Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Group
2.2. DNA Extraction and Genotyping
2.3. Determination of the TRAF2, TAB2 and IKBKB Proteins
2.4. Determination of the Ki-67 Labeling Index
2.5. Statistical Data Analysis
3. Results
Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Advanced Anesthesia Review. Advanced Anesthesia Review; Oxford University Press: New York, NY, USA, 2023. [Google Scholar]
- Molitch, M.E. Pituitary incidentalomas. Best. Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Tritos, N.A.; Miller, K.K. Diagnosis and Management of Pituitary Adenomas: A Review. J. Am. Med. Assoc. 2023, 329, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, Y.; Lyu, L.; Yin, S.; Yu, Y.; Jiang, S.; Zhou, P. Incidence, demographics, and survival of patients with primary pituitary tumors: A SEER database study in 2004–2016. Sci. Rep. 2021, 11, 15155. [Google Scholar] [CrossRef] [PubMed]
- Stankevič, A.; Zinkevičiūtė, E.; Steponavičienė, L.; Obžigailov, J.; Kalvaitis, R. Vėžys Lietuvoje 2017 Metais. Nacionalinio Vėžio Instituto Vėžio Kontrolės ir Profilaktikos Centras. Vėžio Registras. Available online: https://www.nvi.lt/uploads/pdf/Vezio%20registras/V%C4%97%C5%BEys%20Lietuvoje%202017.pdf (accessed on 1 March 2024).
- Molitch, M.E. Diagnosis and treatment of pituitary adenomas: A review. J. Am. Med. Assoc. 2017, 317, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Rovit, R.L.; Jack, A.; Fein, M. Pituitary apoplexy: A review and reappraisal. J. Neurosurg. 1972, 37, 280–288. [Google Scholar] [CrossRef]
- Harris, F.S.; Rhoton, A.L. Anatomy of the cavernous A microsurgical study sinus. J. Neurosurg. 1976, 45, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, K.C.; Kim, S.H. Cranial nerve palsies accompanying pituitary tumour. J. Clin. Neurosci. 2007, 14, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Mouchtouris, N.; Smit, R.D.; Piper, K.; Prashant, G.; Evans, J.J.; Karsy, M. A review of multiomics platforms in pituitary adenoma pathogenesis. Front. Biosci. Landmark Biosci. Res. Inst. 2022, 27, 77. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Aghi, M.K. The Role of Single-Nucleotide Polymorphisms in Pituitary Adenomas Tumorigenesis. Cancers 2019, 11, 1977. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.; Verstrepen, L.; Beyaert, R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem. Pharmacol. 2016, 116, 1–10. [Google Scholar] [CrossRef]
- Siegmund, D.; Wagner, J.; Wajant, H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers 2022, 14, 4055. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, Y.N.; Kuehl, W.M. A Critical Role for the NFkB Pathway in Multiple Myeloma [Internet]. 2010. Available online: www.impactjournals.com/oncotarget/www.impactjournals.com/oncotarget/ (accessed on 1 March 2024).
