Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Approved Immunotherapy (Checkpoint Inhibitors) in the Field of Tissue-Agnostic Drug Development
2.1. Pembrolizumab Approved for Patients with Unresectable or Metastatic dMMR/MSI-H Cancers (23 May 2017)
2.2. Pembrolizumab Approved for Patients with Unresectable or Metastatic TMB-H Cancers (16 June 2020)
2.3. Dostarlimab Approved for Patients with Unresectable or Metastatic dMMR Cancers (17 August 2021)
3. Approved Targeted Cancer Therapeutics in the Subject of Histology-Agnostic Drug Development
3.1. Larotrectinib Approved for Patients with Unresectable or Metastatic NTRK Gene Fusion-Positive Cancers (26 November 2018)
3.2. Entrectinib Approved for Patients with Unresectable or Metastatic NTRK Gene Fusion-Positive Cancers (15 August 2019)
3.3. Dabrafenib plus Trametinib Approved for Patients with Unresectable or Metastatic BRAFV600E Positive Cancers (22 June 2022)
3.4. Selpercatinib Approved for Patients with Unresectable or Metastatic RET-Positive Cancers in Patients ≥ 12 Years (21 September 2022)
3.5. Trastuzumab Deruxtecan Approved for Patients with Unresectable or Metastatic HER2-Positive Cancers (5 April 2024)
4. Biostatistics—Trial Design and Conducting in Tissue-Agnostic Drug Approvals
5. Future Directions and Challenges
5.1. Targeting Fibroblast Growth Factor Receptor (FGFR)
5.2. Tackling Kirsten Rat Sarcoma Virus (KRASG12C)
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thein, K.Z.; Biter, A.B.; Hong, D.S. Therapeutics Targeting Mutant KRAS. Annu. Rev. Med. 2021, 72, 349–364. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Kudriaeva, A.; Miftakhova, R.; Rybalov, A.; Bulatov, E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. Bioengineering 2022, 9, 808. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (accessed on 30 June 2024).
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (accessed on 30 June 2024).
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (accessed on 30 June 2024).
- André, T.; Berton, D.; Curigliano, G.; Sabatier, R.; Tinker, A.V.; Oaknin, A.; Ellard, S.; de Braud, F.; Arkenau, H.T.; Trigo, J.; et al. Antitumor Activity and Safety of Dostarlimab Monotherapy in Patients With Mismatch Repair Deficient Solid Tumors: A Nonrandomized Controlled Trial. JAMA Netw. Open 2023, 6, e2341165. [Google Scholar] [CrossRef]
- Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.J.; et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 2016, 48, 768–776. [Google Scholar] [CrossRef]
- Daniel, P.; Sabri, S.; Chaddad, A.; Meehan, B.; Jean-Claude, B.; Rak, J.; Abdulkarim, B.S. Temozolomide Induced Hypermutation in Glioma: Evolutionary Mechanisms and Therapeutic Opportunities. Front. Oncol. 2019, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- AlHarbi, M.; Ali Mobark, N.; AlMubarak, L.; Aljelaify, R.; AlSaeed, M.; Almutairi, A.; Alqubaishi, F.; Hussain, M.E.; Balbaid, A.A.O.; Said Marie, A.; et al. Durable Response to Nivolumab in a Pediatric Patient with Refractory Glioblastoma and Constitutional Biallelic Mismatch Repair Deficiency. Oncologist 2018, 23, 1401–1406. [Google Scholar] [CrossRef]
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; de Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. J. Clin. Oncol. 2016, 34, 2206–2211. [Google Scholar] [CrossRef]
