Comparison of Extended Skin Cancer Screening Using a Three-Step Advanced Imaging Programme vs. Standard-of-Care Examination in a High-Risk Melanoma Patient Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Excisions
3.2. Excisions Based on Imaging Consultation and Outpatient Care
3.3. Digital Dermoscopy
3.4. Reflectance Confocal Microscopy
3.5. Three-Dimensional Total Body Photography
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TBP | total body photography |
3D-TBP | three-dimensional total body photography |
DD | digital dermoscopy |
RCM | reflectance confocal microscopy |
BCC | basal cell carcinoma |
SCC | squamous cell carcinoma |
SD | standard deviation |
NNE | number needed to excise |
References
- Garbe, C.; Keim, U.; Suciu, S.; Amaral, T.; Eigentler, T.K.; Gesierich, A.; Hauschild, A.; Heinzerling, L.; Kiecker, F.; Schadendorf, D.; et al. Prognosis of Patients with Stage III Melanoma According to American Joint Committee on Cancer Version 8: A Reassessment on the Basis of 3 Independent Stage III Melanoma Cohorts. J. Clin. Oncol. 2020, 38, 2543–2551. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; et al. European Consensus-Based Interdisciplinary Guideline for Melanoma. Part 1: Diagnostics: Update 2022. Eur. J. Cancer 2022, 170, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Keim, U.; Amaral, T.; Berking, C.; Eigentler, T.K.; Flatz, L.; Gesierich, A.; Leiter, U.; Stadler, R.; Sunderkötter, C.; et al. Prognosis of Patients with Primary Melanoma Stage I and II According to American Joint Committee on Cancer Version 8 Validated in Two Independent Cohorts: Implications for Adjuvant Treatment. J. Clin. Oncol. 2022, 40, 3741–3749. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Green, A.C.; Olsen, C.M. The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. J. Investig. Dermatol. 2016, 136, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; et al. European Consensus-Based Interdisciplinary Guideline for Melanoma. Part 2: Treatment—Update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Spatz, A.; Robert, C. Cutaneous Melanoma. Lancet 2014, 383, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Garbe, C. Acquired Melanocytic Nevi as Risk Factor for Melanoma Development. A Comprehensive Review of Epidemiological Data. Pigment. Cell Res. 2003, 16, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Büttner, P.; Weiss, J.; Soyer, H.P.; Stocker, U.; Krüger, S.; Roser, M.; Weckbecker, J.; Panizzon, R.; Bahmer, F. Associated Factors in the Prevalence of More than 50 Common Melanocytic Nevi, Atypical Melanocytic Nevi, and Actinic Lentigines: Multicenter Case-Control Study of the Central Malignant Melanoma Registry of the German Dermatological Society. J. Investig. Dermatol. 1994, 102, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Grob, J.J.; Gouvernet, J.; Aymar, D.; Mostaque, A.; Romano, M.H.; Collet, A.M.; Noe, M.C.; Diconstanzo, M.P.; Bonerandi, J.J. Count of Benign Melanocytic Nevi as a Major Indicator of Risk for Nonfamilial Nodular and Superficial Spreading Melanoma. Cancer 1990, 66, 387–395. [Google Scholar] [CrossRef]
- Holly, E.A.; Kelly, J.W.; Shpall, S.N.; Chiu, S.H. Number of Melanocytic Nevi as a Major Risk Factor for Malignant Melanoma. J. Am. Acad. Dermatol. 1987, 17, 459–468. [Google Scholar] [CrossRef]
- Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo 2014, 28, 1005–1011. [Google Scholar] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-Analysis of Risk Factors for Cutaneous Melanoma: II. Sun Exposure. Eur. J. Cancer 2005, 41, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Elwood, J.M.; Jopson, J. Melanoma and Sun Exposure: An Overview of Published Studies. Int. J. Cancer 1997, 73, 198–203. [Google Scholar] [CrossRef]
- Kreher, M.A.; Konda, S.; Noland, M.M.B.; Longo, M.I.; Valdes-Rodriguez, R. Risk of Melanoma and Nonmelanoma Skin Cancer with Immunosuppressants, Part II: Methotrexate, Alkylating Agents, Biologics, and Small Molecule Inhibitors. J. Am. Acad. Dermatol. 2023, 88, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Bishop, J.N.; Harland, M.; Randerson-Moor, J.; Bishop, D.T. Management of Familial Melanoma. Lancet Oncol. 2007, 8, 46–54. [Google Scholar] [CrossRef] [PubMed]
- De Snoo, F.A.; Kroon, M.W.; Bergman, W.; ter Huurne, J.A.C.; Houwing-Duistermaat, J.J.; van Mourik, L.; Snels, D.G.C.T.M.; Breuning, M.H.; Willemze, R.; Frants, R.R.; et al. From Sporadic Atypical Nevi to Familial Melanoma: Risk Analysis for Melanoma in Sporadic Atypical Nevus Patients. J. Am. Acad. Dermatol. 2007, 56, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Hornung, A.; Steeb, T.; Wessely, A.; Brinker, T.J.; Breakell, T.; Erdmann, M.; Berking, C.; Heppt, M.V. The Value of Total Body Photography for the Early Detection of Melanoma: A Systematic Review. Int. J. Environ. Res. Public. Health 2021, 18, 1726. [Google Scholar] [CrossRef] [PubMed]
- Salerni, G.; Carrera, C.; Lovatto, L.; Martí-Laborda, R.M.; Isern, G.; Palou, J.; Alós, L.; Puig, S.; Malvehy, J. Characterization of 1152 Lesions Excised over 10 Years Using Total-Body Photography and Digital Dermatoscopy in the Surveillance of Patients at High Risk for Melanoma. J. Am. Acad. Dermatol. 2012, 67, 836–845. [Google Scholar] [CrossRef]
- Wang, S.Q.; Kopf, A.W.; Koenig, K.; Polsky, D.; Nudel, K.; Bart, R.S. Detection of Melanomas in Patients Followed up with Total Cutaneous Examinations, Total Cutaneous Photography, and Dermoscopy. J. Am. Acad. Dermatol. 2004, 50, 15–20. [Google Scholar] [CrossRef]
- Janda, M.; Soyer, H.P. Describing the Skin Surface Ecosystem Using 3D Total Body Photography. Dermatology 2022, 238, 1–3. [Google Scholar] [CrossRef]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic Accuracy of Dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Babino, G.; Lallas, A.; Agozzino, M.; Alfano, R.; Apalla, Z.; Brancaccio, G.; Giorgio, C.M.; Fulgione, E.; Kittler, H.; Kyrgidis, A.; et al. Melanoma Diagnosed on Digital Dermoscopy Monitoring: A Side-by-Side Image Comparison Is Needed to Improve Early Detection. J. Am. Acad. Dermatol. 2021, 85, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Menzies, S.W.; Emery, J.; Staples, M.; Davies, S.; McAvoy, B.; Fletcher, J.; Shahid, K.R.; Reid, G.; Avramidis, M.; Ward, A.M.; et al. Impact of Dermoscopy and Short-Term Sequential Digital Dermoscopy Imaging for the Management of Pigmented Lesions in Primary Care: A Sequential Intervention Trial. Br. J. Dermatol. 2009, 161, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Tromme, I.; Devleesschauwer, B.; Beutels, P.; Richez, P.; Praet, N.; Sacré, L.; Marot, L.; Van Eeckhout, P.; Theate, I.; Baurain, J.-F.; et al. Selective Use of Sequential Digital Dermoscopy Imaging Allows a Cost Reduction in the Melanoma Detection Process: A Belgian Study of Patients with a Single or a Small Number of Atypical Nevi. PLoS ONE 2014, 9, e109339. [Google Scholar] [CrossRef] [PubMed]
