Mutations in Mismatch Repair Genes and Microsatellite Instability Status in Pancreatic Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. DNA Isolation
2.3. Library Preparation and Sequencing
2.4. Bioinformatics Analysis and Variant Characterization
2.5. MSI Analysis
3. Results
3.1. Patient Characteristics
3.2. Sequencing
3.3. MSI Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orth, M.; Metzger, P.; Gerum, S.; Mayerle, J.; Schneider, G.; Belka, C.; Schnurr, M.; Lauber, K. Pancreatic Ductal Adenocarcinoma: Biological Hallmarks, Current Status, and Future Perspectives of Combined Modality Treatment Approaches. Radiat. Oncol. 2019, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Sa Cuhna, A.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Brousse, P. Cancer of the Pancreas: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. ESMO Updat. Clin. Pract. Guidel. 2015, 26, v56–v68. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Bachet, J.B.; Ayav, A.; Huguet, F.; Lambert, A.; Caramella, C.; Maréchal, R.; Van Laethem, J.L.; Ducreux, M. Current Standards and New Innovative Approaches for Treatment of Pancreatic Cancer. Eur. J. Cancer 2016, 57, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z. The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Dobosz, P.; Dzieciątkowski, T. The Intriguing History of Cancer Immunotherapy. Front. Immunol. 2019, 10, 2965. [Google Scholar] [CrossRef] [PubMed]
- Lee Ventola, C. Cancer Immunotherapy, Part 1: Current Strategies and Agents. Pharm. Ther. 2017, 42, 375–383. [Google Scholar]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 Trial of Single Agent Ipilimumab (Anti-CTLA-4) for Locally Advanced or Metastatic Pancreatic Adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A.; Mandelker, D.; Yu, K.H.; et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A.; et al. Mutation in the DNA Mismatch Repair Gene Homologue hMLH 1 Is Associated with Hereditary Non-Polyposis Colon Cancer. Nature 1994, 368, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Fishel, R.; Lescoe, M.K.; Rao, M.R.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The Human Mutator Gene Homolog MSH2 and Its Association with Hereditary Nonpolyposis Colon Cancer. Cell 1993, 75, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, M.; Konishi, M.; Tanaka, K.; Kikuchi-Yanoshita, R.; Muraoka, M.; Yasuno, M.; Igari, T.; Koike, M.; Chiba, M.; Mori, T. Germline Mutation of MSH6 as the Cause of Hereditary Nonpolyposis Colorectal Cancer. Nat. Genet. 1997, 17, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Wei, Y.F.; Carter, K.C.; Ruben, S.M.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M. Mutations of Two PMS Homologues in Hereditary Nonpolyposis Colon Cancer. Nature 1994, 371, 75–80. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Vakiani, E.; Shia, J. Detecting Mismatch Repair Deficiency in Solid Neoplasms: Immunohistochemistry, Microsatellite Instability, or Both? Mod. Pathol. 2022, 35, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Baretti, M.; Le, D.T. DNA Mismatch Repair in Cancer. Pharmacol. Ther. 2018, 189, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Poulogiannis, G.; Frayling, I.M.; Arends, M.J. DNA Mismatch Repair Deficiency in Sporadic Colorectal Cancer and Lynch Syndrome. Histopathology 2010, 56, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Laghi, L.; Beghelli, S.; Spinelli, A.; Bianchi, P.; Basso, G.; Di Caro, G.; Brecht, A.; Celesti, G.; Turri, G.; Bersani, S.; et al. Irrelevance of Microsatellite Instability in the Epidemiology of Sporadic Pancreatic Ductal Adenocarcinoma. PLoS ONE 2012, 7, e46002. [Google Scholar] [CrossRef]
- Niu, B.; Ye, K.; Zhang, Q.; Lu, C.; Xie, M.; McLellan, M.D.; Wendl, M.C.; Ding, L. MSIsensor: Microsatellite Instability Detection Using Paired Tumor-Normal Sequence Data. Bioinformatics 2014, 30, 1015–1016. [Google Scholar] [CrossRef]