- Zhang, B.; Calado, D.P.; Wang, Z.; Fröhler, S.; Köchert, K.; Qian, Y.; Koralov, S.B.; Schmidt-Supprian, M.; Sasaki, Y.; Unitt, C.; et al. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression. Cell Rep. 2015, 11, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yao, J.; Cui, D.; Zheng, W.; Liu, Y.; Lou, G.; Ye, B.; Shui, L.; Sun, Y.; Zhao, Y.; et al. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ. 2023, 30, 1550–1562. [Google Scholar] [CrossRef]
- Rothe, M.; Pan, M.G.; Henzel, W.J.; Ayres, T.M.; Goeddel’, D.V. The TNFR2-TRAF Signaling Complex Contains Two Novel Proteins Related to Baculoviral Inhibitor of Apoptosis Proteins. Cell 1995, 83, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Rothe, M.; Wong, S.C.; Henzel, W.J.; Goeddel, D.V. A Novel Family of Putative Signal Transducers Associated with the Cytoplasmic Domain of the 75 kDa Tumor Necrosis Factor Receptor. Cell 1994, 76, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Fan, H.; Tang, S.; Weng, J. TAB2 Promotes the Biological Functions of Head and Neck Squamous Cell Carcinoma Cells via EMT and PI3K Pathway. Dis. Markers 2022, 2022, 1217918. [Google Scholar] [CrossRef]
- Huang, X.; Shen, C.; Zhang, Y.; Li, Q.; Li, K.; Wang, Y.; Song, Y.; Su, M.; Zhou, B.; Wang, W. Associations between TAB2 Gene Polymorphisms and Epithelial Ovarian Cancer in a Chinese Population. Dis. Markers 2019, 2019, 8012979. [Google Scholar] [CrossRef] [PubMed]
- Takaesu, G.; Ninomiya-Tsuji, J.; Kishida, S.; Li, X.; Stark, G.R.; Matsumoto, K. Interleukin-1 (IL-1) Receptor-Associated Kinase Leads to Activation of TAK1 by Inducing TAB2 Translocation in the IL-1 Signaling Pathway. Mol. Cell Biol. 2001, 21, 2475–2484. [Google Scholar] [CrossRef]
- Xu, Y.R.; Lei, C.Q. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front. Immunol. 2021, 11, 608976. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, X.; Yang, W.; Qi, Y.; Yu, H.; Wang, X.; Hu, H. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cell. Mol. Immunol. 2021, 18, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; He, W.; Guan, W.; Hou, F.; Yan, P.; Xu, J.; Xie, X. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Hinz, M.; Scheidereit, C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep. 2014, 15, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, F.; Zhu, H.; Murray, B.W.; Shevchenko, A.; Bennett, B.L.; Li, J.; Young, D.B.; Barbosa, M.; Mann, M.; Manning, A.; et al. IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 1997, 278, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yang, Z.; Carter-Cooper, B.; Chang, E.T.; Choi, E.Y.; Kallakury, B.; Liu, X.; Lapidus, R.G.; Cullen, K.J.; Dan, H. Suppression of migration, invasion, and metastasis of cisplatin-resistant head and neck squamous cell carcinoma through IKKβ inhibition. Clin. Exp. Metastasis 2020, 37, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, W.; Jia, Q.; Dai, J.; Chen, N.; Chen, Y.; Gu, D.; Huo, X.; Chen, J. Ikbkb rs2272736 is associated with gastric cancer survival. Pharmgenomics 2020, 13, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Farrell, W.E.; Clayton, R.N. Molecular pathogenesis of pituitary tumors. Front. Neuroendocrinol. 