- Salerni, G.; Carrera, C.; Lovatto, L.; Puig-Butille, J.A.; Badenas, C.; Plana, E.; Puig, S.; Malvehy, J. Benefits of Total Body Photography and Digital Dermatoscopy (“Two-Step Method of Digital Follow-up”) in the Early Diagnosis of Melanoma in Patients at High Risk for Melanoma. J. Am. Acad. Dermatol. 2012, 67, e17–e27. [Google Scholar] [CrossRef] [PubMed]
- Malvehy, J.; Puig, S. Follow-up of Melanocytic Skin Lesions with Digital Total-Body Photography and Digital Dermoscopy: A Two-Step Method. Clin. Dermatol. 2002, 20, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Deeks, J.J.; Saleh, D.; Chuchu, N.; Bayliss, S.E.; Patel, L.; Davenport, C.; Takwoingi, Y.; Godfrey, K.; Matin, R.N.; et al. Reflectance Confocal Microscopy for Diagnosing Cutaneous Melanoma in Adults. Cochrane Database Syst. Rev. 2018, 12, CD013190. [Google Scholar] [CrossRef] [PubMed]
- Pellacani, G.; Pepe, P.; Casari, A.; Longo, C. Reflectance Confocal Microscopy as a Second-Level Examination in Skin Oncology Improves Diagnostic Accuracy and Saves Unnecessary Excisions: A Longitudinal Prospective Study. Br. J. Dermatol. 2014, 171, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Borsari, S.; Pampena, R.; Lallas, A.; Kyrgidis, A.; Moscarella, E.; Benati, E.; Raucci, M.; Pellacani, G.; Zalaudek, I.; Argenziano, G.; et al. Clinical Indications for Use of Reflectance Confocal Microscopy for Skin Cancer Diagnosis. JAMA Dermatol. 2016, 152, 1093–1098. [Google Scholar] [CrossRef]
- Alarcon, I.; Carrera, C.; Palou, J.; Alos, L.; Malvehy, J.; Puig, S. Impact of in Vivo Reflectance Confocal Microscopy on the Number Needed to Treat Melanoma in Doubtful Lesions. Br. J. Dermatol. 2014, 170, 802–808. [Google Scholar] [CrossRef]
- Rademaker, M.; Oakley, A. Digital Monitoring by Whole Body Photography and Sequential Digital Dermoscopy Detects Thinner Melanomas. J. Prim. Health Care 2010, 2, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Strunck, J.L.; Smart, T.C.; Boucher, K.M.; Secrest, A.M.; Grossman, D. Improved Melanoma Outcomes and Survival in Patients Monitored by Total Body Photography: A Natural Experiment. J. Dermatol. 2020, 47, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Petty, A.J.; Ackerson, B.; Garza, R.; Peterson, M.; Liu, B.; Green, C.; Pavlis, M. Meta-Analysis of Number Needed to Treat for Diagnosis of Melanoma by Clinical Setting. J. Am. Acad. Dermatol. 2020, 82, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Rutjes, C.; Torrano, J.; Soyer, H.P. A 3D Total-Body Photography Research Network: The Australian Experiment. Hautarzt 2022, 73, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Jaklitsch, E.; Shah, V.K.; Smith, B.; Agarwal, A.; Chen, J.; Sweeney, A.; English, J.C.; Ferris, L.K. Melanoma Detected Through Teledermatology Versus In-Person Visits. Telemed. J. E Health 2024, 30, e1192–e1196. [Google Scholar] [CrossRef] [PubMed]
- Teague, R.; Wang, M.; Wen, D.; Sunderland, M.; Rolfe, G.; Oakley, A.M.M.; Rademaker, M.; Martin, R. Virtual Lesion Clinic—Evaluation of a Teledermatology Triage System for Referrals for Suspected Melanoma. Australas. J. Dermatol. 2022, 63, e33–e40. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, L.; Cartocci, A.; Balistreri, A.; Cataldo, G.; Cinotti, E.; Moscarella, E.; Farnetani, F.; Lallas, A.; Tiodorovic, D.; Carrera, C.; et al. The Comparative Use of Multiple Electronic Devices in the Teledermoscopic Diagnosis of Early Melanoma. Telemed. J. E Health 2021, 27, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Zheng, Q.; Li, J.; Huang, J.; Long, X. Artificial Intelligence in Melanoma: A Systematic Review. J. Cosmet. Dermatol. 2022, 21, 5993–6004. [Google Scholar] [CrossRef]