- Vanderwalde, A.; Spetzler, D.; Xiao, N.; Gatalica, Z.; Marshall, J. Microsatellite Instability Status Determined by Next-Generation Sequencing and Compared with PD-L1 and Tumor Mutational Burden in 11,348 Patients. Cancer Med. 2018, 7, 746–756. [Google Scholar] [CrossRef]
- Ahmad-Nielsen, S.A.; Bruun Nielsen, M.F.; Mortensen, M.B.; Detlefsen, S. Frequency of Mismatch Repair Deficiency in Pancreatic Ductal Adenocarcinoma. Pathol. Res. Pract. 2020, 216, 152985. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-L.; Chen, J.-Y.; Hu, J.; Chen, Q.; Yu, L.-X.; Liu, B.-R.; Qian, X.-P.; Yang, M. Comparison of Microsatellite Status Detection Methods in Colorectal Carcinoma. Int. J. Clin. Exp. Pathol. 2018, 11, 1431. [Google Scholar] [PubMed]
- Bartley, A.N.; Luthra, R.; Saraiya, D.S.; Urbauer, D.L.; Broaddus, R.R. Identification of Cancer Patients with Lynch Syndrome: Clinically Significant Discordances and Problems in Tissue-Based Mismatch Repair Testing. Cancer Prev. Res. 2012, 5, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Hatch, S.B.; Lightfoot, H.M.; Garwacki, C.P.; Moore, D.T.; Calvo, B.F.; Woosley, J.T.; Sciarrotta, J.; Funkhouser, W.K.; Farber, R.A. Microsatellite Instability Testing in Colorectal Carcinoma: Choice of Markers Affects Sensitivity of Detection of Mismatch Repair-Deficient Tumors. Clin. Cancer Res. 2005, 11, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Lindor, N.M.; Burgart, L.J.; Leontovich, O.; Goldberg, R.M.; Cunningham, J.M.; Sargent, D.J.; Walsh-Vockley, C.; Petersen, G.M.; Walsh, M.D.; Leggett, B.A.; et al. Immunohistochemistry versus Microsatellite Instability Testing in Phenotyping Colorectal Tumors. J. Clin. Oncol. 2002, 20, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Brentnall, T.A.; Chen, R.; Lee, J.G.; Kimmey, M.B.; Bronner, M.P.; Haggitt, R.C.; Kowdley, K.V.; Hecker, L.M.; Byrd, D.R. Microsatellite Instability and K-Ras Mutations Associated with Pancreatic Adenocarcinoma and Pancreatitis. Cancer Res. 1995, 55, 4264–4267. [Google Scholar] [PubMed]
- Eatrides, J.M.; Coppola, D.; Al Diffalha, S.; Kim, R.D.; Springett, G.M.; Mahipal, A. Microsatellite Instability in Pancreatic Cancer. J. Clin. Oncol. 2016, 34, e15753. [Google Scholar] [CrossRef]
- Humphris, J.L.; Patch, A.-M.; Nones, K.; Bailey, P.J.; Johns, A.L.; McKay, S.; Chang, D.K.; Miller, D.K.; Pajic, M.; Kassahn, K.S.; et al. Hypermutation in Pancreatic Cancer. Gastroenterology 2017, 152, 68–74.e2. [Google Scholar] [CrossRef]
- Maple, J.T.; Smyrk, T.C.; Boardman, L.A.; Johnson, R.A.; Thibodeau, S.N.; Chari, S.T. Defective DNA Mismatch Repair in Long-Term (≥3 Years) Survivors with Pancreatic Cancer. Pancreatology 2005, 5, 220–228. [Google Scholar] [CrossRef]
- Nakata, B.; Wang, Y.Q.; Yashiro, M.; Nishioka, N.; Tanaka, H.; Ohira, M.; Ishikawa, T.; Nishino, H.; Hirakawa, K. Prognostic Value of Microsatellite Instability in Resectable Pancreatic Cancer. Clin. Cancer Res. 2002, 8, 2536–2540. [Google Scholar] [PubMed]
- Riazy, M.; Kalloger, S.E.; Sheffield, B.S.; Peixoto, R.D.; Li-Chang, H.H.; Scudamore, C.H.; Renouf, D.J.; Schaeffer, D.F. Mismatch Repair Status May Predict Response to Adjuvant Chemotherapy in Resectable Pancreatic Ductal Adenocarcinoma. Mod. Pathol. 2015, 28, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, R.; Okoń, K.; Stachura, J. Expression of the DNA Mismatch Repair Proteins (hMLH1 and hMSH2) in Infiltrating Pancreatic Cancer and Its Relation to Some Phenotypic Features. Pol. J. Pathol. 2003, 54, 31–37. [Google Scholar]
- Yamamoto, H.; Itoh, F.; Nakamura, H.; Fukushima, H.; Sasaki, S.; Perucho, M.; Imai, K. Genetic and Clinical Features of Human Pancreatic Ductal Adenocarcinomas with Widespread Microsatellite Instability. Cancer Res. 2001, 61, 3139–3144. [Google Scholar] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv 2018. bioRxiv:201178. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. Available online: https://arxiv.org/abs/1207.3907v2 (accessed on 21 August 2023).
