, N.; Zhang, J.Y.; Zhang, D.; Liu, T.T.; Yang, J.; Ge, M. Spinal cord diffuse midline glioma with histone h3 k27m mutation in a pediatric patient. Front. Surg. 2021, 8, 616334. [Google Scholar] [CrossRef] [PubMed]
- Daoud, E.V.; Rajaram, V.; Cai, C.; Oberle, R.J.; Martin, G.R.; Raisanen, J.M.; White, C.L., 3rd; Foong, C.; Mickey, B.E.; Pan, E.; et al. Adult brainstem gliomas with h3k27m mutation: Radiology, pathology, and prognosis. J. Neuropathol. Exp. Neurol. 2018, 77, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Bray, P.F.; Carter, S.; Taveras, J.M. Brainstem tumors in children. Neurology 1958, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Albright, A.L.; Price, R.A.; Guthkelch, A.N. Brain stem gliomas of children. A clinicopathological study. Cancer 1983, 52, 2313–2319. [Google Scholar] [CrossRef] [PubMed]
- Barkovich, A.J.; Krischer, J.; Kun, L.E.; Packer, R.; Zimmerman, R.A.; Freeman, C.R.; Wara, W.M.; Albright, L.; Allen, J.C.; Hoffman, H.J. Brain stem gliomas: A classification system based on magnetic resonance imaging. Pediatr. Neurosurg. 1990, 16, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, S.S.; Laningham, F.; Fisher, P.G. Advances toward an understanding of brainstem gliomas. J. Clin. Oncol. 2006, 24, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.G.; Breiter, S.N.; Carson, B.S.; Wharam, M.D.; Williams, J.A.; Weingart, J.D.; Foer, D.R.; Goldthwaite, P.T.; Tihan, T.; Burger, P.C. A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 2000, 89, 1569–1576. [Google Scholar] [CrossRef]
- Khatib, Z.A.; Heideman, R.L.; Kovnar, E.H.; Langston, J.A.; Sanford, R.A.; Douglas, E.C.; Ochs, J.; Jenkins, J.J.; Fairclough, D.L.; Greenwald, C.; et al. Predominance of pilocytic histology in dorsally exophytic brain stem tumors. Pediatr. Neurosurg. 1994, 20, 2–10. [Google Scholar] [CrossRef]
- Raybaud, C.; Ramaswamy, V.; Taylor, M.D.; Laughlin, S. Posterior fossa tumors in children: Developmental anatomy and diagnostic imaging. Childs Nerv. Syst. 2015, 31, 1661–1676. [Google Scholar] [CrossRef]
- Toader, C.; Eva, L.; Costea, D.; Corlatescu, A.D.; Covache-Busuioc, R.A.; Bratu, B.G.; Glavan, L.A.; Costin, H.P.; Popa, A.A.; Ciurea, A.V. Low-grade gliomas: Histological subtypes, molecular mechanisms, and treatment strategies. Brain Sci. 2023, 13, 1700. [Google Scholar] [CrossRef]
- Bauman, M.M.J.; Bhandarkar, A.R.; Zheng, C.R.; Riviere-Cazaux, C.; Beeler, C.J.; Naylor, R.M.; Daniels, D.J. Management strategies for pediatric patients with tectal gliomas: A systematic review. Neurosurg. Rev. 2022, 45, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Bauman, M.M.J.; Giesken, M.B.; Naylor, R.M.; Keating, G.F.; Schwartz, J.D.; Daniels, D.J. Predicting disease progression and the need for tumor-directed treatment in tectal plate gliomas. J. Neurosurg. Pediatr. 2023, 32, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wolfson, D.; LoPresti, M.A.; Poland, E.; Lam, S.; DeCuypere, M. Endoscopic third ventriculostomy and biopsy of a tectal lesion using flexible neuroendoscopy and urological cup forceps: Illustrative case. J. Neurosurg. Case Lessons 2023, 5, CASE22517. [Google Scholar] [CrossRef] [PubMed]
- Albright, A.L.; Packer, R.J.; Zimmerman, R.; Rorke, L.B.; Boyett, J.; Hammond, G.D. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: A report from the children’s cancer group. Neurosurgery 1993, 33, 1026–1029; discussion 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, D.; Bartels, U.; Bouffet, E. Diffuse brainstem glioma in children: Critical review of clinical trials. Lancet Oncol. 2006, 7, 241–248. [Google Scholar] [CrossRef]
- Freeman, C.R.; Perilongo, G. Chemotherapy for brain stem gliomas. Childs Nerv. Syst. 1999, 15, 545–553. [Google Scholar] [CrossRef]
- Grill, J.; Puget, S.; Andreiuolo, F.; Philippe, C.; MacConaill, L.; Kieran, M.W. Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatr. Blood Cancer 2012, 58, 489–491. [Google Scholar] [CrossRef]
