Impact of Driver Mutations on Metastasis-Free Survival in Uveal Melanoma: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Data Source and Search Methods
2.2. Study Selection
2.3. Data Extraction and Outcomes
- -
- Study characteristics: year of publication, sample size, mean follow-up, genetic mutations, patients tested for each mutation, the molecular test used, the sample used for analysis (enucleation or biopsy), and survival analysis (overall survival, disease-specific death or metastasis-free survival) including hazard ratio for each variable;
- -
- Primary outcome: metastasis-free survival in patients with UM with BAP1, GNA11, GNAQ, SF3B1, or E1FAX mutations. Hazard ratios from univariate models and 95% CI values were obtained from the main manuscript or Supplementary Materials when available. When hazard ratios were not presented, but there were sufficient data in Kaplan–Meier diagrams, these were estimated by comparing failure rates between the mutated and wild-type groups at different time intervals, and failure rates were found by dividing the number of events by the number of individuals at risk at the start of each interval [11]. The results from the Silva et al. study were obtained directly from the initial data following a reanalysis.
2.4. Assessment of Risk of Bias and Quality of Studies
2.5. Data Synthesis and Analysis
3. Results
3.1. Literature Search and Study Characteristics
3.2. BAP1 Mutation and BAP1 Stain
3.3. GNAQ Mutation
3.4. GNA11 Mutation
3.5. SF3B1 Mutation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.-H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal Melanoma. Nat. Rev. Dis. Primers 2020, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Pavlick, A.C.; Finger, P.T. Systemic Evaluation and Management of Patients with Metastatic Uveal Melanoma. In Ryan’s Retina, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 2608–2612. [Google Scholar]
- Kujala, E.; Mäkitie, T.; Kivelä, T. Very Long-Term Prognosis of Patients with Malignant Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4651. [Google Scholar] [CrossRef]
- Simpson, E.R.; Gallie, B.L.; Saakyan, S.; Amiryan, A.; Finger, P.T.; Chin, K.J.; Seregard, S.; Fili, M.; Wilson, M.; Haik, B.; et al. International Validation of the American Joint Committee on Cancer’s 7th Edition Classification of Uveal Melanoma. JAMA Ophthalmol. 2015, 133, 376. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, P.; Mäkitie, T.; Kujala, E.; Kivelä, T. Microcirculation and Tumor-Infiltrating Macrophages in Choroidal and Ciliary Body Melanoma and Corresponding Metastases. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1. [Google Scholar] [CrossRef] [PubMed]
- Griewank, K.G.; Van De Nes, J.; Schilling, B.; Moll, I.; Sucker, A.; Kakavand, H.; Haydu, L.E.; Asher, M.; Zimmer, L.; Hillen, U.; et al. Genetic and Clinico-Pathologic Analysis of Metastatic Uveal Melanoma. Mod. Pathol. 2014, 27, 175–183. [Google Scholar] [CrossRef]
- Bornfeld, N.; Prescher, G.; Becher, R.; Hirche, H.; Jöckel, K.-H.; Horsthemke, B. Prognostic Implications of Monosomy 3 in Uveal Melanoma. Lancet 1996, 347, 1222–1225. [Google Scholar] [CrossRef]
- Dogrusöz, M.; Jager, M.J. Genetic Prognostication in Uveal Melanoma. Acta Ophthalmol. 2018, 96, 331–347. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical Methods for Incorporating Summary Time-to-Event Data into Meta-Analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef]
