New N-Adducts of Thiadiazole and Thiazoline with Levoglucosenone and Evaluation of Their Significant Cytotoxic (Anti-Cancer) Activity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of FCP23 and FCP 26
2.2. Analysis of Biological Properties
2.2.1. Cell Lines
2.2.2. Biological Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabius, H.J.; Roth, J. An introduction to the sugar code. Histochem. Cell Biol. 2017, 147, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Witczak, Z.J.; Poplawski, T.; Czubatka, A.; Sarnik, J.; Tokarz, P.; VanWert, A.L.; Bielski, R. A potential CARB-pharmacophore for antineoplastic activity: Part 1. Bioorg. Med. Chem. Lett. 2014, 24, 1752–1757. [Google Scholar] [CrossRef] [PubMed]
- Witczak, Z.J.; Sarnik, J.; Czubatka, A.; Forma, E.; Poplawski, T. Thio-sugar motif of functional CARB-pharmacophore for antineoplastic activity. Part 2. Bioorg. Med. Chem. Lett. 2014, 24, 5606–5611. [Google Scholar] [CrossRef] [PubMed]
- Korycka-Machała, M.; Brzostek, A.; Dziadek, B.; Kawka, M.; Poplawski, T.; Witczak, Z.J.; Dziadek, J. Evaluation of the Mycobactericidal Effect of Thio-functionalized Carbohydrate Derivatives. Molecules 2017, 22, 812. [Google Scholar] [CrossRef] [PubMed]
- Sarnik, J.; Czubatka-Bienkowska, A.; Macieja, A.; Bielski, R.; Witczak, Z.J.; Poplawski, T. The induction of oxidative stress in cervix carcinoma cells by levoglucosenone derived 4-S-salicyl derivative and (1-4)-S-thio-disaccharides. Part 4. Bioorg. Med. Chem. Lett. 2017, 27, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Sarnik, J.; Gajek, A.; Toma, M.; Pawelczyk, J.; Rykowski, S.; Olejniczak, A.; Śliwiński, T.; Bielski, R.; Witczak, Z.J.; Poplawski, T. (1-4) -Thiodisaccharides as anticancer agents. Part 5. Evaluation of anticancer activity and investigation of mechanism of action. Bioorg. Med. Chem. Lett. 2020, 30, 126904. [Google Scholar] [CrossRef] [PubMed]
- Giri, F.G.; Danielli, M.; Marinelli, R.A.; Spanevello, R.A. Cytotoxic effect of levoglucosenone and related derivatives against human hepatocarcinoma cell lines. Bioorg. Med. Chem. Lett. 2016, 26, 3955–3957. [Google Scholar] [CrossRef]
- Westman, J.; Wiman, K.; Mohell, N. Levoglucosenone Derivatives for the Treatment of Disorders Such as Cancer, Autoimmune Diseases and Heart Diseases. PCT Application WO/2007/139,497, 6 December 2007. [Google Scholar]
- Witczak, Z.J.; Mauger, A.; Bielski, R.; Mencer, D.E. Thioglycomimetics with enhanced lipophilicity and their biological activity. ARKIVOC 2021, iv, 268–279. [Google Scholar] [CrossRef]
- Kim, S.-W.; Ledingham, E.T.; Kudo, S.; Greatrex, B.W.; Sperry, J. Bio-Based Chiral Amines via Aza-Michael Additions to (–) -Levoglucosenone Under Aqueous Conditions. Eur. J. Org. Chem. 2018, 17, 2028–2038. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 4–25. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Meanwell, N.A. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design . J. Med. Chem. 2021, 64, 9786–9874. [Google Scholar] [CrossRef] [PubMed]
- Kassem, A.F.; Nassar, I.F.; Abdel-Aal, M.T.; Awad, H.M.; El-Sayed, W.A. Synthesis and Anticancer Activity of New ((Furan-2-yl)-1,3,4-thiadiazolyl)-1,3,4-oxadiazole Acyclic Sugar Derivatives. Chem. Pharm. Bull. 2019, 67, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M.; Edrees, M.M.; Muhammad, Z.A.; El-Reedy, A.A. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents. Drug Des. Dev. Ther. 2018, 12, 511–1523. [Google Scholar] [CrossRef] [PubMed]