- Di Ruscio, V.; Del Baldo, G.; Fabozzi, F.; Vinci, M.; Cacchione, A.; de Billy, E.; Megaro, G.; Carai, A.; Mastronuzzi, A. Pediatric diffuse midline gliomas: An unfinished puzzle. Diagnostics 2022, 12, 2064. [Google Scholar] [CrossRef]
- Rechberger, J.S.; Lu, V.M.; Zhang, L.; Power, E.A.; Daniels, D.J. Clinical trials for diffuse intrinsic pontine glioma: The current state of affairs. Childs Nerv. Syst. 2020, 36, 39–46. [Google Scholar] [CrossRef]
- Souweidane, M.M. Editorial: Convection-enhanced delivery for diffuse intrinsic pontine glioma. J. Neurosurg. Pediatr. 2014, 13, 273–274. [Google Scholar] [CrossRef]
- Bobo, R.H.; Laske, D.W.; Akbasak, A.; Morrison, P.F.; Dedrick, R.L.; Oldfield, E.H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Lonser, R.R.; Morrison, P.F.; Governale, L.S.; Oldfield, E.H. Variables affecting convection-enhanced delivery to the striatum: A systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg. 1999, 90, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.M.; Laske, D.W.; Morrison, P.F.; Bankiewicz, K.S.; Oldfield, E.H. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 1995, 82, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Kennedy, B.; Yanes, C.L.; Garvin, J.; Needle, M.; Canoll, P.; Feldstein, N.A.; Bruce, J.N. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J. Neurosurg. Pediatr. 2013, 11, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Heiss, J.D.; Jamshidi, A.; Shah, S.; Martin, S.; Wolters, P.L.; Argersinger, D.P.; Warren, K.E.; Lonser, R.R. Phase i trial of convection-enhanced delivery of il13-pseudomonas toxin in children with diffuse intrinsic pontine glioma. J. Neurosurg. Pediatr. 2018, 23, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Szychot, E.; Walker, D.; Collins, P.; Hyare, H.; Shankar, A.; Bienemann, A.; Hollingworth, M.; Gill, S. Clinical experience of convection-enhanced delivery (ced) of carboplatin and sodium valproate into the pons for the treatment of diffuse intrinsic pontine glioma (dipg) in children and young adults after radiotherapy. Int. J. Clin. Oncol. 2021, 26, 647–658. [Google Scholar] [CrossRef]
- Maachani, U.B.; Tosi, U.; Pisapia, D.J.; Mukherjee, S.; Marnell, C.S.; Voronina, J.; Martinez, D.; Santi, M.; Dahmane, N.; Zhou, Z.; et al. B7-h3 as a prognostic biomarker and therapeutic target in pediatric central nervous system tumors. Transl. Oncol. 2020, 13, 365–371. [Google Scholar] [CrossRef]
- Zhou, Z.; Singh, R.; Souweidane, M.M. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr. Neuropharmacol. 2017, 15, 116–128. [Google Scholar] [CrossRef]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Mueller, S.; Kline, C.; Stoller, S.; Lundy, S.; Christopher, L.; Reddy, A.T.; Banerjee, A.; Cooney, T.M.; Raber, S.; Hoffman, C.; et al. Pnoc015: Repeated convection enhanced delivery (ced) of mtx110 (aqueous panobinostat) in children with newly diagnosed diffuse intrinsic pontine glioma (dipg). Neuro Oncol. 2023, 25, 2074–2086. [Google Scholar] [CrossRef]
- Krishna, V.; Fishman, P.S.; Eisenberg, H.M.; Kaplitt, M.; Baltuch, G.; Chang, J.W.; Chang, W.C.; Martinez Fernandez, R.; Del Alamo, M.; Halpern, C.H.; et al. Trial of globus pallidus focused ultrasound ablation in parkinson’s disease. N. Engl. J. Med. 2023, 388, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Levi Chazen, J.; Stradford, T.; Kaplitt, M.G. Cranial mr-guided focused ultrasound for essential tremor: Technical considerations and image guidance. Clin. Neuroradiol. 2019, 29, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Rezai, A.R.; Ranjan, M.; D’Haese, P.F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; et al. Noninvasive hippocampal blood-brain barrier opening in alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci. USA 2020, 117, 9180–9182. [Google Scholar] [CrossRef] [PubMed]