- Suerink, M.; Wimmer, K.; Brugieres, L.; Colas, C.; Gallon, R.; Ripperger, T.; Benusiglio, P.R.; Bleiker, E.M.A.; Ghorbanoghli, Z.; Goldberg, Y.; et al. Report of the fifth meeting of the European Consortium ‘Care for CMMRD’ (C4CMMRD), Leiden, The Netherlands, July 6th 2019. Fam Cancer 2021, 20, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R.; et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020, 25, e147–e159. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.M.; Eng, K.; Beg, S.; Beltran, H.; Faltas, B.M.; Mosquera, J.M.; Nanus, D.M.; Pisapia, D.J.; Rao, R.A.; Robinson, B.D.; et al. Cancer-Specific Thresholds Adjust for Whole Exome Sequencing–Based Tumor Mutational Burden Distribution. JCO Precis. Oncol. 2019, 3, PO.18.00400. [Google Scholar] [CrossRef]
- Oaknin, A.; Gilbert, L.; Tinker, A.V.; Brown, J.; Mathews, C.; Press, J.; Sabatier, R.; O’Malley, D.M.; Samouelian, V.; Boni, V.; et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: Interim results from GARNET-a phase I, single-arm study. J. Immunother. Cancer 2022, 10, e003777. [Google Scholar] [CrossRef]
- Moreno, V.; Roda, D.; Pikiel, J.; Trigo, J.; Bosch-Barrera, J.; Drew, Y.; Kristeleit, R.; Hiret, S.; Bajor, D.L.; Cruz, P.; et al. Safety and Efficacy of Dostarlimab in Patients with Recurrent/Advanced Non-small Cell Lung Cancer: Results from Cohort E of the Phase I GARNET Trial. Clin. Lung Cancer 2022, 23, e415–e427. [Google Scholar] [CrossRef]
- Andre, T.; Berton, D.; Curigliano, G.; Jimenez-Rodriguez, B.; Ellard, S.; Gravina, A.; Miller, R.; Tinker, A.; Jewell, A.; Pikiel, J.; et al. Efficacy and safety of dostarlimab in patients (pts) with mismatch repair deficient (dMMR) solid tumors: Analysis of 2 cohorts in the GARNET study. J. Clin. Oncol. 2022, 40, 2587. [Google Scholar] [CrossRef]
- Costa, B.; Vale, N. Dostarlimab: A Review. Biomolecules 2022, 12, 1031. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol. 2019, 30, viii5–viii15. [Google Scholar] [CrossRef]
- Manea, C.A.; Badiu, D.C.; Ploscaru, I.C.; Zgura, A.; Bacinschi, X.; Smarandache, C.G.; Serban, D.; Popescu, C.G.; Grigorean, V.T.; Botnarciuc, V. A review of NTRK fusions in cancer. Ann. Med. Surg. 2022, 79, 103893. [Google Scholar] [CrossRef]
- FDA Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions (accessed on 30 June 2024).
- Drilon, A.; Hu, Z.I.; Lai, G.G.Y.; Tan, D.S.W. Targeting RET-driven cancers: Lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol. 2018, 15, 151–167. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Hong, D.S. Tropomyosin Receptor Kinase Inhibitors for the Treatment of TRK Fusion Cancer. Clin. Cancer Res. 2021, 27, 4974–4982. [Google Scholar] [CrossRef]
- FDA Approves Entrectinib for NTRK Solid Tumors and ROS-1 NSCLC. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc (accessed on 30 June 2024).
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Accelerated Approval to Dabrafenib in Combination with Trametinib for Unresectable or Metastatic Solid Tumors with BRAF V600E Mutation. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dabrafenib-combination-trametinib-unresectable-or-metastatic-solid (accessed on 30 June 2024).
- FDA Approves Selpercatinib for Locally Advanced or Metastatic RET Fusion-Positive Solid Tumors. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selpercatinib-locally-advanced-or-metastatic-ret-fusion-positive-solid-tumors (accessed on 30 June 2024).
- FDA Grants Accelerated Approval to Fam-Trastuzumab Deruxtecan-Nxki for Unresectable or Metastatic HER2-Positive Solid Tumors. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-unresectable-or-metastatic-her2 (accessed on 30 June 2024).