- Kim, S.; Scheffler, K.; Halpern, A.L.; Bekritsky, M.A.; Noh, E.; Källberg, M.; Chen, X.; Kim, Y.; Beyter, D.; Krusche, P.; et al. Strelka2: Fast and Accurate Calling of Germline and Somatic Variants. Nat. Methods 2018, 15, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Markovets, A.; Ahdesmaki, M.; Chapman, B.; Hofmann, O.; McEwen, R.; Johnson, J.; Dougherty, B.; Barrett, J.C.; Dry, J.R. VarDict: A Novel and Versatile Variant Caller for next-Generation Sequencing in Cancer Research. Nucleic Acids Res. 2016, 44, e108. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Scheps, K.G.; Hasenahuer, M.A.; Parisi, G.; Targovnik, H.M.; Fornasari, M.S. Curating the gnomAD Database: Report of Novel Variants in the Globin-Coding Genes and Bioinformatics Analysis. Hum. Mutat. 2020, 41, 81–102. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Li, Q.; Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am. J. Hum. Genet. 2017, 100, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [PubMed]
- Buhard, O.; Cattaneo, F.; Wong, Y.F.; Yim, S.F.; Friedman, E. Multipopulation Analysis of Polymorphisms in Five Mononucleotide Repeats Used to Determine the Microsatellite Instability Status of Human Tumors. J. Clin. Oncol. 2006, 24, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; McHugh, T.W. Lynch Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.W.; Westman, J.; et al. Screening for the Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer). N. Engl. J. Med. 2005, 352, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.; Balaguer, F.; Lindor, N.; de la Chapelle, A.; Hampel, H.; Aaltonen, L.A.; Hopper, J.L.; Le Marchand, L.; Gallinger, S.; Newcomb, P.A.; et al. Identification of Lynch Syndrome among Patients with Colorectal Cancer. J. Am. Med. Assoc. 2012, 308, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals with Colorectal Cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef]
- Jan, Y.-H.; Tan, K.T.; Chen, S.-J.; Yip, T.T.C.; Lu, C.T.; Lam, A.K. Comprehensive Assessment of Actionable Genomic Alterations in Primary Colorectal Carcinoma Using Targeted Next-Generation Sequencing. Br. J. Cancer 2022, 127, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J.; et al. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef]
- Baglietto, L.; Lindor, N.M.; Dowty, J.G.; White, D.M.; Wagner, A.; Gomez Garcia, E.B.; Vriends, A.H.J.T.; Dutch Lynch Syndrome Study Group; Cartwright, N.R.; Barnetson, R.A.; et al. Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. J. Natl. Cancer Inst. 2010, 102, 193–201. [Google Scholar] [CrossRef]
- Bonadona, V.; Bonaïti, B.; Olschwang, S.; Grandjouan, S.; Huiart, L.; Longy, M.; Guimbaud, R.; Buecher, B.; Bignon, Y.-J.; Caron, O.; et al. Cancer Risks Associated with Germline Mutations in MLH1, MSH2, and MSH6 Genes in Lynch Syndrome. J. Am. Med. Assoc. 2011, 305, 2304–2310. [Google Scholar] [CrossRef]
- ten Broeke, S.W.; Brohet, R.M.; Tops, C.M.; van der Klift, H.M.; Velthuizen, M.E.; Bernstein, I.; Munar, G.C.; Garcia, E.G.; Hoogerbrugge, N.; Letteboer, T.G.; et al. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk. J. Clin. Oncol. 2015, 33, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Goodenberger, M.L.; Thomas, B.C.; Riegert-Johnson, D.; Boland, C.R.; Plon, S.E.; Clendenning, M.; Win, A.K.; Senter, L.; Lipkin, S.M.; Stadler, Z.K.; et al. PMS2 Monoallelic Mutation Carriers: The Known Unknown. Genet. Med. 2016, 18, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.A.J.; Morris, J.; Green, K.; Lalloo, F.; Woodward, E.R.; Hill, J.; Crosbie, E.J.; Evans, D.G. Association of Mismatch Repair Mutation with Age at Cancer Onset in Lynch Syndrome: Implications for Stratified Surveillance Strategies. JAMA Oncol. 