Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Lymph Node Metastases as Outcome Parameter
1.2. Deep Learning in Histology
1.3. Aim of this Study
2. Materials and Methods
2.1. Patient Cohorts and Inclusion Criteria
2.2. Acquisition of Biopsies
2.3. Scanning and Digitalization
2.4. Region of Interest and Preprocessing (Tessellation)
2.5. Computational Resources and Implementation
2.6. Model Architecture and Hyperparameters
3. Results
3.1. Data Overview
3.2. Performance of the Neural Networks
3.3. Heatmap Visualization of Tile Importance
3.4. Weakly Supervised Training, Additional Clinical Endpoints, and Different Combinations of Training and Testing Groups
4. Discussion
4.1. Strengths and Limitations
4.2. Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Donlon, N.E.; Kammili, A.; Roopnarinesingh, R.; Davern, M.; Power, R.; King, S.; Chmelo, J.; Phillips, A.W.; Donohoe, C.L.; Ravi, N.; et al. FLOT-regimen Chemotherapy and Transthoracic en bloc Resection for Esophageal and Junctional Adenocarcinoma. Ann. Surg. 2021, 274, 814. [Google Scholar] [CrossRef]
- Schmidt, T.; Sicic, L.; Blank, S.; Becker, K.; Weichert, W.; Bruckner, T.; Parakonthun, T.; Langer, R.; Büchler, M.W.; Siewert, J.R.; et al. Prognostic value of histopathological regression in 850 neoadjuvantly treated oesophagogastric adenocarcinomas. Br. J. Cancer. 2014, 110, 1712–1720. [Google Scholar] [CrossRef]
- Cheong, J.H.; Yang, H.K.; Kim, H.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; Kim, H.H.; Lee, H.S.; Lee, K.H.; et al. Predictive test for chemotherapy response in resectable gastric cancer: A multi-cohort, retrospective analysis. Lancet Oncol. 2018, 19, 629–638. [Google Scholar] [CrossRef]
- Tomás, T.C.; Eiriz, I.; Vitorino, M.; Vicente, R.; Gramaça, J.; Oliveira, A.G.; Luz, P.; Baleiras, M.; Spencer, A.S.; Costa, L.L.; et al. Neutrophile-to-lymphocyte, lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios as prognostic and response biomarkers for resectable locally advanced gastric cancer. World J. Gastrointest. Oncol. 2022, 14, 1307–1323. [Google Scholar] [CrossRef]
- McNamee, N.; Nindra, U.; Shahnam, A.; Yoon, R.; Asghari, R.; Ng, W.; Karikios, D.; Wong, M. Haematological and nutritional prognostic biomarkers for patients receiving CROSS or FLOT. J. Gastrointest. Oncol. 2023, 14, 494–503. [Google Scholar] [CrossRef]
- Becker, K.; Langer, R.; Reim, D.; Novotny, A.; Meyer Zum Buschenfelde, C.; Engel, J.; Friess, H.; Hofler, H. Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: A summary of 480 cases. Ann. Surg. 2011, 253, 934–939. [Google Scholar] [CrossRef]
- Jung, J.O.; Crnovrsanin, N.; Wirsik, N.M.; Nienhüser, H.; Peters, L.; Popp, F.; Schulze, A.; Wagner, M.; Müller-Stich, B.P.; Büchler, M.W.; et al. Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer. J. Cancer Res. Clin. Oncol. 2022, 149, 1691–1702. [Google Scholar] [CrossRef]
- Gebauer, F.; Plum, P.S.; Damanakis, A.; Chon, S.H.; Popp, F.; Zander, T.; Quaas, A.; Fuchs, H.; Schmidt, T.; Schröder, W.; et al. Long-Term Postsurgical Outcomes of Neoadjuvant Chemoradiation (CROSS) Versus Chemotherapy (FLOT) for Multimodal Treatment of Adenocarcinoma of the Esophagus and the Esophagogastric Junction. Ann. Surg. Oncol. 2023, 30, 7422–7433. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, L.; Cheng, Z.; Yang, M.; Wang, J.; Lin, C.; Wang, Y.; Huang, L.; Chen, Y.; Peng, S.; et al. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: A retrospective study. BMC Med. 2021, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Velázquez Vega, J.E.; Brat, D.J.; Cooper, L.A.D. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Macenko, M.; Niethammer, M.; Marron, J.S.; Borland, D.; Woosley, J.T.; Guan, X.; Schmitt, C.; Thomas, N.E. A method for normalizing histology slides for quantitative analysis. In Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; Volume 2009, pp. 1107–1110. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2009. [Google Scholar]
- Dolezal, J.M.; Kochanny, S.; Dyer, E.; Srisuwananukorn, A.; Sacco, M.; Howard, F.M.; Li, A.; Mohan, P.; Pearson, A.T. Slideflow: Deep Learning for Digital Histopathology with Real-Time Whole-Slide Visualization. arXiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017. [Google Scholar] [CrossRef]
- Yi, S.; Wei, Y.; Luo, X.; Chen, D. Diagnosis of rectal cancer based on the Xception-MS network. Phys. Med. Biol. 2022, 67, 195002. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Hao, Z.; Yang, Z.; Wang, S.; Zhou, X.; Chang, Q. An xception model based on residual attention mechanism for the classification of benign and malignant gastric ulcers. Sci. Rep. 2022, 12, 15365. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, Y.; Zhou, J.; Zhang, Y.; Wang, D.; Zhang, X.; Chen, B.; Liu, F.; Lv, J.; Cao, Q.; et al. Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images. Gastroenterology 2022, 162, 1948–1961.e7. [Google Scholar] [CrossRef]
- Li, D.; Yuan, S.; Yao, G. Classification of lung nodules based on the DCA-Xception network. J. X-ray Sci. Technol. 2022, 30, 993–1008. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, S. The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express. 2022, 8, 101–108. [Google Scholar] [CrossRef]
- Malve, P.; Gulhane, V. Breast Cancer Data Classification Using Xception-Based Neural Network. SN Comput. Sci. 2023, 4, 734. [Google Scholar] [CrossRef]
- Becker, K.; Mueller, J.D.; Schulmacher, C.; Ott, K.; Fink, U.; Busch, R.; Böttcher, K.; Siewert, J.R.; Höfler, H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003, 98, 1521–1530. [Google Scholar] [CrossRef]
- Ilse, M.; Tomczak, J.M.; Welling, M. Attention-based Deep Multiple Instance Learning. arXiv 2022. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef]
- Shao, Z.; Bian, H.; Chen, Y.; Wang, Y.; Zhang, J.; Ji, X.; Zhang, Y. TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2021; Volume 34, pp. 2136–2147. Available online: https://proceedings.neurips.cc/paper/2021/hash/10c272d06794d3e5785d5e7c5356e9ff-Abstract.html (accessed on 25 June 2023).
- Bremm, J.; Brunner, S.; Celik, E.; Damanakis, A.; Schlösser, H.; Fuchs, H.F.; Schmidt, T.; Zander, T.; Maintz, D.; Bruns, C.J.; et al. Correlation of primary tumor volume and histopathologic response following neoadjuvant treatment of esophageal adenocarcinoma. Eur. J. Surg. Oncol. 2024, 50, 108003. [Google Scholar] [CrossRef]
- Yoon, C.; Lu, J.; Kim, B.J.; Cho, S.J.; Kim, J.H.; Moy, R.H.; Ryeom, S.W.; Yoon, S.S. Patient-Derived Organoids from Locally Advanced Gastric Adenocarcinomas Can Predict Resistance to Neoadjuvant Chemotherapy. J. Gastrointest. Surg. 2023, 27, 666–676. [Google Scholar] [CrossRef]
- Zhao, J.J.; Yap, D.W.T.; Chan, Y.H.; Tan, B.K.J.; Teo, C.B.; Syn, N.L.; Smyth, E.C.; Soon, Y.Y.; Sundar, R. Low Programmed Death-Ligand 1-Expressing Subgroup Outcomes of First-Line Immune Checkpoint Inhibitors in Gastric or Esophageal Adenocarcinoma. J. Clin. Oncol. 2022, 40, 392–402. [Google Scholar] [CrossRef]