- Altntop, M.D.; Kaplancıklı, Z.A.; Ciftçi, G.A.; Demirel, R. Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014, 74, 264–277. [Google Scholar] [CrossRef]
- Abdel-Maksoud, M.S.; El-Gamal, M.I.; Lee, B.S.; Gamal El-Din, M.M.; Jeon, H.R.; Kwon, D.; Ammar, U.M.; Mersal, K.I.; Ali, E.M.; Lee, K.T.; et al. Discovery of New Imidazo[2,1-b] thiazole Derivatives as Potent Pan-RAF Inhibitors with Promising In Vitro and In Vivo Anti-melanoma Activity. J. Med. Chem. 2021, 64, 6877–6901. [Google Scholar] [CrossRef]
- Czubatka-Bieńkowska, A.; Sarnik, J.; Macieja, A.; Galita, G.; Witczak, Z.J.; Poplawski, T. Thio-functionalized carbohydrate thiosemicarbazones and evaluation of their anticancer activity. Bioorg. Med. Chem. Lett. 2017, 27, 2713–2720. [Google Scholar] [CrossRef]
- Smith, C.C.; O’Donovan, M.R.; Martin, E.A. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 2006, 21, 185–190. [Google Scholar] [CrossRef]
- Yun, Y.; Hong, S.V.; Jeong, S.; Choo, H.; Kim, S.; Lee, J. 2-Thioxothiazolidin-4-one Analogs as Pan-PIM Kinase Inhibitors. Chem. Pharm. Bull. 2021, 69, 854–861. [Google Scholar] [CrossRef]
- Serban, G. 2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. Acta Pharm. 2020, 70, 259–290. [Google Scholar] [CrossRef]
- Ozbek, O.; Gurdere, M.B. Synthesis and anticancer properties of 2-aminothiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 444–454. [Google Scholar] [CrossRef]
- Li, Y.; Geng, J.; Liu, S.Y.; Yu, S.Y.; Zhao, G. Thiadiazole—A promising structure in medicinal chemistry. ChemMedChem 2013, 8, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Altıntop, M.D.; Sever, B.; ÇiftçI, G.A.; Özdemir, A. Design, Synthesis, and Evaluation of a New Series of Thiazole-Based Anticancer Agents as Potent Akt Inhibitors. Molecules 2018, 23, 1318. [Google Scholar] [CrossRef] [PubMed]
- Gaumont, A.C.; Gulea, M.; Levillain, J. Overview of the chemistry of 2-thiazolines. Chem. Rev. 2009, 109, 1371–1401. [Google Scholar] [CrossRef] [PubMed]
- Al-Saadi, M.S.; Faidallah, H.M.; Rostom, A.F. Synthesis and biological evaluation of some 2,4,5-trisubstituted thiazole derivatives as potential antimicrobial and anticancer agents. Arch. Pharm. Chem. Life Sci. 2008, 341, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Sbenati, R.M.; Semreen, A.M.; Semreen, A.M.; Shehata, M.K.; Alsaghir, F.M.; El-Gamal, M.I. Evaluation of imidazo[2,1–b] thiazole-based anticancer agents in one decade (2011–2020): Current status and future prospects. Bioorg. Med. Chem. 2021, 29, 115897. [Google Scholar] [CrossRef] [PubMed]
- Han, F.S.; Osajima, H.; Cheung, M.; Tokuyama, H.; Fukuyama, T. Novel structural motifs consisting of chiral thiazolines: Synthesis, molecular recognition and anticancer activity. Chem. Eur. J. 2007, 13, 3026–3038. [Google Scholar] [CrossRef] [PubMed]
- Sobhi, M.G.; Abdou, A.O.; Kandil, O.M.; Kandeel, S.M.; Abdelrehem, N.A. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini Rev. Med. Chem. 2018, 18, 1670–1682. [Google Scholar]
- Sroor, F.M.; Abdelmoniem, A.M.; Abdelhamid, I.A. Facile Synthesis, Structural Activity Relationship, Molecular Modeling and In Vitro Biological Evaluation of New Urea Derivatives with Incorporated Isoxazole and Thiazole Moieties as Anticancer Agents. ChemistrySelect 2019, 4, 10113–10121. [Google Scholar] [CrossRef]