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.N.; Martin, A.G.; Jung, K.H.; Lugowska, I.A.; Manso, L.; Manzano, A.; et al. Efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-expressing solid tumors: DESTINY-PanTumor02 (DP-02) interim results. J. Clin. Oncol. 2023, 41, LBA3000. [Google Scholar] [CrossRef]
- Hong, D.S.; Drilon, A.E.; Tan, D.S.-W.; Lin, J.J.; Kummar, S.; McDermott, R.S.; Berlin, J.; Italiano, A.; Lassen, U.N.; Leyvraz, S.; et al. Larotrectinib long-term efficacy and safety in adult patients (pts) with tropomyosin receptor kinase (TRK) fusion cancer. J. Clin. Oncol. 2023, 41, 3141. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Mangum, R.; Parsons, D.W. TRK inhibition for pediatric and adult central nervous system tumors: Early promise and future questions. Neuro Oncol. 2022, 24, 1008–1009. [Google Scholar] [CrossRef]
- Marcus, L.; Donoghue, M.; Aungst, S.; Myers, C.E.; Helms, W.S.; Shen, G.; Zhao, H.; Stephens, O.; Keegan, P.; Pazdur, R. FDA Approval Summary: Entrectinib for the Treatment of NTRK gene Fusion Solid Tumors. Clin. Cancer Res. 2021, 27, 928–932. [Google Scholar] [CrossRef]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients with NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef]
- Fischer, H.; Ullah, M.; de la Cruz, C.C.; Hunsaker, T.; Senn, C.; Wirz, T.; Wagner, B.; Draganov, D.; Vazvaei, F.; Donzelli, M.; et al. Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: Differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro Oncol. 2020, 22, 819–829. [Google Scholar] [CrossRef]
- Gouda, M.A.; Subbiah, V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E-Positive Adult and Pediatric Solid Tumors. Am. Soc. Clin. Oncol. Educ. Book. 2023, 43, e404770. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Gray, R.J.; Chen, A.P.; Li, S.; McShane, L.M.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Iafrate, A.J.; Sklar, J.; et al. Molecular Landscape and Actionable Alterations in a Genomically Guided Cancer Clinical Trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J. Clin. Oncol. 2020, 38, 3883–3894. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Atreya, C.E.; Falchook, G.S.; Kwak, E.L.; Ryan, D.P.; Bendell, J.C.; Hamid, O.; Messersmith, W.A.; Daud, A.; Kurzrock, R.; et al. Combined BRAF and MEK Inhibition with Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. J. Clin. Oncol. 2015, 33, 4023–4031. [Google Scholar] [CrossRef]
- FDA Approves Encorafenib in Combination with Cetuximab for Metastatic Colorectal Cancer with a BRAF V600E Mutation. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-encorafenib-combination-cetuximab-metastatic-colorectal-cancer-braf-v600e-mutation (accessed on 30 June 2024).
- FDA Approves Dabrafenib with Trametinib for Pediatric Patients with Low-Grade Glioma with a BRAF V600E Mutation. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-dabrafenib-trametinib-pediatric-patients-low-grade-glioma-braf-v600e-mutation (accessed on 30 June 2024).