2000, 21, 174–198. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Kaiser, U.B.; Lopes, M.B.; Bertherat, J.; Syro, L.V.; Raverot, G.; Ho, K.K. Clinical Biology of the Pituitary Adenoma. Endocr. Rev. 2022, 43, 1003–1037. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Chen, X.F.; Wang, T.; Wang, Z.; Liao, C.; Wang, Z.; Huang, R.; Wang, D.; Li, X.; Wu, L.; et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J. Exp. Med. 2017, 214, 597–607. [Google Scholar] [CrossRef]
- Kwon, H.J.; Choi, G.E.; Ryu, S.; Kwon, S.J.; Kim, S.C.; Booth, C.; Nichols, K.E.; Kim, H.S. Stepwise phosphorylation of p65 promotes NF-ΰ B activation and NK cell responses during target cell recognition. Nat. Commun. 2016, 7, 11686. [Google Scholar] [CrossRef]
- Song, W.; Mazzieri, R.; Yang, T.; Gobe, G.C. Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Front. Immunol. 2017, 8, 1106. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.; Kashiwada, T.; Krejci, P.; Meyer, A.N.; Casale, M.; Hallowell, M.; Wilcox, W.R.; Donoghue, D.J.; Thompson, L.M. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer. PLoS ONE 2014, 9, e86470. [Google Scholar] [CrossRef] [PubMed]
- Sau, A.; Lau, R.; Cabrita, M.A.; Nolan, E.; Crooks, P.A.; Visvader, J.E.; Pratt, M.A.C. Persistent Activation of NF-κB in BRCA1-Deficient Mammary Progenitors Drives Aberrant Proliferation and Accumulation of DNA Damage. Cell Stem Cell 2016, 19, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bardhan, K.; Yang, D.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Liu, K. NF-κB directly regulates fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J. Biol. Chem. 2012, 287, 25530–25540. [Google Scholar] [CrossRef] [PubMed]
- Peramuhendige, P.; Marino, S.; Bishop, R.T.; De Ridder, D.; Khogeer, A.; Baldini, I.; Idris, A.I. TRAF2 in osteotropic breast cancer cells enhances skeletal tumour growth and promotes osteolysis OPEN. Sci. Rep. 2018, 8, 39. Available online: www.nature.com/scientificreports (accessed on 28 April 2024). [CrossRef] [PubMed]
- Dai, H.; Chen, H.; Xu, J.; Zhou, J.; Shan, Z.; Yang, H.; Zhou, X.; Guo, F. The ubiquitin ligase CHIP modulates cellular behaviors of gastric cancer cells by regulating TRAF2. Cancer Cell Int. 2019, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, J.; Ruan, J.; Mi, Y.; Hu, Q.; Wang, Z.; Wei, B. CPNE1 is a useful prognostic marker and is associated with TNF receptor-associated factor 2 (TRAF2) expression in prostate cancer. Med. Sci. Monit. 2017, 23, 5504–5514. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ding, W.; Wu, J.; Ma, R.; Pan, Z.; Mao, X. TRAF2 Knockdown in Nasopharyngeal Carcinoma Induced Cell Cycle Arrest and Enhanced the Sensitivity to Radiotherapy. Biomed. Res. Int. 2020, 2020, 1641340. [Google Scholar]
- Song, Y.; Song, B.; Yu, Z.; Li, A.; Xia, L.; Zhao, Y.; Lu, Z.; Li, Z. Silencing of CPNE1-TRAF2 Axis Restrains the Development of Pancreatic Cancer. Front. Biosci. 2023, 28, 316. [Google Scholar] [CrossRef]
- Wei, B.; Liang, J.; Hu, J.; Mi, Y.; Ruan, J.; Zhang, J.; Wang, Z.; Hu, Q.; Jiang, H.; Ding, Q. TRAF2 is a valuable prognostic biomarker in patients with prostate cancer. Med. Sci. Monit. 2017, 23, 4192–4204. [Google Scholar] [CrossRef]