- Mahani, N.M.; Sabermahani, F.; Mohammadzadeh, J.P.; Jalali, N. A Density Function Theory Based Quantitative Structure Activity Relationships Study of Thiazoline Derivatives as Anticancer Agents. Iran. J. Anal. Chem. 2015, 2, 70–76. [Google Scholar]
- Szychowski, K.A.; Leja, M.L.; Kaminskyy, D.V.; Binduga, U.E.; Pinyazhko, O.R.; Lesyk, R.B.; Gmiński, J. Study of Novel anticancer 4-thiazolidinone derivatives. Chem. -Biol. Interact. 2017, 262, 46–56. [Google Scholar] [CrossRef]
- Skóra, B.; Lewinska, A.; Kryshchyshyn-Dylevych, A.; Kaminskyy, D.V.; Lesyk, R.B.; Szychowski, K.A. Evaluation of Anticancer and Antibacterial Activity of Four 4-Thiazolidinone-Based Derivatives. Molecules 2022, 27, 894. [Google Scholar] [CrossRef] [PubMed]
- Mabkhot, Y.N.; Algarni, H.; Alsayari, A.; Muhsinah, A.B.; Kheder, N.A.; Almarhoon, Z.M.; Al-aizari, F.A. Synthesis, X-ray analysis, biological evaluation and Molecular docking study of new thiazoline derivatives. Molecules 2019, 24, 1654. [Google Scholar] [CrossRef] [PubMed]
- Halasi, M.; Zhao, H.; Dahari, H.; Bhat, U.G.; Gonzalez, E.B.; Lyubimo, A.V.; Tonetti, D.A.; Gartel, A.L. Thiazole antibiotics against breast cancer. Cell Cycle 2010, 9, 1214–1217. [Google Scholar]
- Mauger, A.; Witczak, Z.J.; Bielski, R.; Mencer, D.E. Synthesis of New N-Michael adducts of heterocyclic bioisosters scaffolds to Levoglucosenone. In Proceedings of the ACS National Meeting, Indianapolis, IN, USA, 26–30 March 2023; p. 3817065. [Google Scholar]
Compound | ||
---|---|---|
milLogP | −0.93 | 0.22 |
TPSA | 79.39 | 38.78 |
n-Atoms | 16 | 15 |
MW | 259.31 | 245.32 |
n-ON | 6 | 4 |
n-OHNH | 2 | 0 |
n-violations | 0 | 0 |
n-Rotb | 1 | 1 |
Vol. (A) | 194.47 | 193.53 |
Cell Line | A2780 | MCF-7 | HeLa | LoVo | MO59J | MO59K |
---|---|---|---|---|---|---|
FCP23 | 50.2 ± 4.8 | 89.4 ± 7.6 | 73.5 ± 6.8 | 58.2 ± 8.1 | 48.2 ± 4.7 | 44.6 ± 3.9 |
FCP26 | 47.8 ± 5.1 | 61.7 ± 8.4 | 49.8 ± 4.9 | 52.6 ± 9.8 | 148.1 ± 10.2 | 98.7 ± 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poplawski, T.; Galita, G.; Sarnik, J.; Macieja, A.; Bielski, R.; Mencer, D.E.; Witczak, Z.J. New N-Adducts of Thiadiazole and Thiazoline with Levoglucosenone and Evaluation of Their Significant Cytotoxic (Anti-Cancer) Activity. Cancers 2024, 16, 216. https://doi.org/10.3390/cancers16010216
Poplawski T, Galita G, Sarnik J, Macieja A, Bielski R, Mencer DE, Witczak ZJ. New N-Adducts of Thiadiazole and Thiazoline with Levoglucosenone and Evaluation of Their Significant Cytotoxic (Anti-Cancer) Activity. Cancers. 2024; 16(1):216. https://doi.org/10.3390/cancers16010216
Chicago/Turabian StylePoplawski, Tomasz, Grzegorz Galita, Joanna Sarnik, Anna Macieja, Roman Bielski, Donald E. Mencer, and Zbigniew J. Witczak. 2024. "New N-Adducts of Thiadiazole and Thiazoline with Levoglucosenone and Evaluation of Their Significant Cytotoxic (Anti-Cancer) Activity" Cancers 16, no. 1: 216. https://doi.org/10.3390/cancers16010216
APA StylePoplawski, T., Galita, G., Sarnik, J., Macieja, A., Bielski, R., Mencer, D. E., & Witczak, Z. J. (2024). New N-Adducts of Thiadiazole and Thiazoline with Levoglucosenone and Evaluation of Their Significant Cytotoxic (Anti-Cancer) Activity. Cancers, 16(1), 216. https://doi.org/10.3390/cancers16010216