- Bauer, J.; Kilic, E.; Vaarwater, J.; Bastian, B.C.; Garbe, C.; de Klein, A. Oncogenic GNAQ Mutations Are Not Correlated with Disease-Free Survival in Uveal Melanoma. Br. J. Cancer 2009, 101, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam Ocular Melanoma Study Group; Koopmans, A.E.; Vaarwater, J.; Paridaens, D.; Naus, N.C.; Kilic, E.; De Klein, A. Patient Survival in Uveal Melanoma Is Not Affected by Oncogenic Mutations in GNAQ and GNA11. Br. J. Cancer 2013, 109, 493–496. [Google Scholar] [CrossRef]
- van Essen, T.H.; van Pelt, S.I.; Versluis, M.; Bronkhorst, I.H.; van Duinen, S.G.; Marinkovic, M.; Kroes, W.G.; Ruivenkamp, C.A.; Shukla, S.; de Klein, A.; et al. Prognostic Parameters in Uveal Melanoma and Their Association with BAP1 Expression. Br. J. Ophthalmol. 2014, 98, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Qian, J.; Yuan, Y.; Zhang, R.; Bi, Y.; Meng, F.; Xuan, Y. Clinicopathological Characteristics and Prognosis for Survival after Enucleation of Uveal Melanoma in Chinese Patients: Long-Term Follow-Up. Curr. Eye Res. 2017, 42, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Barnhill, R.L.; Ye, M.; Batistella, A.; Stern, M.-H.; Roman-Roman, S.; Dendale, R.; Lantz, O.; Piperno-Neumann, S.; Desjardins, L.; Cassoux, N.; et al. The Biological and Prognostic Significance of Angiotropism in Uveal Melanoma. Lab. Investig. 2017, 97, 746–759. [Google Scholar] [CrossRef] [PubMed]
- See, T.R.; Stålhammar, G.; Phillips, S.; Grossniklaus, H.E. BAP1 Immunoreactivity Correlates with Gene Expression Class in Uveal Melanoma. Ocul. Oncol. Pathol. 2020, 6, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhou, W.; Qi, X.; Zhang, G.; Girnita, L.; Seregard, S.; Grossniklaus, H.E.; Yao, Z.; Zhou, X.; Stålhammar, G. Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks. Cancers 2019, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Ait Rais, K.; Salviat, F.; Algret, N.; Simaga, F.; Barnhill, R.; Gardrat, S.; Servois, V.; Mariani, P.; Piperno-Neumann, S.; et al. Association of Partial Chromosome 3 Deletion in Uveal Melanomas With Metastasis-Free Survival. JAMA Ophthalmol. 2020, 138, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.; Jha, J.; Singh, M.K.; Singh, L.; Sen, S.; Kaur, J.; Bajaj, M.S.; Pushker, N. DNA Damage Response Proteins and Its Role in Tumor Progression of Uveal Melanoma with Patient Outcome. Clin. Transl. Oncol. 2020, 22, 1472–1480. [Google Scholar] [CrossRef]
- Jha, J.; Singh, M.K.; Singh, L.; Pushker, N.; Bajaj, M.S.; Sen, S.; Kashyap, S. Expression of BAP1 and ATM Proteins: Association with AJCC Tumor Category in Uveal Melanoma. Ann. Diagn. Pathol. 2020, 44, 151432. [Google Scholar] [CrossRef]
- Thornton, S.; Coupland, S.; Olohan, L.; Sibbring, J.; Kenny, J.; Hertz-Fowler, C.; Liu, X.; Haldenby, S.; Heimann, H.; Hussain, R.; et al. Targeted Next-Generation Sequencing of 117 Routine Clinical Samples Provides Further Insights into the Molecular Landscape of Uveal Melanoma. Cancers 2020, 12, 1039. [Google Scholar] [CrossRef]
- Silva-Rodríguez, P.; Bande, M.; Fernández-Díaz, D.; Lago-Baameiro, N.; Pardo, M.; José Blanco-Teijeiro, M.; Domínguez, F.; Loidi, L.; Piñeiro, A. Role of Somatic Mutations and Chromosomal Aberrations in the Prognosis of Uveal Melanoma in a Spanish Patient Cohort. Acta Ophthalmol. 2021, 99, e1077–e1089. [Google Scholar] [CrossRef]