- Zheng, M.; Morgan-Lappe, S.E.; Yang, J.; Bockbrader, K.M.; Pamarthy, D.; Thomas, D.; Fesik, S.W.; Sun, Y. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res. 2008, 68, 7570–7578. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Zeng, M.; Sinha, I.; Polin, L.; Wei, W.-Z.; Rathinam, C.; Flavell, R.; Massoumi, R.; Venuprasad, K. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat. Immunol. 2011, 12, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Safina, A.; Sotomayor, P.; Limoge, M.; Morrison, C.; Bakin, A.V. TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells. Mol. Cancer Res. 2011, 8, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yeddula, N.; Leblanc, M.; Ke, E.; Zhang, Y.; Oldfield, E.; Shaw, R.J.; Verma, I.M. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat. Cell Biol. 2012, 3, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Splittgerber, R.; Yull, F.E.; Kantrow, S.; Ayers, G.D.; Karin, M.; Richmond, A. Conditional ablation of Ikkb inhibits melanoma tumor development in mice. J. Clin. Investig. 2010, 120, 2563–2574. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Wagner, M.; Aleksic, T.; von Wichert, G.; Weber, C.K.; Adler, G.; Wirth, T. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo. J. Clin. Investig. 2007, 117, 1502–1513. [Google Scholar] [CrossRef]
- Aleksic, T.; Baumann, B.; Wagner, M.; Adler, G.; Wirth, T.; Weber, C.K. Cellular immune reaction in the pancreas is induced by constitutively active IκB kinase-2. Gut 2007, 56, 227–236. [Google Scholar] [CrossRef]
Polymorphism | RT-PCR Condition Protocol |
---|---|
TRAF2 (rs867186) TAB2 (rs237025) IKBKB (rs13278372) | 95 °C 10 min 45 cycles 92 °C 15 s 60 °C 60 s |
Characteristics | Group | p-Value | ||
---|---|---|---|---|
PA Group n (%) | Control Group n (%) | |||
Gender | Male | 56 (40.3) | 116 (36.3) | 0.412 1 |
Female | 83 (59.7) | 204 (63.7) | ||
Age Mean (St. deviation) | 53.88 (13.96) | 55.78 (17.95) | 0.223 2 | |
Invasiveness: Invasive PA/Noninvasive PA | 83/54 | NA | - | |
Size: Micro PA/Macro PA | 48/91 | NA | - | |
Ki67: <1% 1% >1% | 52 10 14 | NA | - |
Gene, SNP Genotype, Allele | PA Group, n (%) | Control Group, n (%) | p-Value |
---|---|---|---|
TRAF2 rs867186 AA AG GG Total Allele A G | 110 (79.1) 24 (17.3) 5 (3.6) 139 (100) 244 (87.8) 34 (12.2) | 177 (55.3) 67 (20.9) 76 (23.8) 320 (100) 421 (65.8) 219 (34.2) | <0.001 <0.001 |
TAB2 rs237025 GG GA AA Total Allele G A | 46 (33.1) 68 (48.9) 25 (18.0) 139 (100) 160 (57.6) 118 (42.4) | 100 (31.3) 161 (50.3) 59 (18.4) 320 (100) 361 (56.4) 279 (43.6) | 0.927 0.747 |
IKBKB rs13278372 CC AC AA Total Allele C A | 111 (79.9) 27 (19.4) 1 (0.7) 139 (100) 249 (89.6) 29 (10.4) | 255 (79.7) 60 (18.8) 5 (1.6) 320 (100) 570 (89.1) 70 (10.9) | 0.759 0.820 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
TRAF2 rs867186 | ||||
Codominant | AG vs. AA GG vs. AA | 0.576 (0.341–0.973) 0.106 (0.042–0.270) | <0.001 <0.001 | 528.616 |
Dominant | GG + AG vs. AA | 0.326 (0.205–0.519) | <0.001 | 540.141 |
Recessive | GG vs. AA + AG | 0.120 (0.047–0.303) | <0.001 | 531.076 |
Overdominant | AG vs. AA + GG | 0.788 (0.471–1.320) | 0.365 | 564.121 |