- Barbato, M.I.; Nashed, J.; Bradford, D.; Ren, Y.; Khasar, S.; Miller, C.P.; Zolnik, B.S.; Zhao, H.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Dabrafenib in Combination with Trametinib for BRAFV600E Mutation-Positive Low-Grade Glioma. Clin. Cancer Res. 2024, 30, 263–268. [Google Scholar] [CrossRef]
- Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET fusions in solid tumors. Cancer Treat. Rev. 2019, 81, 101911. [Google Scholar] [CrossRef]
- Duke, E.S.; Bradford, D.; Marcovitz, M.; Amatya, A.K.; Mishra-Kalyani, P.S.; Nguyen, E.; Price, L.S.L.; Fourie Zirkelbach, J.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Selpercatinib for the Treatment of Advanced RET Fusion-Positive Solid Tumors. Clin. Cancer Res. 2023, 29, 3573–3578. [Google Scholar] [CrossRef]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef]
- Subbiah, V.; Drilon, A.E.; Sukrithan, V.; Spira, A.I.; Robinson, B.; Deschler-Baier, B.; Barker, S.; Lin, Y.; Szymczak, S.; Ohe, Y. Durable efficacy of selpercatinib in patients with RET fusion+ solid tumors, with a focus on GI tumors: LIBRETTO-001. J. Clin. Oncol. 2024, 42, 746. [Google Scholar] [CrossRef]
- Gautschi, O.; Drilon, A.; Solomon, B.; Tomasini, P.; Loong, H.H.F.; De Braud, F.G.M.; Goto, K.; Peterson, P.; Barker, S.; Liming, K.; et al. 35P Final data from phase I/II LIBRETTO-001 trial of selpercatinib in RET fusion-positive non-small cell lung cancer. ESMO Open 2024, 9, 102614. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef]
- Alrhmoun, S.; Sennikov, S. The Role of Tumor-Associated Antigen HER2/neu in Tumor Development and the Different Approaches for Using It in Treatment: Many Choices and Future Directions. Cancers 2022, 14, 6173. [Google Scholar] [CrossRef]
- Chari, R.V.; Miller, M.L.; Widdison, W.C. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014, 53, 3796–3827. [Google Scholar] [CrossRef]
- Cai, Z.L.; Yang, H.T.; Huang, T.; Yu, Z.R.; Ren, N.; Su, J.Y.; Lin, X.L.; Zhou, H.R. Efficacy and safety of trastuzumab deruxtecan in patients with solid tumors: A systematic review and meta-analysis of 3 randomized controlled trials. Am. J. Cancer Res. 2023, 13, 3266–3274. [Google Scholar]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Raghav, K.P.S.; Siena, S.; Takashima, A.; Kato, T.; Eynde, M.V.D.; Bartolomeo, M.D.; Komatsu, Y.; Kawakami, H.; Peeters, M.; Andre, T.; et al. Trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-overexpressing/amplified (HER2+) metastatic colorectal cancer (mCRC): Primary results from the multicenter, randomized, phase 2 DESTINY-CRC02 study. J. Clin. Oncol. 2023, 41, 3501. [Google Scholar] [CrossRef]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodríguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): Primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.W.; Planchard, D.; Ahn, M.J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
- Berry, D.A. The Brave New World of clinical cancer research: Adaptive biomarker-driven trials integrating clinical practice with clinical research. Mol. Oncol. 2015, 9, 951–959. [Google Scholar] [CrossRef]
- Park, J.J.H.; Siden, E.; Zoratti, M.J.; Dron, L.; Harari, O.; Singer, J.; Lester, R.T.; Thorlund, K.; Mills, E.J. Systematic review of basket trials, umbrella trials, and platform trials: A landscape analysis of master protocols. Trials 2019, 20, 572. [Google Scholar] [CrossRef]
- Redman, M.W.; Allegra, C.J. The Master Protocol Concept. Semin. Oncol. 2015, 42, 724–730. [Google Scholar] [CrossRef]
- Menis, J.; Hasan, B.; Besse, B. New clinical research strategies in thoracic oncology: Clinical trial design, adaptive, basket and umbrella trials, new end-points and new evaluations of response. Eur. Respir. Rev. 2014, 23, 367–378. [Google Scholar] [CrossRef]
- Simon, R.; Geyer, S.; Subramanian, J.; Roychowdhury, S. The Bayesian basket design for genomic variant-driven phase II trials. Semin. Oncol. 2016, 43, 13–18. [Google Scholar] [CrossRef]
- Mandrekar, S.J.; Dahlberg, S.E.; Simon, R. Improving Clinical Trial Efficiency: Thinking outside the Box. Am. Soc. Clin. Oncol. Educ. Book. 2015, 35, e141–e147. [Google Scholar] [CrossRef]
- Renfro, L.A.; Sargent, D.J. Statistical controversies in clinical research: Basket trials, umbrella trials, and other master protocols: A review and examples. Ann. Oncol. 2017, 28, 34–43. [Google Scholar] [CrossRef]
- Mansinho, A.; Fernandes, R.M.; Carneiro, A.V. Histology-Agnostic Drugs: A Paradigm Shift-A Narrative Review. Adv. Ther. 2023, 40, 1379–1392. [Google Scholar] [CrossRef]
- Hobbs, B.P.; Pestana, R.C.; Zabor, E.C.; Kaizer, A.M.; Hong, D.S. Basket Trials: Review of Current Practice and Innovations for Future Trials. J. Clin. Oncol. 2022, 40, 3520–3528. [Google Scholar] [CrossRef]
- Tissue Agnostic Drug Development in Oncology. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/tissue-agnostic-drug-development-oncology (accessed on 17 May 2024).