2017, 3, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Senter, L.; Clendenning, M.; Sotamaa, K.; Hampel, H.; Green, J.; Potter, J.D.; Lindblom, A.; Lagerstedt, K.; Thibodeau, S.N.; Lindor, N.M.; et al. The Clinical Phenotype of Lynch Syndrome Due to Germ-Line PMS2 Mutations. Gastroenterology 2008, 135, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Boland, P.M.; Yurgelun, M.B.; Boland, C.R. Recent Progress in Lynch Syndrome and Other Familial Colorectal Cancer Syndromes. CA Cancer J. Clin. 2018, 68, 217–231. [Google Scholar] [CrossRef]
- Grant, R.C.; Selander, I.; Connor, A.A.; Selvarajah, S.; Borgida, A.; Briollais, L.; Petersen, G.M.; Lerner-Ellis, J.; Holter, S.; Gallinger, S. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer. Gastroenterology 2015, 148, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; George, B.; Greenbowe, J.R.; Chung, J.; Suh, J.; Maitra, A.; Klempner, S.J.; Hendifar, A.; Milind, J.M.; Golan, T.; et al. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted with Existing Drugs or Used as Biomarkers. Gastroenterology 2019, 156, 2242–2253.e4. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Chittenden, A.B.; Morales-Oyarvide, V.; Rubinson, D.A.; Dunne, R.F.; Kozak, M.M.; Qian, Z.R.; Welch, M.W.; Brais, L.K.; Da Silva, A.; et al. Germline Cancer Susceptibility Gene Variants, Somatic Second Hits, and Survival Outcomes in Patients with Resected Pancreatic Cancer. Genet. Med. 2019, 21, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Zheng-Lin, B.; Rainone, M.; Varghese, A.M.; Yu, K.H.; Park, W.; Berger, M.; Mehine, M.; Chou, J.; Capanu, M.; Mandelker, D.; et al. Methylation Analyses Reveal Promoter Hypermethylation as a Rare Cause of “Second Hit” in Germline BRCA1-Associated Pancreatic Ductal Adenocarcinoma. Mol. Diagn. Ther. 2022, 26, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Eikenboom, E.L.; van der Werf-’t Lam, A.-S.; Rodríguez-Girondo, M.; Van Asperen, C.J.V.; Dinjens, W.N.M.; Hofstra, R.M.W.; Van Leerdam, M.E.; Morreau, H.; Spaander, M.C.W.; Wagner, A.; et al. Universal Immunohistochemistry for Lynch Syndrome: A Systematic Review and Meta-Analysis of 58,580 Colorectal Carcinomas. Clin. Gastroenterol. Hepatol. 2022, 20, e496–e507. [Google Scholar] [CrossRef]
- Lee, B.C.H.; Robinson, P.S.; Coorens, T.H.H.; Yan, H.H.N.; Olafsson, S.; Lee-Six, H.; Sanders, M.A.; Siu, H.C.; Hewinson, J.; Yue, S.S.K.; et al. Mutational Landscape of Normal Epithelial Cells in Lynch Syndrome Patients. Nat. Commun. 2022, 13, 2710. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Eisfeld, A.-K.; Zhen, F.; Jin, S.; Gao, W.; Yu, T.; Chen, L.; Wang, W.; Chen, W.; et al. Identification of Germline Mismatch Repair Gene Mutations in Lung Cancer Patients with Paired Tumor-Normal Next Generation Sequencing: A Retrospective Study. Front. Oncol. 2019, 9, 550. [Google Scholar] [CrossRef]
- Martínez-Roca, A.; Giner-Calabuig, M.; Murcia, O.; Castillejo, A.; Soto, J.L.; García-Heredia, A.; Jover, R. Lynch-Like Syndrome: Potential Mechanisms and Management. Cancers 2022, 14, 1115. [Google Scholar] [CrossRef]
- Connor, A.A.; Denroche, R.E.; Jang, G.H.; Timms, L.; Kalimuthu, S.N.; Selander, I.; McPherson, T.; Wilson, G.W.; Chan-Seng-Yue, M.A.; Borozan, I.; et al. Association of Distinct Mutational Signatures with Correlates of Increased Immune Activity in Pancreatic Ductal Adenocarcinoma. JAMA Oncol. 2017, 3, 774–783. [Google Scholar] [CrossRef]