- McCrea, H.J.; Ivanidze, J.; O’Connor, A.; Hersh, E.H.; Boockvar, J.A.; Gobin, Y.P.; Knopman, J.; Greenfield, J.P. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: Results of a phase i trial. J. Neurosurg. Pediatr. 2021, 28, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Guida, L.; Beccaria, K.; Benichi, S.; Kossorotof, M.; Naggara, O.; Bourgeois, M.; Bourdeaut, F.; Abbou, S.; Dangouloff-Ros, V.; Boddaert, N.; et al. Laser interstitial thermal therapy is effective and safe for the treatment of brain tumors in nf1 patients after cerebral revascularization for moyamoya angiopathy: A report on two cases. Front. Neurol. 2023, 14, 1291207. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.S.; Chang, J.W. Focused ultrasound treatment for central nervous system disease: Neurosurgeon’s perspectives. Biomed. Eng. Lett. 2017, 7, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Crake, C.; Papademetriou, I.T.; Zhang, Y.; Vykhodtseva, N.; McDannold, N.J.; Porter, T.M. Simultaneous passive acoustic mapping and magnetic resonance thermometry for monitoring of cavitation-enhanced tumor ablation in rabbits using focused ultrasound and phase-shift nanoemulsions. Ultrasound Med. Biol. 2018, 44, 2609–2624. [Google Scholar] [CrossRef]
- Stavarache, M.A.; Chazen, J.L.; Kaplitt, M.G. Innovative applications of mr-guided focused ultrasound for neurological disorders. World Neurosurg. 2021, 145, 581–589. [Google Scholar] [CrossRef]
- Wang, T.R.; Dallapiazza, R.; Elias, W.J. Neurological applications of transcranial high intensity focused ultrasound. Int. J. Hyperth. 2015, 31, 285–291. [Google Scholar] [CrossRef]
- Lang, F.F.; Conrad, C.; Gomez-Manzano, C.; Yung, W.K.A.; Sawaya, R.; Weinberg, J.S.; Prabhu, S.S.; Rao, G.; Fuller, G.N.; Aldape, K.D.; et al. Phase i study of dnx-2401 (delta-24-rgd) oncolytic adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 2018, 36, 1419–1427. [Google Scholar] [CrossRef]
- Martínez-Vélez, N.; Garcia-Moure, M.; Marigil, M.; González-Huarriz, M.; Puigdelloses, M.; Gallego Pérez-Larraya, J.; Zalacaín, M.; Marrodán, L.; Varela-Guruceaga, M.; Laspidea, V.; et al. The oncolytic virus delta-24-rgd elicits an antitumor effect in pediatric glioma and dipg mouse models. Nat. Commun. 2019, 10, 2235. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Velez, N.; Marigil, M.; García-Moure, M.; Gonzalez-Huarriz, M.; Aristu, J.J.; Ramos-García, L.I.; Tejada, S.; Díez-Valle, R.; Patiño-García, A.; Becher, O.J.; et al. Delta-24-rgd combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathol. Commun. 2019, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Gállego Pérez-Larraya, J.; Garcia-Moure, M.; Labiano, S.; Patiño-García, A.; Dobbs, J.; Gonzalez-Huarriz, M.; Zalacain, M.; Marrodan, L.; Martinez-Velez, N.; Puigdelloses, M.; et al. Oncolytic dnx-2401 virus for pediatric diffuse intrinsic pontine glioma. N. Engl. J. Med. 2022, 386, 2471–2481. [Google Scholar] [CrossRef]
- Johnson, G.A.; Locke, F.L. Mechanisms of resistance to chimeric antigen receptor t cell therapy. Hematol. Oncol. Clin. N. Am. 2023, 37, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Long, A.H.; Haso, W.M.; Shern, J.F.; Wanhainen, K.M.; Murgai, M.; Ingaramo, M.; Smith, J.P.; Walker, A.J.; Kohler, M.E.; Venkateshwara, V.R.; et al. 4-1bb costimulation ameliorates t cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 2015, 21, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Mount, C.W.; Majzner, R.G.; Sundaresh, S.; Arnold, E.P.; Kadapakkam, M.; Haile, S.; Labanieh, L.; Hulleman, E.; Woo, P.J.; Rietberg, S.P.; et al. Potent antitumor efficacy of anti-gd2 car t cells in h3-k27m(+) diffuse midline gliomas. Nat. Med. 2018, 24, 572–579. [Google Scholar] [CrossRef]
- Majzner, R.G.; Ramakrishna, S.; Yeom, K.W.; Patel, S.; Chinnasamy, H.; Schultz, L.M.; Richards, R.M.; Jiang, L.; Barsan, V.; Mancusi, R.; et al. Gd2-car t cell therapy for h3k27m-mutated diffuse midline gliomas. Nature 2022, 603, 934–941. [Google Scholar] [CrossRef]
- Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 2015, 21, 827. [Google Scholar] [CrossRef]
- Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S.; et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med. 2019, 11, eaaw0064. [Google Scholar] [CrossRef]
- Vitanza, N.A.; Biery, M.C.; Myers, C.; Ferguson, E.; Zheng, Y.; Girard, E.J.; Przystal, J.M.; Park, G.; Noll, A.; Pakiam, F.; et al. Optimal therapeutic targeting by hdac inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro Oncol. 2021, 23, 376–386. [Google Scholar] [CrossRef]
- Monje, M.; Cooney, T.; Glod, J.; Huang, J.; Peer, C.J.; Faury, D.; Baxter, P.; Kramer, K.; Lenzen, A.; Robison, N.J.; et al. A phase i trial of panobinostat in children with diffuse intrinsic pontine glioma: A report from the pediatric brain tumor consortium (pbtc-047). Neuro Oncol. 2023, 25, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Shah, R.H.; Pentsova, E.I.; Pourmaleki, M.; Briggs, S.; Distefano, N.; Zheng, Y.; Skakodub, A.; Mehta, S.A.; Campos, C.; et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 2019, 565, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Szalontay, L.; Bouvier, N.; Hill, K.; Ahmad, H.; Rafailov, J.; Lee, A.J.; Rodriguez-Sanchez, M.I.; Yildirim, O.; Patel, A.; et al. Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent and young adult brain tumor patients. Neuro Oncol. 2022, 24, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Zill, O.A.; Banks, K.C.; Fairclough, S.R.; Mortimer, S.A.; Vowles, J.V.; Mokhtari, R.; Gandara, D.R.; Mack, P.C.; Odegaard, J.I.; Nagy, R.J.; et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin. Cancer Res. 2018, 24, 3528–3538. [Google Scholar] [CrossRef]
- Azad, T.D.; Jin, M.C.; Bernhardt, L.J.; Bettegowda, C. Liquid biopsy for pediatric diffuse midline glioma: A review of circulating tumor DNA and cerebrospinal fluid tumor DNA. Neurosurg. Focus 2020, 48, E9. [Google Scholar] [CrossRef]
- Bounajem, M.T.; Karsy, M.; Jensen, R.L. Liquid biopsies for the diagnosis and surveillance of primary pediatric central nervous system tumors: A review for practicing neurosurgeons. Neurosurg. Focus 2020, 48, E8. [Google Scholar] [CrossRef]
- Lu, V.M.; Power, E.A.; Zhang, L.; Daniels, D.J. Liquid biopsy for diffuse intrinsic pontine glioma: An update. J. Neurosurg. Pediatr. 2019, 24, 593–600. [Google Scholar] [CrossRef]
- Huang, T.Y.; Piunti, A.; Lulla, R.R.; Qi, J.; Horbinski, C.M.; Tomita, T.; James, C.D.; Shilatifard, A.; Saratsis, A.M. Detection of histone h3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol. Commun. 2017, 5, 28. [Google Scholar] [CrossRef]
- Khalili, N.; Shooli, H.; Hosseini, N.; Fathi Kazerooni, A.; Familiar, A.; Bagheri, S.; Anderson, H.; Bagley, S.J.; Nabavizadeh, A. Adding value to liquid biopsy for brain tumors: The role of imaging. Cancers 2023, 15, 5198. [Google Scholar] [CrossRef]
- Patel, J.; Aittaleb, R.; Doherty, R.; Gera, A.; Lau, B.; Messinger, D.; Wadden, J.; Franson, A.; Saratsis, A.; Koschmann, C. Liquid biopsy in h3k27m diffuse midline glioma. Neuro Oncol. 2023, noad229. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosi, U.; Souweidane, M. Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape. Cancers 2024, 16, 219. https://doi.org/10.3390/cancers16010219
Tosi U, Souweidane M. Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape. Cancers. 2024; 16(1):219. https://doi.org/10.3390/cancers16010219
Chicago/Turabian StyleTosi, Umberto, and Mark Souweidane. 2024. "Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape" Cancers 16, no. 1: 219. https://doi.org/10.3390/cancers16010219
APA StyleTosi, U., & Souweidane, M. (2024). Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape. Cancers, 16(1), 219. https://doi.org/10.3390/cancers16010219