- Kaizer, A.M.; Koopmeiners, J.S.; Kane, M.J.; Roychoudhury, S.; Hong, D.S.; Hobbs, B.P. Basket Designs: Statistical Considerations for Oncology Trials. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Renfro, L.A.; An, M.W.; Mandrekar, S.J. Precision oncology: A new era of cancer clinical trials. Cancer Lett. 2017, 387, 121–126. [Google Scholar] [CrossRef]
- Hobbs, B.P.; Berry, D.A.; Coombes, K.R. 17-Biostatistics and Bioinformatics in Clinical Trials. In Abeloff’s Clinical Oncology, 6th ed.; Niederhuber, J.E., Armitage, J.O., Kastan, M.B., Doroshow, J.H., Tepper, J.E., Eds.; Elsevier: Philadelphia, PA, USA, 2020; pp. 284–295.e282. [Google Scholar]
- Burock, S.; Meunier, F.; Lacombe, D. How can innovative forms of clinical research contribute to deliver affordable cancer care in an evolving health care environment? Eur. J. Cancer 2013, 49, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Sleijfer, S.; Bogaerts, J.; Siu, L.L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 2013, 31, 1834–1841. [Google Scholar] [CrossRef]
- Singer, J.; Irmisch, A.; Ruscheweyh, H.J.; Singer, F.; Toussaint, N.C.; Levesque, M.P.; Stekhoven, D.J.; Beerenwinkel, N. Bioinformatics for precision oncology. Brief. Bioinform. 2019, 20, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, J.; Yan, W.; Liu, Z.; Liu, S.; Fang, W. FGFR families: Biological functions and therapeutic interventions in tumors. MedComm 2023, 4, e367. [Google Scholar] [CrossRef]
- Pant, S.; Schuler, M.H.; Iyer, G.; Witt, O.; Doi, T.; Qin, S.; Tabernero, J.; Reardon, D.A.; Massard, C.; Welsh, L.; et al. Tumor agnostic efficacy and safety of erdafitinib (erda) in patients (pts) with advanced solid tumors with prespecified FGFR alterations (FGFRalt): RAGNAR primary analysis. J. Clin. Oncol. 2023, 41, 3121. [Google Scholar] [CrossRef]
- Pant, S.; Schuler, M.; Iyer, G.; Witt, O.; Doi, T.; Qin, S.; Tabernero, J.; Reardon, D.A.; Massard, C.; Minchom, A.; et al. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): An international, single-arm, phase 2 study. Lancet Oncol. 2023, 24, 925–935. [Google Scholar] [CrossRef]
- Vega, L.L.D.L.; Comeau, H.; Sallan, S.; Al-Ibraheemi, A.; Gupta, H.; Li, Y.Y.; Tsai, H.K.; Kang, W.; Ward, A.; Church, A.J.; et al. Rare FGFR Oncogenic Alterations in Sequenced Pediatric Solid and Brain Tumors Suggest FGFR Is a Relevant Molecular Target in Childhood Cancer. JCO Precis. Oncol. 2022, 6, e2200390. [Google Scholar] [CrossRef]
- Hofmann, M.H.; Gerlach, D.; Misale, S.; Petronczki, M.; Kraut, N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022, 12, 924–937. [Google Scholar] [CrossRef]
- Sacher, A.; LoRusso, P.; Patel, M.R.; Miller, W.H., Jr.; Garralda, E.; Forster, M.D.; Santoro, A.; Falcon, A.; Kim, T.W.; Paz-Ares, L.; et al. Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation. N. Engl. J. Med. 2023, 389, 710–721. [Google Scholar] [CrossRef]
Drug Name | Pembrolizumab | Pembrolizumab | Dostarlimab-Gxly |
---|---|---|---|
Mechanism of action | PD-1 inhibition | PD-1 inhibition | PD-1 inhibition |