- Ghimenti, C.; Tannergård, P.; Wahlberg, S.; Liu, T.; Giulianotti, P.G.; Mosca, F.; Fornaciari, G.; Bevilacqua, G.; Lindblom, A.; Caligo, M.A. Microsatellite Instability and Mismatch Repair Gene Inactivation in Sporadic Pancreatic and Colon Tumours. Br. J. Cancer 1999, 80, 11–16. [Google Scholar] [CrossRef]
- Goggins, M.; Offerhaus, G.J.; Hilgers, W.; Griffin, C.A.; Shekher, M.; Tang, D.; Sohn, T.A.; Yeo, C.J.; Kern, S.E.; Hruban, R.H. Pancreatic Adenocarcinomas with DNA Replication Errors (RER+) Are Associated with Wild-Type K-Ras and Characteristic Histopathology. Poor Differentiation, a Syncytial Growth Pattern, and Pushing Borders Suggest RER+. Am. J. Pathol. 1998, 152, 1501–1507. [Google Scholar]
- Han, H.J.; Yanagisawa, A.; Kato, Y.; Park, J.G.; Nakamura, Y. Genetic Instability in Pancreatic Cancer and Poorly Differentiated Type of Gastric Cancer. Cancer Res. 1993, 53, 5087–5089. [Google Scholar]
- Lupinacci, R.M.; Goloudina, A.; Buhard, O.; Bachet, J.-B.; Maréchal, R.; Demetter, P.; Cros, J.; Bardier-Dupas, A.; Collura, A.; Cervera, P.; et al. Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology 2018, 154, 1061–1065. [Google Scholar] [CrossRef]
- Ottenhof, N.A.; Morsink, F.H.M.; ten Kate, F.; van Noorden, C.J.F.; Offerhaus, G.J.A. Multivariate Analysis of Immunohistochemical Evaluation of Protein Expression in Pancreatic Ductal Adenocarcinoma Reveals Prognostic Significance for Persistent Smad4 Expression Only. Cell. Oncol. 2012, 35, 119–126. [Google Scholar] [CrossRef]
- Venkatasubbarao, K.; Ahmed, M.M.; Swiderski, C.; Harp, C.; Lee, E.Y.; McGrath, P.; Mohiuddin, M.; Strodel, W.; Freeman, J.W. Novel Mutations in the Polyadenine Tract of the Transforming Growth Factor Beta Type II Receptor Gene Are Found in a Subpopulation of Human Pancreatic Adenocarcinomas. Genes Chromosomes Cancer 1998, 22, 138–144. [Google Scholar] [CrossRef]
- Wilentz, R.E.; Goggins, M.; Redston, M.; Marcus, V.A.; Adsay, N.V.; Sohn, T.A.; Kadkol, S.S.; Yeo, C.J.; Choti, M.; Zahurak, M.; et al. Genetic, Immunohistochemical, and Clinical Features of Medullary Carcinoma of the Pancreas. Am. J. Pathol. 2000, 156, 1641–1651. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Colorectal Cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Buhard, O.; Suraweera, N.; Lectard, A.; Duval, A.; Hamelin, R. Quasimonomorphic Mononucleotide Repeats for High-Level Microsatellite Instability Analysis. Dis. Markers 2004, 20, 251–257. [Google Scholar] [CrossRef]
- Nardon, E.; Glavač, D.; Benhattar, J.; Groenen, P.J.T.A.; Höfler, G.; Höfler, H.; Jung, A.; Keller, G.; Kirchner, T.; Lessi, F.; et al. A Multicenter Study to Validate the Reproducibility of MSI Testing with a Panel of 5 Quasimonomorphic Mononucleotide Repeats. Diagn. Mol. Pathol. 2010, 19, 236–242. [Google Scholar] [CrossRef]
- Bando, H.; Okamoto, W.; Fukui, T.; Yamanaka, T.; Akagi, K.; Yoshino, T. Utility of the Quasi-Monomorphic Variation Range in Unresectable Metastatic Colorectal Cancer Patients. Cancer Sci. 2018, 109, 3411–3415. [Google Scholar] [CrossRef]
- Suraweera, N.; Duval, A.; Reperant, M.; Vaury, C.; Furlan, D.; Leroy, K.; Seruca, R.; Iacopetta, B.; Hamelin, R. Evaluation of Tumor Microsatellite Instability Using Five Quasimonomorphic Mononucleotide Repeats and Pentaplex PCR. Gastroenterology 2002, 123, 1804–1811. [Google Scholar] [CrossRef]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite Instability Is Associated with the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef]
- Picard Tools—By Broad Institute. Available online: http://broadinstitute.github.io/picard/ (accessed on 21 August 2023).