Additive | G | 0.401 (0.286–0.563) | <0.001 | 529.598 |
TAB2 rs237025 | ||||
Codominant | GA vs. GG AA vs. GG | 0.918 (0.586–1.440) 0.921 (0.514–1.651) | 0.710 0.783 | 566.808 |
Dominant | AA + GA vs. GG | 0.919 (0.601–1.406) | 0.697 | 564.808 |
Recessive | AA vs. GG + GA | 0.970 (0.579–1.627) | 0.908 | 564.946 |
Overdominant | GA vs. GG + AA | 0.946 (0.635–1.409) | 0.784 | 564.884 |
Additive | A | 0.954 (0.716–1.270) | 0.745 | 564.853 |
IKBKB rs13278372 | ||||
Codominant | AC vs. CC AA vs. CC | 1.034 (0.623–1.715) 0.459 (0.053–3.978) | 0.898 0.480 | 566.346 |
Dominant | AA + AC vs. CC | 0.990 (0.603–1.625) | 0.967 | 564.957 |
Recessive | AA vs. CC + AC | 0.457 (0.053–3.944) | 0.476 | 564.362 |
Overdominant | AC vs. CC + AA | 1.045 (0.630–1.732) | 0.865 | 564.930 |
Additive | A | 0.949 (0.603–1.495) | 0.822 | 564.908 |
Gene, SNP Genotype, allele | Control Group, n (%) | Microadenoma Group, n (%) | p-Value | Macroadenoma Group n (%) | p-Value |
---|---|---|---|---|---|
TRAF2 rs867186 AA AG GG Total Allele A G | 177 (55.3) 67 (20.9) 76 (23.8) 320 (100) 421 (65.8) 219 (34.2) | 39 (81.3) 9 (18.8) 0 (0.0) 48 (100) 87 (90.6) 9 (9.4) | <0.001 <0.001 | 71 (78.0) 15 (16.5) 5 (5.5) 91(100) 157 (86.3) 25 (13.7) | <0.001 <0.001 |
TAB2 rs237025 GG GA AA Total Allele G A | 100 (31.3) 161 (50.3) 59 (18.4) 320 (100) 361 (56.4) 279 (43.6) | 18 (37.5) 21 (43.8) 9 (18.7) 48 (100) 57 (59.4) 39 (40.6) | 0.646 0.584 | 28 (30.8) 47 (51.6) 16 (17.6) 91 (100) 103 (56.6) 79 (43.4) | 0.971 0.964 |
IKBKB rs13278372 CC AC AA Total Allele C A | 255 (79.7) 60 (18.8) 5 (1.6) 320 (100) 570 (89.1) 70 (10.9) | 40 (83.3) 7 (14.6) 1 (2.1) 48 (100) 87 (90.6) 9 (9.4) | 0.765 0.645 | 71 (78.0) 20 (22.0) 0 (0.0) 91 (100) 162 (89.0) 20 (11.0) | 0.401 0.984 |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
Microadenoma | ||||
TRAF2 rs867186 | ||||
Codominant | AG vs. AA GG vs. AA | 0.610 (0.280–1.326) - | 0.212 - | 263.298 |
Dominant | GG + AG vs. AA | 0.286 (0.134–0.609) | 0.001 | 274.342 |
Recessive | GG vs. AA + AG | - | - | - |
Overdominant | AG vs. AA + GG | 0.871 (0.402–1.888) | 0.727 | 286.864 |
Additive | G | 0.325 (0.176–0.599) | <0.001 | 267.349 |
TAB2 rs237025 | ||||
Codominant | GA vs. GG AA vs. GG | 0.725 (0.368–1.426) 0.847 (0.358–2.008) | 0.351 0.707 | 288.124 |
Dominant | AA + GA vs. GG | 0.758 (0.403–1.423) | 0.388 | 286.257 |
Recessive | AA vs. GG + GA | 1.021 (0.469–2.222) | 0.959 | 286.986 |
Overdominant | GA vs. GG + AA | 0.768 (0.417–1.415) | 0.397 | 286.267 |
Additive | A | 0.884 (0.571–1.371) | 0.583 | 286.685 |
IKBKB rs13278372 | ||||
Codominant | AC vs. CC AA vs. CC | 0.744 (0.318–1.742) 1.275 (0.145–11.198) | 0.495 0.827 | 286.432 |
Dominant | AA + AC vs. CC | 0.785 (0.153–1.758) | 0.556 | 286.626 |
Recessive | AA vs. CC + AC | 1.340 (0.153–11.726) | 0.791 | 286.923 |
Overdominant | AC vs. CC + AA | 0.740 (0.316–1.730) | 0.487 | 286.478 |
Additive | A | 0.849 (0.416–1.734) | 0.653 | 286.779 |
Macroadenoma | ||||
TRAF2 rs867186 | ||||
Codominant | AG vs. AA GG vs. AA | 0.558 (0.299–1.042) 0.164 (0.064–0.422) | 0.067 <0.001 | 416.570 |
Dominant | GG + AG vs. AA | 0.349 (0.203–0.600) | <0.001 | 420.363 |
Recessive | GG vs. AA + AG | 0.187 (0.073–0.477) | <0.001 | 418.170 |