- Kowalik, A.; Karpinski, P.; Markiewicz, A.; Orlowska-Heitzman, J.; Romanowska-Dixon, B.; Donizy, P.; Hoang, M.P. Molecular Profiling of Primary Uveal Melanoma: Results of a Polish Cohort. Melanoma Res. 2023, 33, 104–115. [Google Scholar] [CrossRef]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.O.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef]
- Carbone, M.; Harbour, J.W.; Brugarolas, J.; Bononi, A.; Pagano, I.; Dey, A.; Krausz, T.; Pass, H.I.; Yang, H.; Gaudino, G. Biological Mechanisms and Clinical Significance of BAP1 Mutations in Human Cancer. Cancer Discov. 2020, 10, 1103–1120. [Google Scholar] [CrossRef] [PubMed]
- Kaler, C.J.; Dollar, J.J.; Cruz, A.M.; Kuznetsoff, J.N.; Sanchez, M.I.; Decatur, C.L.; Licht, J.D.; Smalley, K.S.M.; Correa, Z.M.; Kurtenbach, S.; et al. BAP1 Loss Promotes Suppressive Tumor Immune Microenvironment via Upregulation of PROS1 in Class 2 Uveal Melanomas. Cancers 2022, 14, 3678. [Google Scholar] [CrossRef]
- Tabuenca Del Barrio, L.; Nova-Camacho, L.M.; Zubicoa Enériz, A.; Martínez de Espronceda Ezquerro, I.; Córdoba Iturriagagoitia, A.; Borque Rodríguez-Maimón, E.; García-Layana, A. Prognostic Factor Utility of BAP1 Immunohistochemistry in Uveal Melanoma: A Single Center Study in Spain. Cancers 2021, 13, 5347. [Google Scholar] [CrossRef] [PubMed]
- van de Nes, J.A.P.; Nelles, J.; Kreis, S.; Metz, C.H.D.; Hager, T.; Lohmann, D.R.; Zeschnigk, M. Comparing the Prognostic Value of BAP1 Mutation Pattern, Chromosome 3 Status, and BAP1 Immunohistochemistry in Uveal Melanoma. Am. J. Surg. Pathol. 2016, 40, 796–805. [Google Scholar] [CrossRef]
- Koopmans, A.E.; Verdijk, R.M.; Brouwer, R.W.W.; Van Den Bosch, T.P.P.; Van Den Berg, M.M.P.; Vaarwater, J.; Kockx, C.E.M.; Paridaens, D.; Naus, N.C.; Nellist, M.; et al. Clinical Significance of Immunohistochemistry for Detection of BAP1 Mutations in Uveal Melanoma. Mod. Pathol. 2014, 27, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Herwig-Carl, M.C.; Sharma, A.; Moulin, A.; Strack, C.; Loeffler, K.U. BAP1 Immunostaining in Uveal Melanoma: Potentials and Pitfalls. Ocul. Oncol. Pathol. 2018, 4, 297. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, N.; Thornton, S.; Coupland, S.E.; Coulson, J.M.; Sacco, J.J.; Krishna, Y.; Heimann, H.; Taktak, A.; Cebulla, C.M.; Abdel-Rahman, M.H.; et al. Patterns of BAP1 Protein Expression Provide Insights into Prognostic Significance and the Biology of Uveal Melanoma. J. Pathol. CR 2018, 4, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220.e15. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Long, M.D.; Duan, S.; Council, M.L.; Bowcock, A.M.; Harbour, J.W. Oncogenic Mutations in GNAQ Occur Early in Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5230–5234. [Google Scholar] [CrossRef] [PubMed]
- Decatur, C.L.; Ong, E.; Garg, N.; Anbunathan, H.; Bowcock, A.M.; Field, M.G.; Harbour, J.W. Driver Mutations in Uveal Melanoma: Associations With Gene Expression Profile and Patient Outcomes. JAMA Ophthalmol. 2016, 134, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent Somatic Mutations of GNAQ in Uveal Melanoma and Blue Naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Vader, M.J.C.; Madigan, M.C.; Versluis, M.; Suleiman, H.M.; Gezgin, G.; Gruis, N.A.; Out-Luiting, J.J.; Bergman, W.; Verdijk, R.M.; Jager, M.J.; et al. GNAQ and GNA11 Mutations and Downstream YAP Activation in Choroidal Nevi. Br. J. Cancer 2017, 117, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Terai, M.; Shimada, A.; Chervoneva, I.; Hulse, L.; Danielson, M.; Swensen, J.; Orloff, M.; Wedegaertner, P.B.; Benovic, J.L.; Aplin, A.E.; et al. Prognostic Values of G-Protein Mutations in Metastatic Uveal Melanoma. Cancers 2021, 13, 5749. [Google Scholar] [CrossRef]