Patient Characteristics | |
---|---|
Patients (n) | 410 |
Male (n) | 224 (54.6%) |
Female (n) | 186 (45.4%) |
Age (mean) | 18–84 (mean 51.6, SD 13.1) years |
Follow-up visits (n) | 1070 |
Follow-ups per patient (n) | 1–8 (mean 2.1, SD 1.1) |
Follow-up period | 0–33 (mean 14.9, SD 8.5) months |
Time between visits | 1–24 (mean 8.4, SD 3.4) months |
Skin type (Fitzpatrick) | |
Skin type I (n) | 115 (28.0%) |
Skin type II (n) | 202 (49.3%) |
Skin type III (n) | 93 (22.7%) |
Hair colour | |
Blond (n) | 180 (43,9%) |
Brown (n) | 203 (49.5) |
Red (n) | 20 (4.9%) |
Black (n) | 6 (1.5%) |
Missing (n) | 1 (0.2%) |
Eye colour | |
Blue (n) | 177 (43.2%) |
Brown (n) | 103 (25.1%) |
Grey (n) | 60 (14.6%) |
Green (n) | 68 (16.6%) |
Missing (n) | 2 (0.5%) |
Risk factors | |
Nevi count | |
<50 melanocytic nevi (n) | 36 (8.8%) |
>50 melanocytic nevi (n) | 70 (17.1%) |
>100 melanocytic nevi (n) | 304 (74.1%) |
Missing (n) | 1 (0.3%) |
Dysplastic nevi (n) | 257 (62.7%) |
Genetic risk for melanoma (n) | 7 (1.7%) |
Immunosuppression (n) | 16 (3.9%) |
Positive family history (n) | 46 (11.2%) |
Imaging Consultation, n (%) | Outpatient Care, n (%) | ||
---|---|---|---|
Number of excisions | 61 | 195 | |
Melanoma | 16 (26.2%) | 7 (3.6%) | p < 0.001 |
Invasive melanoma | 8 (13.1%) | 1 (0.5%) | p < 0.001 |
In situ melanoma | 8 (13.1%) | 6 (3.1%) | p < 0.001 |
All nevi | 23 (37.7%) | 156 (83.6%) | p < 0.001 |
Dysplastic nevi | 17 (27.9%) | 120 (61.5%) | p < 0.001 |
Other lesions | 22 (36.1%) | 32 (16.4%) | NA |
Basal cell carcinoma | 11 (18.0%) | 13 (6.7%) | p = 0.012 |
Squamous cell carcinoma | 1 (1.6%) | 2 (1.0%) | p = 0.560 |
Actinic keratosis | 1 (1.6%) | 4 (2.1%) | p = 1.000 |
Melanoma metastasis | 6 (9.8%) | 0 (0%) | NA |
Scar | 2 (3.3%) | 0 (0%) | NA |
Cyst | 1 (1.6%) | 3 (1.5%) | NA |
Seborrheic keratosis | 0 (0%) | 5 (2.6%) | NA |
Histiocytoma | 0 (0%) | 1 (0.5%) | NA |
Fibroma | 0 (0%) | 1 (0.5%) | NA |
Lichen planus-like keratosis | 0 (0%) | 1 (0.5%) | NA |
Melanosis vulvae | 0 (0%) | 1 (0.5%) | NA |
Lentigo solaris | 0 (0%) | 1 (0.5%) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gellrich, F.F.; Eberl, N.; Steininger, J.; Meier, F.; Beissert, S.; Hobelsberger, S. Comparison of Extended Skin Cancer Screening Using a Three-Step Advanced Imaging Programme vs. Standard-of-Care Examination in a High-Risk Melanoma Patient Cohort. Cancers 2024, 16, 2204. https://doi.org/10.3390/cancers16122204
Gellrich FF, Eberl N, Steininger J, Meier F, Beissert S, Hobelsberger S. Comparison of Extended Skin Cancer Screening Using a Three-Step Advanced Imaging Programme vs. Standard-of-Care Examination in a High-Risk Melanoma Patient Cohort. Cancers. 2024; 16(12):2204. https://doi.org/10.3390/cancers16122204
Chicago/Turabian StyleGellrich, Frank Friedrich, Nadia Eberl, Julian Steininger, Friedegund Meier, Stefan Beissert, and Sarah Hobelsberger. 2024. "Comparison of Extended Skin Cancer Screening Using a Three-Step Advanced Imaging Programme vs. Standard-of-Care Examination in a High-Risk Melanoma Patient Cohort" Cancers 16, no. 12: 2204. https://doi.org/10.3390/cancers16122204
APA StyleGellrich, F. F., Eberl, N., Steininger, J., Meier, F., Beissert, S., & Hobelsberger, S. (2024). Comparison of Extended Skin Cancer Screening Using a Three-Step Advanced Imaging Programme vs. Standard-of-Care Examination in a High-Risk Melanoma Patient Cohort. Cancers, 16(12), 2204. https://doi.org/10.3390/cancers16122204