Characteristic | Value (n = 620) |
---|---|
Female, n (%) | 340 (54.8%) |
Age in years, median (min–max) | 62 (27–90) |
T stage at diagnosis, n (%) | |
T1–T2 | 76 (12.3%) |
T3–T4 | 522 (84.2%) |
Tx | 22 (3.5%) |
N status at diagnosis, n (%) | |
N0 | 296 (47.7%) |
N1 | 277 (44.7%) |
Nx | 47 (7.6%) |
М status at diagnosis, n (%) | |
M0 | 409 (66%) |
M1 | 190 (30.6%) |
Mx | 21 (3.4%) |
Primary tumor location in the head of the pancreas, n (%) | 413 (66.6%) |
Metastases in retroperitoneal lymph nodes at diagnosis, n (%) | 27 (4.4%) |
Liver metastases at diagnosis, n (%) | 128 (20.6%) |
Peritoneal metastases at diagnosis, n (%) | 23 (3.7%) |
Lung metastases at diagnosis, n (%) | 24 (3.9%) |
Ascites at diagnosis, n (%) | 16 (2.6%) |
Personal history of other cancer, n (%) | 20 (3.2%) |
Number of relatives with other cancer, n (%) | |
0 | 261 (42.1%) |
1–2 | 255 (41.1%) |
≥3 | 11 (1.8%) |
Not known | 93 (15%) |
Presence of first-degree relatives with ovarian, breast, prostate, or pancreatic cancer, n (%) | 237 (38.2%) |
Pathogenicity Classification | MLH1 | MSH2 | MSH6 |
---|---|---|---|
germline (534 patients) | |||
P/LP | 2 (0.4%) | 2 (0.4%) | 2 (0.4%) |
VUS_D | 1 (0.2%) | 3 (0.6%) | 8 (1.5%) |
VUS_ND | 4 (0.7%) | 2 (0.4%) | 4 (0.7%) |
somatic (155 patients) | |||
P/LP | 0 | 2 (1.3%) | 2 (1.3%) |
VUS_D | 0 | 2 (1.3%) | 1 (0.6%) |
VUS_ND | 0 | 1 (0.6%) | 0 |
somatic/germline status is unknown (86 patients) | |||
P/LP | 0 | 0 | 2 (2.3%) patients but one of them harbored two (P and LP) variants |
VUS_D | 0 | 1 (1.2%) | 0 |
VUS_ND | 0 | 0 | 1 (1.2%) patient who carries two VUS_ND |
Case No. | Sex | Age | Other Personal History of Cancer (Age If Known) | Family History of Cancer (Relation, Age If Known) | Variant | Type | RS | Pathogenicity Classification | ClinVar Database | Normal Tissue (or Blood) | Tumor Tissue | Germline/ Somatic | MSI Status |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | m | 50 | No | SCC (mother, 73), GC (mat grandfather) | MLH1:NM_000249:c.1732_1743del: p.578_581del | in-frame_del | - | LP | - | Yes (VAF = 0.40) | NA | germline | NA |
2 | f | 64 | EC | CRC (father), LC (mother) | MLH1:NM_000249:c.588delA:p.K196fs | frameshift_del | rs63751653 | P | P | Yes (VAF = 0.49) | NA | germline | NA |
3 | f | 74 | NA | NA | MSH2:NM_000251:c.1405delC: p.Leu469_Val470insTer | stopgain | rs1060502027 | LP | P | No | Yes (VAF = 0.21) | somatic | MSS |
4 | f | 63 | NA | NA | MSH2:NM_000251:c.G2039A:p.R680Q | nsSNV | - | LP | - | No | Yes (VAF = 0.03) | somatic | MSS |