- Hoeppner, J.; Lordick, F.; Brunner, T.; Glatz, T.; Bronsert, P.; Röthling, N.; Schmoor, C.; Lorenz, D.; Ell, C.; Hopt, U.T.; et al. ESOPEC: Prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016, 16, 503. [Google Scholar] [CrossRef] [PubMed]
Clinical Input Variables | Cologne Patients (n = 78) | Heidelberg Patients (n = 59) | p-Value |
---|---|---|---|
Sex—male vs. female | 69 (88.5%), 9 (11.5%) | 51 (86.4%), 8 (13.6%) | 0.722 † |
Age (in years) | mean: 61.3 [59.4–63.1] | mean: 60.9 [58.0–63.9] | 0.826 # |
ASA classification—1, 2 vs. 3 | 20 (25.6%), 49 (62.8%), 9 (11.5%) | 1 (1.7%), 33 (55.9%), 25 (42.4%) | <0.001 † |
BMI (in kg/m2) | mean: 27.7 [26.6–28.7] | mean: 26.1 [24.7–27.5] | 0.071 # |
uT/cT status—T2, T3 vs. T4 | 9 (11.5%), 64 (82.1%), 5 (6.4%) | 6 (10.2%), 50 (84.7%), 3 (5.1%) | 0.910 † |
cN status—cN0 vs. cN+ | 8 (10.3%), 70 (89.7%) | 5 (8.5%), 54 (91.5%) | 0.725 † |
Grading—G1, G2 vs. G3 | 0 (0.0%), 31 (39.7%), 47 (60.3%) | 5 (8.5%), 24 (40.7%), 30 (50.8%) | 0.028 † |
Any severe PMH—yes vs. no | 15 (19.2%), 63 (80.8%) | 20 (33.9%), 39 (66.1%) | 0.051 † |
Cardiovascular PMH—yes vs. no | 46 (59.0%), 32 (41.0%) | 28 (47.5%), 31 (52.5%) | 0.180 † |
Pulmonary PMH—yes vs. no | 10 (12.8%), 68 (87.2%) | 9 (15.3%), 50 (84.7%) | 0.683 † |
Metabolic PMH—yes vs. no | 14 (17.9%), 64 (82.1%) | 12 (20.3%), 47 (79.7%) | 0.724 † |
Outcome variables | |||
ypT status—ypT0/1/2 vs. ypT3/4 | 33 (42.3%), 45 (57.7%) | 19 (32.2%), 40 (67.8%) | 0.733 † |
ypN status—ypN0 vs. ypN+ | 33 (42.3%), 45 (57.7%) | 23 (39.0%), 36 (61.0%) | 0.695 † |
Number of positive lymph nodes | mean: 4.1 [2.5–5.8] | mean: 3.7 [1.9–5.5] | 0.732 # |
Number of resected lymph nodes | mean: 36.8 [33.8–39.8] | mean: 29.5 [26.8–32.1] | <0.001 # |
Ratio pos./all lymph nodes (in %) | mean: 10.1 [6.3–14.0] | mean: 11.8 [6.9–16.7] | 0.588 # |
Becker grade—1a/1b, 2 vs. 3 | 18 (23.1%), 25 (32.1%), 35 (44.9%) | 16 (27.1%), 18 (30.5%), 25 (42.4%) | 0.955 † |
Residual vital tumor (in %) | mean: 43.9 [36.4–51.3] | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-O.; Pisula, J.I.; Beyerlein, X.; Lukomski, L.; Knipper, K.; Abu Hejleh, A.P.; Fuchs, H.F.; Tolkach, Y.; Chon, S.-H.; Nienhüser, H.; et al. Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal Adenocarcinoma. Cancers 2024, 16, 2445. https://doi.org/10.3390/cancers16132445
Jung J-O, Pisula JI, Beyerlein X, Lukomski L, Knipper K, Abu Hejleh AP, Fuchs HF, Tolkach Y, Chon S-H, Nienhüser H, et al. Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal Adenocarcinoma. Cancers. 2024; 16(13):2445. https://doi.org/10.3390/cancers16132445
Chicago/Turabian StyleJung, Jin-On, Juan I. Pisula, Xenia Beyerlein, Leandra Lukomski, Karl Knipper, Aram P. Abu Hejleh, Hans F. Fuchs, Yuri Tolkach, Seung-Hun Chon, Henrik Nienhüser, and et al. 2024. "Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal Adenocarcinoma" Cancers 16, no. 13: 2445. https://doi.org/10.3390/cancers16132445
APA StyleJung, J. -O., Pisula, J. I., Beyerlein, X., Lukomski, L., Knipper, K., Abu Hejleh, A. P., Fuchs, H. F., Tolkach, Y., Chon, S. -H., Nienhüser, H., Büchler, M. W., Bruns, C. J., Quaas, A., Bozek, K., Popp, F., & Schmidt, T. (2024). Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal Adenocarcinoma. Cancers, 16(13), 2445. https://doi.org/10.3390/cancers16132445