Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Data
2.3. Measurement of Telomere Length via Flow FISH
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Telomere Length in Survivors
3.3. Telomere Length and Cancer Treatment
3.4. Telomere Length and Chronic Health Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müezzinler, A.; Zaineddin, A.K.; Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013, 12, 509–519. [Google Scholar] [CrossRef]
- Daniali, L.; Benetos, A.; Susser, E.; Kark, J.D.; Labat, C.; Kimura, M.; Desai, K.K.; Granick, M.; Aviv, A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Commun. 2013, 4, 1597. [Google Scholar] [CrossRef]
- Uziel, O.; Shapiro, H.; Radnay, J.; Katz, T.; Rowe, J.M.; Lishner, M.; Lahav, M.; Szyper-Kravitz, M. Granulocyte colony-stimulating factor administration upregulates telomerase activity in CD34+ haematopoietic cells and may prevent telomere attrition after chemotherapy. Br. J. Haematol. 2003, 120, 329–336. [Google Scholar] [CrossRef]
- Lahav, M.; Uziel, O.; Kestenbaum, M.; Fraser, A.; Shapiro, H.; Radnay, J.; Szyper-Kravitz, M.; Avihai, S.; Hardan, I.; Shem-Tov, N.; et al. Nonmyeloablative conditioning does not prevent telomere shortening after allogeneic stem cell transplantation. Transplantation. Transplantation 2005, 80, 969–976. [Google Scholar] [CrossRef]
- Lu, Y.; Leong, W.; Guérin, O.; Gilson, E.; Ye, J. Telomeric impact of conventional chemotherapy. Front. Med. 2013, 7, 411–417. [Google Scholar] [CrossRef]
- Benitez-Buelga, C.; Sanchez-Barroso, L.; Gallardo, M.; Apellániz-Ruiz, M.; Inglada-Pérez, L.; Yanowski, K.; Carrillo, J.; Garcia-Estevez, L.; Calvo, I.; Perona, R.; et al. Impact of chemotherapy on telomere length in sporadic and familial breast cancer patients. Breast Cancer Res. Treat. 2014, 149, 385–394. [Google Scholar] [CrossRef]
- Unryn, B.M.; Hao, D.; Gluck, S.; Riabowol, K.T. Acceleration of telomere loss by chemotherapy is greater in older patients with locally advanced head and neck cancer. Clin. Cancer Res. 2006, 12, 6345–6350. [Google Scholar] [CrossRef]
- Ness, K.K.; Krull, K.R.; Jones, K.E.; Mulrooney, D.A.; Armstrong, G.T.; Green, D.M.; Chemaitilly, W.; Smith, W.A.; Wilson, C.L.; Sklar, C.A.; et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: A report from the St Jude Lifetime cohort study. J. Clin. Oncol. 2013, 31, 4496–4503. [Google Scholar] [CrossRef]
- Gutierrez-Rodrigues, F.; Santana-Lemos, B.A.; Scheucher, P.S.; Alves-Paiva, R.M.; Calado, R.T. Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS ONE 2014, 9, e113747. [Google Scholar] [CrossRef]
- Behrens, Y.L.; Thomay, K.; Hagedorn, M.; Ebersold, J.; Henrich, L.; Nustede, R.; Schlegelberger, B.; Göhring, G. Comparison of different methods for telomere length measurement in whole blood and blood cell subsets: Recommendations for telomere length measurement in hematological diseases. Genes Chromosom. Cancer 2017, 56, 700–708. [Google Scholar] [CrossRef]
- Kordinas, V.; Ioannidis, A.; Chatzipanagiotou, S. The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes 2016, 7, 60. [Google Scholar] [CrossRef]
- Demaria, M.; O’Leary, M.N.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017, 7, 165–176. [Google Scholar] [CrossRef]
- Song, N.; Li, Z.; Qin, N.; Howell, C.R.; Wilson, C.L.; Easton, J.; Mulder, H.L.; Edmonson, M.N.; Rusch, M.C.; Zhang, J.; et al. Shortened Leukocyte Telomere Length Associates with an Increased Prevalence of Chronic Health Conditions among Survivors of Childhood Cancer: A Report from the St. Jude Lifetime Cohort. Clin. Cancer Res. 2020, 26, 2362–2371. [Google Scholar] [CrossRef]
- Ghaffari, S.H.; Shayan-Asl, N.; Jamialahmadi, A.H.; Alimoghaddam, K.; Ghavamzadeh, A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: Indicative of proliferative activity, disease progression, and overall survival. Ann. Oncol. 2008, 19, 1927–1934. [Google Scholar] [CrossRef]