Indications | Adult and pediatric patients with unresectable or metastatic dMMR/MSI-H positive solid tumors No satisfactory alternative treatments available or progression despite previous treatment OR Patients with dMMR/MSI-H CRC who have progressed with previous treatment (fluoropyrimidine, oxaliplatin, and irinotecan) | Adult and pediatric patients with unresectable or metastatic TMB-H (≥10 mut/Mb) solid tumors No satisfactory alternative treatments available or progression despite previous treatment | Adult patients with unresectable or metastatic dMMR solid tumors No satisfactory alternative treatments available or progression despite previous treatment |
Date of FDA approval | 23 May 2017 | 16 June 2020 | 17 August 2021 |
Clinical trial (s) | KN-016 (phase II) KN-164 (phase II) KN-012 (phase II) KN-028 (phase II) KN-158 (phase II) | KN-158 (phase II) | GARNET (phase I) |
Recommended regimen | Adults: IV 200 mg every 3 weeks Children: IV 2 mg/kg (maximum 200 mg) every 3 weeks | Adults: IV 200 mg every 3 weeks OR IV 400 mg every 6 weeks Children: IV 2 mg/kg (maximum 200 mg) every 3 weeks | IV 500 mg every 3 weeks (doses 1–4) IV 1000 mg every 6 weeks (3 weeks after 4; dose 5+) |
Number of patients (n) | 149 | 102 | 209 |
Number of unique cancer types | 15 | 9 | 16 |
Most common cancer types | CRC, EC, gastric cancer, CCA | SCLC, CC, EC, anal cancer | EC, CRC, gastric/GEJ cancer, small intestinal cancer |
Major efficacy/outcomes | ORR = 39.6% (95% CI 31.7–47.9) CR = 11 (7%) PR = 48 (32%) mDOR = NE (95% CI 1.6–22.7) DOR ≥ 6 months: 78% | ORR = 29% (95% CI 21–39) CR = 4% PR = 25% mDOR = NR DOR ≥ 12 months: 57% DOR ≥ 24 months: 50% | ORR = 41.6% (95% CI 34.9–48.6) CR = 9.1% PR = 32.5% mDOR = 34.7 months (95% CI 2.6–35.8+) DOR ≥ 6 months: 95.4% |
Most common TRAEs | Systemic (fatigue, fever, pruritus) Gastrointestinal (constipation, diarrhea, nausea, reduced appetite) Respiratory (cough, dyspnea) Immune-mediated (colitis, endocrinopathies, hepatitis, pneumonitis, nephritis) Musculoskeletal (musculoskeletal pain) Dermatologic (rash) | Systemic (fatigue, fever, pruritus, pain) Gastrointestinal (abdominal pain, constipation, diarrhea, reduced appetite, nausea) Respiratory (cough, dyspnea) Immune-mediated (colitis, endocrinopathies, hepatitis, pneumonitis, nephritis) Musculoskeletal (musculoskeletal pain) Dermatologic (rash) | Most common all-grade TRAEs: Systemic (fatigue, asthenia) Gastrointestinal (diarrhea, nausea) Hematological (anemia) Immune-mediated (colitis, endocrinopathies, hepatitis, pneumonitis, nephritis) Dermatologic Most common high-grade TRAEs: General (fatigue, asthenia, sepsis) Hematologic (anemia) Hepatic (increased liver enzymes) Renal (acute kidney injury) |
Reference (s) | FDA, 2017 [5] Marabelle et al., 2020 [8] | FDA, 2020 [9] Marcus et al., 2021 [10] | FDA, 2021 [11] Andre et al., 2023 [12] |
Drug Name (s) | Larotrectinib | Entrectinib | Dabrafenib + Trametinib | Selpercatinib | Trastuzumab Deruxtecan |
---|---|---|---|---|---|