- García-Mulero, S.; Fornelino, R.; Punta, M.; Lise, S.; Varela, M.; Del Carpio, L.P.; Moreno, R.; Costa-García, M.; Rieder, D.; Trajanoski, Z.; et al. Driver Mutations in GNAQ and GNA11 Genes as Potential Targets for Precision Immunotherapy in Uveal Melanoma Patients. OncoImmunology 2023, 12, 2261278. [Google Scholar] [CrossRef] [PubMed]
- Piaggio, F.; Tozzo, V.; Bernardi, C.; Croce, M.; Puzone, R.; Viaggi, S.; Patrone, S.; Barla, A.; Coviello, D.; Jager, J.M.; et al. Secondary Somatic Mutations in G-Protein-Related Pathways and Mutation Signatures in Uveal Melanoma. Cancers 2019, 11, 1688. [Google Scholar] [CrossRef]
- Nguyen, J.Q.N.; Drabarek, W.; Yavuzyigitoglu, S.; Medico Salsench, E.; Verdijk, R.M.; Naus, N.C.; de Klein, A.; Kiliç, E.; Brosens, E. Spliceosome Mutations in Uveal Melanoma. Int. J. Mol. Sci. 2020, 21, 9546. [Google Scholar] [CrossRef]
- Szalai, E.; Jiang, Y.; van Poppelen, N.M.; Jager, M.J.; de Klein, A.; Kilic, E.; Grossniklaus, H.E. Association of Uveal Melanoma Metastatic Rate With Stochastic Mutation Rate and Type of Mutation. JAMA Ophthalmol. 2018, 136, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Yavuzyigitoglu, S.; Koopmans, A.E.; Verdijk, R.M.; Vaarwater, J.; Eussen, B.; van Bodegom, A.; Paridaens, D.; Kiliç, E.; de Klein, A.; Rotterdam Ocular Melanoma Study Group. Uveal Melanomas with SF3B1 Mutations: A Distinct Subclass Associated with Late-Onset Metastases. Ophthalmology 2016, 123, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Furney, S.J.; Pedersen, M.; Gentien, D.; Dumont, A.G.; Rapinat, A.; Desjardins, L.; Turajlic, S.; Piperno-Neumann, S.; de la Grange, P.; Roman-Roman, S.; et al. SF3B1 Mutations Are Associated with Alternative Splicing in Uveal Melanoma. Cancer Discov. 2013, 3, 1122–1129. [Google Scholar] [CrossRef]
Author (Year) | Country | N | Age (Years) | Follow-Up (Months) | Treatment | Mutation/Stain | Molecular Test | N Mutation | N Controls | HR | Low CI | High CI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bauer et al. (2009) [12] | Holland | 75 | 62 (21–86) | 56.1 (6.4–136.4) | Enucleation | GNAQ | PCR | 40 | 35 | 0.92 | 0.24 | 2.55 |
Koopmans et al. (2013) [13] | Holland | 92 | 62 (21–86) | 74.9 (5.2–200.5) | Enucleation | GNAQ | PCR | 46 | 6 | 6.22 | 0.07 | 48.52 |
GNA11 | PCR | 40 | 6 | 23.86 | 0.08 | 133.45 | ||||||
van Essen et al. (2014) [14] | Holland | 30 | 61.7 (28–84) | 77.5 (14–155) | Enucleation | BAP1 - | IHC | 14 | 14 | 5.5 | 1.5 | 20.1 |
Yue et al. (2016) [15] | China | 171 | 48.6 (14–83) | 63.4 (6.4–140.1) | Enucleation | BAP1 - | IHC | 53 | 103 | 2.57 | 1.32 | 5.01 |
Barnhill et al. (2017) [16] | France | 89 | 63 (25–92) | 53 (2.4–132) | Enucleation | BAP1mut | GEP | 39 | 36 | 2.864 | 1.494 | 5.49 |
See et al. (2019) [17] | USA | 30 | 62 ± 16 | 30.3 ± 23 | Enucleation | BAP1 - | IHC | 19 | 11 | 21.7 | 2.2 | 210.1 |
Sun et al. (2019) [18] | Sweden and USA | 47 | 63 ± 14 | 89 ± 98 | Enucleation | BAP1 - | IHC | 22 | 25 | 26 | 3.3 | 205.9 |
Rodrigues et al. (2020) [19] | France | 43 | 58 (12–79) | 66 (1.2–126.2) | Enucleation (42%), ProtonBeam, I-125 brachytherapy | BAP1del | GEP | 19 | 24 | 5.91 | 1.89 | 18.54 |