Overdominant | AG vs. AA + GG | 0.745 (0.403–1.380) | 0.349 | 435.671 |
Additive | G | 0.447 (0.305–0.656) | <0.001 | 415.305 |
TAB2 rs237025 | ||||
Codominant | GA vs. GG AA vs. GG | 1.043 (0.613–1.772) 0.969 (0.484–1.938) | 0.887 0.928 | 438.523 |
Dominant | AA + GA vs. GG | 1.023 (0.618–1.693) | 0.930 | 436.574 |
Recessive | AA vs. GG + GA | 0.944 (0.513–1.735) | 0.852 | 436.547 |
Overdominant | GA vs. GG + AA | 1.055 (0.662–1.681) | 0.822 | 434.531 |
Additive | A | 0.992 (0.708–1.390) | 0.964 | 436.580 |
IKBKB rs13278372 | ||||
Codominant | AC vs. CC AA vs. CC | 1.197 (0.677–2.118) - | 0.536 - | 435.686 |
Dominant | AA + AC vs. CC | 1.105 (0.627–1.946) | 0.729 | 434.463 |
Recessive | AA vs. CC + AC | - | - | - |
Overdominant | AC vs. CC + AA | 1.221 (0.690–2.159) | 0.493 | 436.121 |
Additive | A | 1.005 (0.594–1.701) | 0.984 | 436.581 |
Gender | Ki-67 LI | p-Value | ||
---|---|---|---|---|
<1% | 1% | >1% | ||
Females | 25 (48.1%) | 7 (70.0%) | 6 (42.9%) | 0.375 |
Males | 27 (51.9%) | 3 (30%) | 8 (57.1%) |
Size | Ki-67 LI | p-Value | ||
---|---|---|---|---|
<1% | 1% | >1% | ||
Micro A n = 21 (27.6%) | 11 (21.2%) | 4 (40.0%) | 6 (42.9%) | 0.176 |
Macro PA n = 55 (72.4%) | 41 (78.8%) | 6 (60.0%) | 8 (57.1%) |
Invasiveness | Ki-67 LI | p-Value | ||
---|---|---|---|---|
<1% | 1% | >1% | ||
Noninvasive PA n = 24 (33.8%) | 20 (40.8%) | 2 (20.0%) | 2 (16.7%) | 0.173 |
Invasive PA n = 47 (66.2%) | 29 (59.2%) | 8 (80.0%) | 10 (83.3%) |
Gene, SNP Genotype, Allele | <1% (%) | 1% (%) | >1% (%) | p-Value |
---|---|---|---|---|
TRAF2 rs867186 AA AG GG Total Allele A G | 39 (75.0) 10 (19.2) 3 (5.8) 52 (100) 88 (84.6) 16 (15.4) | 8 (80.0) 2 (20.0) 0 (0.0) 10 (100) 18 (90.0) 2(10.0) | 12 (85.7) 2 (14.3) 0 (0.00) 14 (100) 26 (92.9) 2 (7.1) | 0.787 0.469 |
TAB2 rs237025 GG GA AA Total Allele G A | 13 (25.0) 30 (57.7) 9 (17.3) 52 (100) 56 (53.8) 48 (46.2) | 7 (70.0) 2 (20.0) 1 (10.0) 10(100) 16 (80.0) 4 (20.0) | 5 (35.7) 6 (42.9) 3 (21.4) 14 (100) 16 (57.1) 12 (42.9) | 0.084 0.095 |
IKBKB rs13278372 CC AC AA Total Allele C A | 42 (80.8) 9 (17.3) 1 (1.9) 52 (100) 93 (89.4) 11 (10.6) | 7 (70.0) 3 (30.0) 0 (0.0) 10 (100) 17 (85.0) 3 (15.0) | 12 (85.7) 2 (14.3) 0 (0.0) 14 (100) 26 (92.9) 2 (7.1) | 0.820 0.682 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaliunas, B.R.; Gedvilaite-Vaicechauskiene, G.; Kriauciuniene, L.; Tamasauskas, A.; Liutkeviciene, R. Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers 2024, 16, 2509. https://doi.org/10.3390/cancers16142509
Zaliunas BR, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R. Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers. 2024; 16(14):2509. https://doi.org/10.3390/cancers16142509
Chicago/Turabian StyleZaliunas, Balys Remigijus, Greta Gedvilaite-Vaicechauskiene, Loresa Kriauciuniene, Arimantas Tamasauskas, and Rasa Liutkeviciene. 2024. "Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas" Cancers 16, no. 14: 2509. https://doi.org/10.3390/cancers16142509
APA StyleZaliunas, B. R., Gedvilaite-Vaicechauskiene, G., Kriauciuniene, L., Tamasauskas, A., & Liutkeviciene, R. (2024). Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers, 16(14), 2509. https://doi.org/10.3390/cancers16142509