Mechanism of action | NTRK fusion inhibition | NTRK fusion inhibition | BRAF + MEK inhibition | RET fusion inhibition | HER2 inhibition |
Indication | Adult and pediatric patients with NTRK fusion-positive solid tumors that are either metastatic or where surgical resection has high probability to cause severe morbidity No known acquired resistance and no satisfactory alternative treatments available or progression after treatment | Adult and pediatric patients ≥ 12 years with NTRK fusion-positive solid tumors that are either metastatic or where surgical resection has high probability to cause severe morbidity No known acquired resistance and no satisfactory alternative treatments available or progression after treatment | Adult and pediatric patients ≥ 6 years with unresectable or metastatic BRAFV600E-positive solid tumors (except CRC) No satisfactory alternative treatments available or progression despite previous treatment | Adult patients with locally advanced or metastatic RET fusion-positive solid tumors that have progressed on or after previous systemic therapy No satisfactory alternative treatments available or progression despite previous treatment | Adult patients with unresectable or metastatic HER2-positive (IHC3+) solid tumors No satisfactory alternative treatments available or progression despite previous treatment |
Date of FDA approval | 26 November 2018 | 15 August 2019 | 22 June 2022 | 21 September 2022 | 5 April 2024 |
Clinical trial (s) | LOXO-TRK-1400 (phase I) NAVIGATE (phase I/II) SCOUT (phase II) | ALKA-372-00 (phase I) STARTRK-1 (phase I) STARTRK-2 (phase II) | NCI-MATCH (phase II) ROAR (phase II) CTMT212X2101 (phase II) | LIBRETTO-001 (phase I/II) | DESTINY-PanTumor02 (phase II) DESTINY-Lung01(phase II) DESTINY-CRC02 (phase II) |
Recommended regimen | Adult patients: PO 100 mg twice daily Pediatric patients: PO 100 mg/m2 (maximum of 100 mg) twice daily | Route: Oral Dose: 600 mg (children ≥ 12 years: dose based on body surface area) Frequency: Once daily | Adult patients: PO dabrafenib 150 mg (given as two 75 mg capsules) twice daily PLUS PO trametinib 2 mg once daily\ Pediatric patients: Weight-based doses * | PO 120 mg twice daily (<50 kg) OR PO 160 mg twice daily (≥50 kg) | IV 5.4 mg/kg every 3 weeks |
Number of patients (n) | 55 | 54 | 167 (131 adults, 36 children) | 41 | 192 |
Number of unique cancer types | 12 | 10 | 24 (includes different LGG and HGG subtypes) | 14 | >8 |
Most common cancer types | SGT, STS, IFS, TC | Sarcoma, NSCLC, MASC, BC, TC, CRC | BTC, HGG, LGG | Pancreatic adenocarcinoma, CRC, SGT, unknown primary * NSCLC and TC excluded | EC, CC, OC, URO, BTC, NSCLC, CRC |
Major efficacy/ outcomes | ORR = 75% (95% CI 61–85) CR = 22% PR = 53% mDOR = NR DOR ≥ 6 months: 73% DOR ≥ 9 months: 63% DOR ≥ 12 months: 39% | ORR = 57% (95% CI 43–71) DOR ≥ 6 months: 68% DOR ≥ 12 months: 45% | ORR (adult patients): 41% (95% CI 33–50) ORR (pediatric patients): 25% (95% CI 12–42) DOR ≥ 6 months: 78% DOR ≥ 24 months: 44% | ORR = 44% (95% CI 28–60) mDOR = 24.5 months (95% CI 9.2—NE) DOR ≥ 6 months: 67% | DESTINY-PanTumor02: ORR = 51.4% (95% CI 41.7–61.0), mDOR = 19.4 (1.3–27.9+) months DESTINY-Lung0: ORR = 52.9% (95% CI 27.8–77.0), mDOR = 6.9 (4.0–11.7+) months DESTINY-CRC02: ORR = 46.9% (95% CI 34.3–59.8), mDOR = 5.5 (1.3+–9.7+) months |