Kashyap et al. (2020) [20] | India | 69 | 40 | Range 10–65 | Enucleation | BAP1 - | IHC | 37 | 13 | 6.1 | 1.98 | 18.77 |
Jha et al. (2020) [21] | India | 69 | Range 17–92 | Range 10–65 | Enucleation | BAP1del | IHC | 46 | 23 | 13.97 | 1.37 | 93.46 |
Thornton et al. (2020) [22] | UK | 117 | 64 (16–87) | 65 (0–132) | Enucleation (66%), local resection 10%), endoresection (1%), Ruthenium Brachytherapy (14%); ProtonBeam (9%) | SF3B1 | NGS | 25 | 119 | 0.486 | 0.19 | 1.241 |
BAP1mut | NGS | 50 | 63 | 6.536 | 3.095 | 13.804 | ||||||
Silva-Rodríguez et al. (2021) [23] | Spain | 46 | 68 (40–91) | 31.2 (6.1–51.9) | Brachytherapy + endoresection or enucleation | BAP1mut | NGS | 8 | 29 | 7.17 | 1.44 | 35.69 |
GNAQ | NGS | 24 | 22 | 0.876 | 0.219 | 3.506 | ||||||
GNA11 | NGS | 16 | 30 | 1.964 | 0.491 | 7.859 | ||||||
SF3B1 | NGS | 10 | 36 | 0.324 | 0 | 29.989 | ||||||
Kowalik et al. (2023) [24] | Poland | 20 | 62.0 (53.8–68.2) | NA | Enucleation | BAP1mut | NGS | 9 | 11 | 3.31 | 0.89 | 12.23 |
BAP1del | NGS | 9 | 11 | 2.15 | 0.6 | 7.73 | ||||||
GNAQ | NGS | 8 | 12 | 3.01 | 0.83 | 10.88 | ||||||
GNA11 | NGS | 10 | 10 | 0.18 | 0.038 | 0.86 | ||||||
SF3B1 | NGS | 1 | 19 | 1.62 | 0.2 | 13.11 |
Study Design | Selection | Comparability | Outcomes | Total Score | |
---|---|---|---|---|---|
Bauer et al. (2009) [12] | cohort | 3 | 1 | 2 | 6 |
Koopmans et al. (2013) [13] | cohort | 2 | 1 | 3 | 6 |
van Essen et al. (2014) [14] | cohort | 3 | 1 | 3 | 7 |
Yue et al. (2016) [15] | cohort | 2 | 2 | 3 | 7 |
Barnhill et al. (2017) [16] | cohort | 2 | 1 | 3 | 6 |
See et al. (2019) [17] | cohort | 3 | 1 | 3 | 7 |
Sun et al. (2019) [18] | cohort | 3 | 1 | 3 | 7 |
Jha et al. (2020) [21] | cohort | 3 | 2 | 3 | 8 |
Kashyap et al. (2020) [20] | cohort | 3 | 1 | 2 | 6 |
Rodrigues et al. (2020) [19] | cohort | 3 | 2 | 3 | 8 |
Thornton et al. (2020) [22] | cohort | 3 | 1 | 3 | 7 |
Silva-Rodríguez et al. (2021) [23] | cohort | 3 | 1 | 3 | 7 |
Kowalik et al. (2023) [24] | cohort | 3 | 1 | 2 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas-Francis, D.; Rodríguez-Fernández, C.A.; de Esteban-Maciñeira, E.; Silva-Rodríguez, P.; Pardo, M.; Bande-Rodríguez, M.; Blanco-Teijeiro, M.J. Impact of Driver Mutations on Metastasis-Free Survival in Uveal Melanoma: A Meta-Analysis. Cancers 2024, 16, 2510. https://doi.org/10.3390/cancers16142510
Lamas-Francis D, Rodríguez-Fernández CA, de Esteban-Maciñeira E, Silva-Rodríguez P, Pardo M, Bande-Rodríguez M, Blanco-Teijeiro MJ. Impact of Driver Mutations on Metastasis-Free Survival in Uveal Melanoma: A Meta-Analysis. Cancers. 2024; 16(14):2510. https://doi.org/10.3390/cancers16142510
Chicago/Turabian StyleLamas-Francis, David, Carmen Antía Rodríguez-Fernández, Elia de Esteban-Maciñeira, Paula Silva-Rodríguez, María Pardo, Manuel Bande-Rodríguez, and María José Blanco-Teijeiro. 2024. "Impact of Driver Mutations on Metastasis-Free Survival in Uveal Melanoma: A Meta-Analysis" Cancers 16, no. 14: 2510. https://doi.org/10.3390/cancers16142510
APA StyleLamas-Francis, D., Rodríguez-Fernández, C. A., de Esteban-Maciñeira, E., Silva-Rodríguez, P., Pardo, M., Bande-Rodríguez, M., & Blanco-Teijeiro, M. J. (2024). Impact of Driver Mutations on Metastasis-Free Survival in Uveal Melanoma: A Meta-Analysis. Cancers, 16(14), 2510. https://doi.org/10.3390/cancers16142510