- Idei, T.; Sakamoto, H.; Yamamoto, T. Terminal restriction fragments of telomere are detectable in plasma and their length correlates with clinical status of ovarian cancer patients. J. Int. Med. Res. 2002, 30, 244–250. [Google Scholar] [CrossRef]
- Walsh, K.M.; Whitehead, T.P.; de Smith, A.J.; Smirnov, I.V.; Park, M.; Endicott, A.A.; Francis, S.S.; Codd, V.; ENGAGE Consortium Telomere Group; Samani, N.J.; et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis 2016, 37, 576–582. [Google Scholar] [CrossRef]
- Zhang, C.; The Glioma International Case-Control Study (GICC); Ostrom, Q.T.; Semmes, E.C.; Ramaswamy, V.; Hansen, H.M.; Morimoto, L.; de Smith, A.J.; Pekmezci, M.; Vaksman, Z.; et al. Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathol. Commun. 2020, 8, 173. [Google Scholar] [CrossRef]
- Schröder, C.P.; A Wisman, G.B.; de Jong, S.; A van der Graaf, W.T.; Ruiters, M.H.J.; Mulder, N.H.; de Leij, L.F.M.H.; van der Zee, A.G.J.; E de Vries, E.G. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br. J. Cancer 2001, 84, 1348–1353. [Google Scholar] [CrossRef]
- Franco, S.; Ozkaynak, M.F.; Sandoval, C.; Tugal, O.; Jayabose, S.; Engelhardt, M.; Moore, M.A.S. Telomere dynamics in childhood leukemia and solid tumors: A follow-up study. Leukemia 2003, 17, 401–410. [Google Scholar] [CrossRef]
- Cupit-Link, M.C.; Kirkland, J.L.; Ness, K.K.; Armstrong, G.T.; Tchkonia, T.; LeBrasseur, N.K.; Armenian, S.H.; Ruddy, K.J.; Hashmi, S.K. Biology of premature ageing in survivors of cancer. ESMO Open 2017, 2, e000250. [Google Scholar] [CrossRef]
- Shim, G.; Ricoul, M.; Hempel, W.M.; Azzam, E.I.; Sabatier, L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. Mutat. Res. Mol. Mech. Mutagen. 2014, 760, 1–17. [Google Scholar] [CrossRef]
- Maeda, T.; Nakamura, K.; Atsumi, K.; Hirakawa, M.; Ueda, Y.; Makino, N. Radiation-associated changes in the length of telomeres in peripheral leukocytes from inpatients with cancer. Int. J. Radiat. Biol. 2012, 89, 106–109. [Google Scholar] [CrossRef]
- Baerlocher, G.M.; Rovó, A.; Müller, A.; Matthey, S.; Stern, M.; Halter, J.; Heim, D.; Rischewski, J.; Gratwohl, A.; Tichelli, A. Cellular senescence of white blood cells in very long-term survivors after allogeneic hematopoietic stem cell transplantation: The role of chronic graft-versus-host disease and female donor sex. Blood 2009, 114, 219–222. [Google Scholar] [CrossRef]
- Eipel, M.; Mayer, F.; Arent, T.; Ferreira, M.R.; Birkhofer, C.; Gerstenmaier, U.; Costa, I.G.; Ritz-Timme, S.; Wagner, W. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging 2016, 8, 1034–1048. [Google Scholar] [CrossRef]
- Thornley, I.; Sutherland, R.; Wynn, R.; Nayar, R.; Sung, L.; Corpus, G.; Kiss, T.; Lipton, J.; Doyle, J.; Saunders, F.; et al. Early hematopoietic reconstitution after clinical stem cell transplantation: Evidence for stochastic stem cell behavior and limited acceleration in telomere loss. Blood 2002, 99, 2387–2396. [Google Scholar] [CrossRef]
- Helby, J.; Petersen, S.L.; Kornblit, B.; Nordestgaard, B.G.; Mortensen, B.K.; Bojesen, S.E.; Sengeløv, H. Mononuclear Cell Telomere Attrition Is Associated with Overall Survival after Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation for Hematologic Malignancies. Biol. Blood Marrow Transplant. 2019, 25, 496–504. [Google Scholar] [CrossRef]
- Andriani, G.A.; Almeida, V.P.; Faggioli, F.; Mauro, M.; Tsai, W.L.; Santambrogio, L.; Maslov, A.; Gadina, M.; Campisi, J.; Vijg, J.; et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci. Rep. 2016, 6, 35218. [Google Scholar] [CrossRef]
- Uziel, O.; Lahav, M.; Shargian, L.; Beery, E.; Pasvolsky, O.; Rozovski, U.; Raanani, P.; Yeshurun, M. Premature ageing following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2020, 55, 1438–1446. [Google Scholar] [CrossRef]