5 | m | 67 | No | BC (mother, >50) | MSH2:NM_000251:c.687delA:p.R230fs | frameshift_del | rs63749897 | P | P | Yes (VAF = 0.36) | NA | germline | NA |
6 | f | 66 | BC (55, 64) | NA | MSH2:NM_000251:c.G1571A:p.R524H | nsSNV | rs63751207 | LP | VUS | Yes (VAF = 0.53) | NA | germline | NA |
7 | f | 69 | NA | NA | MSH6:NM_000179:c.C2731T:p.R911Ter | stopgain | rs63751017 | P | P | No | Yes (VAF = 0.06) | somatic | MSS |
8 | f | 72 | NA | NA | MSH6:NM_000179:c.C309A:p.Y103Ter | stopgain | - | LP | - | No | Yes (VAF = 0.24) | somatic | MSS |
9 | m | 59 | NA | NA | MSH6:NM_000179:c.A2906T:p.Y969F | nsSNV | rs63749919 | LP | CIP: VUS(4); LB(1) | NA | Yes (VAF = 0.57) | NA | NA |
MSH6:NM_000179:c.C3013T:p.R1005Ter | stopgain | rs63750563 | P | P | NA | Yes (VAF = 0.25) | NA | ||||||
10 | f | 45 | NA | NA | MSH6:NM_000179:c.A2906T:p.Y969F | nsSNV | rs63749919 | LP | CIP: VUS(4); LB(1) | Yes (VAF = 0.42) | Yes (VAF = 0.44) | germline | MSS |
11 | m | 45 | No | No | MSH6:NM_000179:c.C2314T:p.R772W | nsSNV | rs63750138 | P | P | Yes (VAF = 0.46) | NA | germline | NA |
12 | m | 62 | NA | NA | MSH6:NM_000179:c.G4001A:p.R1334Q | nsSNV | rs267608122 | P | P | NA | Yes (VAF = 0.26) | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emelyanova, M.; Ikonnikova, A.; Pushkov, A.; Pudova, E.; Krasnov, G.; Popova, A.; Zhanin, I.; Khomich, D.; Abramov, I.; Tjulandin, S.; et al. Mutations in Mismatch Repair Genes and Microsatellite Instability Status in Pancreatic Cancer. Cancers 2024, 16, 2111. https://doi.org/10.3390/cancers16112111
Emelyanova M, Ikonnikova A, Pushkov A, Pudova E, Krasnov G, Popova A, Zhanin I, Khomich D, Abramov I, Tjulandin S, et al. Mutations in Mismatch Repair Genes and Microsatellite Instability Status in Pancreatic Cancer. Cancers. 2024; 16(11):2111. https://doi.org/10.3390/cancers16112111
Chicago/Turabian StyleEmelyanova, Marina, Anna Ikonnikova, Alexander Pushkov, Elena Pudova, George Krasnov, Anna Popova, Ilya Zhanin, Darya Khomich, Ivan Abramov, Sergei Tjulandin, and et al. 2024. "Mutations in Mismatch Repair Genes and Microsatellite Instability Status in Pancreatic Cancer" Cancers 16, no. 11: 2111. https://doi.org/10.3390/cancers16112111
APA StyleEmelyanova, M., Ikonnikova, A., Pushkov, A., Pudova, E., Krasnov, G., Popova, A., Zhanin, I., Khomich, D., Abramov, I., Tjulandin, S., Gryadunov, D., & Pokataev, I. (2024). Mutations in Mismatch Repair Genes and Microsatellite Instability Status in Pancreatic Cancer. Cancers, 16(11), 2111. https://doi.org/10.3390/cancers16112111