Most common TRAEs | Systemic (fatigue) Gastrointestinal (constipation, diarrhea, nausea, vomiting) Hepatic (elevated liver enzymes) Neurological (dizziness) Respiratory (cough) | Systemic (fatigue, edema, fever, increased weight) Gastrointestinal (constipation, diarrhea, nausea, vomiting) Respiratory (cough, dyspnea) Neurological (cognitive impairment, dizziness, dysgeusia, dysesthesia) Musculoskeletal (arthralgia, myalgia) Other (vision disorders) Most serious TRAEs: Cardiac (congestive heart failure, prolonged QT) Hepatic (liver toxicity) Neurological (central nervous system effects) Musculoskeletal (skeletal fractures) Other (high uric acid, vision disorders) | Adult patients: Systemic (fever, fatigue, chills, edema) Gastrointestinal (nausea, vomiting, constipation, diarrhea) Respiratory (cough) Hematologic (hemorrhage) Neurological (headache) Musculoskeletal (myalgia, arthralgia) Dermatologic (rash) Pediatric patients: Systemic (fever, fatigue) Gastrointestinal (vomiting, diarrhea, abdominal pain, nausea, constipation) Respiratory (cough) Dermatologic (dry skin, rash, dermatitis acneiform) Neurologic (headache) Hematologic (hemorrhage) Other (paronychia) | Systemic (edema, fatigue, dry mouth, hypertension) Gastrointestinal (diarrhea, abdominal pain, constipation, nausea) Neurological (headache) Dermatologic (rash) | Systemic (fatigue) Hematological (decreased lymphocytes, platelets, and erythrocytes) Gastrointestinal (vomiting, decreased appetite, diarrhea, constipation, stomatitis) Hepatic (elevated liver enzymes) Respiratory (upper respiratory tract infection) Dermatologic (alopecia) Other (elevated alkaline phosphatase, decreased potassium and sodium) |
Reference (s) | FDA, 2018 [26] | FDA, 2019 [29] Doebele et al., 2020 [30] | FDA, 2022 [31] | FDA, 2022 [32] | FDA, 2024 [33] Meric-Bernstam et al., 2023 [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thein, K.Z.; Myat, Y.M.; Park, B.S.; Panigrahi, K.; Kummar, S. Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development. Cancers 2024, 16, 2529. https://doi.org/10.3390/cancers16142529
Thein KZ, Myat YM, Park BS, Panigrahi K, Kummar S. Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development. Cancers. 2024; 16(14):2529. https://doi.org/10.3390/cancers16142529
Chicago/Turabian StyleThein, Kyaw Z., Yin M. Myat, Byung S. Park, Kalpana Panigrahi, and Shivaani Kummar. 2024. "Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development" Cancers 16, no. 14: 2529. https://doi.org/10.3390/cancers16142529
APA StyleThein, K. Z., Myat, Y. M., Park, B. S., Panigrahi, K., & Kummar, S. (2024). Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development. Cancers, 16(14), 2529. https://doi.org/10.3390/cancers16142529