- Ponnappan, S.; Ponnappan, U. Aging and immune function: Molecular mechanisms to interventions. Antioxid. Redox Signal. 2011, 14, 1551–1585. [Google Scholar] [CrossRef]
- Starr, J.M.; Shiels, P.G.; Harris, S.E.; Pattie, A.; Pearce, M.S.; Relton, C.L.; Deary, I.J. Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mech. Ageing Dev. 2008, 129, 745–751. [Google Scholar] [CrossRef]
- Thongon, N.; Ma, F.; Santoni, A.; Marchesini, M.; Fiorini, E.; Rose, A.; Adema, V.; Ganan-Gomez, I.; Groarke, E.M.; Gutierrez-Rodrigues, F.; et al. Hematopoiesis under telomere attrition at the single-cell resolution. Nat. Commun. 2021, 12, 6850. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Ser. Biol. Sci. Med. Sci. 2014, 69 (Suppl. 1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.L.B.; Richardson, D.S. Sex differences in telomeres and lifespan. Aging Cell 2011, 10, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Epel, E.S.; Belury, M.A.; Andridge, R.; Lin, J.; Glaser, R.; Malarkey, W.B.; Hwang, B.S.; Blackburn, E. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav. Immun. 2013, 28, 16–24. [Google Scholar] [CrossRef]
- Ornish, D.; Lin, J.; Daubenmier, J.; Weidner, G.; Epel, E.; Kemp, C.; Magbanua, M.J.M.; Marlin, R.; Yglecias, L.; Carroll, P.R.; et al. Increased telomerase activity and comprehensive lifestyle changes: A pilot study. Lancet Oncol. 2008, 9, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Puterman, E.; Lin, J.; Blackburn, E.; O’Donovan, A.; Adler, N.; Epel, E. The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS ONE 2010, 5, e10837. [Google Scholar] [CrossRef]
- Drosopoulos, W.C.; Deng, Z.; Twayana, S.; Kosiyatrakul, S.T.; Vladimirova, O.; Lieberman, P.M.; Schildkraut, C.L. TRF2 Mediates Replication Initiation within Human Telomeres to Prevent Telomere Dysfunction. Cell Rep. 2020, 33, 108379. [Google Scholar] [CrossRef]
Characteristics | No. (%) or Median (Range) |
---|---|
Sex | |
Male | 47 (53.4) |
Female | 41 (46.6) |
Diagnosis | |
Hematologic malignancy | |
Acute lymphoblastic leukemia | 21 (23.9) |
Myeloid leukemia, myelodysplastic syndrome | 10 (11.4) |
Lymphoma | 12 (13.6) |
Solid tumor | |
Brain tumor | 16 (18.2) |
Sarcoma | 14 (15.9) |
Germ cell tumor | 12 (13.6) |
Others | 3 (3.4) |
Age at diagnosis, y | 13.0 (1–19) |
Age at blood sampling, y | 22.5 (15–34) |
BMI at blood sampling, kg/m2 | 22.3 (14.8–35.3) |
Relapse | |
Yes | 14 (15.9) |
No | 74 (84.1) |
Duration off cancer therapy, mo. | 73 (12–184) |
Chemotherapy | 88 (100) |
Radiotherapy | 38 (43.2) |
Transplantation | |
Allogeneic | 15 (17.0) |
Autologous | 6 (6.8) |
Chronic health conditions | |
Dyslipidemia | 17 (19.3) |
Hormone deficiency | 10 (11.4) |
Ophthalmologic complications | 9 (10.2) |
Obesity, BMI ≥ 30 | 8 (9.09) |
Diabetes | 5 (5.7) |
Secondary cancer | 1 (1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Lee, D.-E.; Hong, Y.; Suh, J.K.; Lee, J.A.; Kim, M.; Park, H.J. Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer. Cancers 2024, 16, 2344. https://doi.org/10.3390/cancers16132344
Park M, Lee D-E, Hong Y, Suh JK, Lee JA, Kim M, Park HJ. Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer. Cancers. 2024; 16(13):2344. https://doi.org/10.3390/cancers16132344
Chicago/Turabian StylePark, Meerim, Dong-Eun Lee, Yuna Hong, Jin Kyung Suh, Jun Ah Lee, Myungshin Kim, and Hyeon Jin Park. 2024. "Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer" Cancers 16, no. 13: 2344. https://doi.org/10.3390/cancers16132344
APA StylePark, M., Lee, D. -E., Hong, Y., Suh, J. K., Lee, J. A., Kim, M., & Park, H. J. (2024). Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer. Cancers, 16(13), 2344. https://doi.org/10.3390/cancers16132344