Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. NTRK Fusions
3. Detection of NTRK as a Biomarker
4. Tissue-Agnostic TRKs
4.1. Larotrectinib
4.2. Entrectinib
5. Clinical Data
6. Side Effects
7. Resistance to First-Generation TRK Inhibitors
8. Overcoming Resistance and Future Directions
8.1. Next-Generation NTRK Inhibitors: Repotrectinib
8.2. Next-Generation NTRK Inhibitors: Other Drugs
8.3. Combination Therapy
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gouda, M.A.; Nelson, B.E.; Buschhorn, L.; Wahida, A.; Subbiah, V. Tumor-Agnostic Precision Medicine from the AACR GENIE Database: Clinical Implications. Clin. Cancer Res. 2023, 29, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.T.; Le, D.T.; Lemery, S. Tissue-Agnostic Drug Development. Am. Soc. Clin. Oncol. Educ. Book. 2017, 37, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, S.; Subramaniam, S.; Brown, T.D.; Chen, J.L. Art and Challenges of Precision Medicine: Interpreting and Integrating Genomic Data Into Clinical Practice. Am. Soc. Clin. Oncol. Educ. Book. 2018, 38, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Chen, J.H.; Chao, S.X.; Pelka, K.; Giannakis, M.; Hess, J.; Burke, K.; Jorgji, V.; Sindurakar, P.; Braverman, J.; et al. Combined PD-1, BRAF and MEK inhibition in BRAF(V600E) colorectal cancer: A phase 2 trial. Nat. Med. 2023, 29, 458–466. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef]
- FDA. Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions (accessed on 5 August 2024).
- FDA. Approves Entrectinib for NTRK Solid Tumors and ROS-1 NSCLC. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc (accessed on 5 August 2024).
- Theik, N.W.Y.; Muminovic, M.; Alvarez-Pinzon, A.M.; Shoreibah, A.; Hussein, A.M.; Raez, L.E. NTRK Therapy among Different Types of Cancers, Review and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 2366. [Google Scholar] [CrossRef]
- AUGTYROTM (Repotrectinib) Capsules, for Oral Use. FDA Packaging Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218213s001lbl.pdf (accessed on 5 August 2024).
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Knezevich, S.R.; McFadden, D.E.; Tao, W.; Lim, J.F.; Sorensen, P.H. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 1998, 18, 184–187. [Google Scholar] [CrossRef]
- O’Haire, S.; Franchini, F.; Kang, Y.J.; Steinberg, J.; Canfell, K.; Desai, J.; Fox, S.; Maarten, I.J. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci. Rep-Uk 2023, 13, 4116. [Google Scholar] [CrossRef]
- Marchetti, A.; Ferro, B.; Pasciuto, M.P.; Zampacorta, C.; Buttitta, F.; D’Angelo, E. NTRK gene fusions in solid tumors: Agnostic relevance, prevalence and diagnostic strategies. Pathologica 2022, 114, 199–216. [Google Scholar] [CrossRef]
- Westphalen, C.B.; Krebs, M.G.; Le Tourneau, C.; Sokol, E.S.; Maund, S.L.; Wilson, T.R.; Jin, D.X.; Newberg, J.Y.; Fabrizio, D.; Veronese, L.; et al. Genomic context of NTRK1/2/3 fusion-positive tumours from a large real-world population. NPJ Precis. Oncol. 2021, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.I.; Vashistha, V.; Guo, A.; Ahmed, S.; Kelley, M.J. Real-world Experience With Neurotrophic Tyrosine Receptor Kinase Fusion-positive Tumors and Tropomyosin Receptor Kinase Inhibitors in Veterans. JCO Precis. Oncol. 2023, 7, e2200692. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Hong, D.S.; Drilon, A. Important Considerations for Real-World Analysis of Neurotrophic Tyrosine Receptor Kinase Fusion Cancer and Tropomyosin Receptor Kinase Inhibitors. JCO Precis. Oncol. 2023, 7, e2300217. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D.M.; Hechtman, J.; Wei, G.; et al. What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol. 2016, 27, 920–926. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.W.; Ou, Q.; Wu, X.; Nagasaka, M.; Shao, Y.; Ou, S.I.; Yang, Y. NTRK fusion positive colorectal cancer is a unique subset of CRC with high TMB and microsatellite instability. Cancer Med. 2022, 11, 2541–2549. [Google Scholar] [CrossRef]
- Marchio, C.; Scaltriti, M.; Ladanyi, M.; Iafrate, A.J.; Bibeau, F.; Dietel, M.; Hechtman, J.F.; Troiani, T.; Lopez-Rios, F.; Douillard, J.Y.; et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 2019, 30, 1417–1427. [Google Scholar] [CrossRef]
- Hechtman, J.F.; Benayed, R.; Hyman, D.M.; Drilon, A.; Zehir, A.; Frosina, D.; Arcila, M.E.; Dogan, S.; Klimstra, D.S.; Ladanyi, M.; et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am. J. Surg. Pathol. 2017, 41, 1547–1551. [Google Scholar] [CrossRef]
- Macerola, E.; Proietti, A.; Poma, A.M.; Vignali, P.; Sparavelli, R.; Ginori, A.; Basolo, A.; Elisei, R.; Santini, F.; Basolo, F. Limited Accuracy of Pan-Trk Immunohistochemistry Screening for NTRK Rearrangements in Follicular-Derived Thyroid Carcinoma. Int. J. Mol. Sci. 2022, 23, 7470. [Google Scholar] [CrossRef]
- Hondelink, L.M.; Schrader, A.M.R.; Asri Aghmuni, G.; Solleveld-Westerink, N.; Cleton-Jansen, A.M.; van Egmond, D.; Boot, A.; Ouahoud, S.; Khalifa, M.N.; Wai Lam, S.; et al. The sensitivity of pan-TRK immunohistochemistry in solid tumours: A meta-analysis. Eur. J. Cancer 2022, 173, 229–237. [Google Scholar] [CrossRef]
- Adam, J.; Stang, N.L.; Uguen, A.; Badoual, C.; Chenard, M.P.; Lantuejoul, S.; Maran-Gonzalez, A.; Robin, Y.M.; Rochaix, P.; Sabourin, J.C.; et al. Multicenter Harmonization Study of Pan-Trk Immunohistochemistry for the Detection of NTRK3 Fusions. Mod. Pathol. 2023, 36, 100192. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Colebatch, A.J.; Van Beek, D.; Tierney, G.; Gupta, R.; Cooper, W.A. NTRK fusions in solid tumours: What every pathologist needs to know. Pathology 2023, 55, 596–609. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Conde, E.; Molero, A.; Suarez-Gauthier, A.; Martinez, R.; Alonso, M.; Plaza, C.; Camacho, C.; Chantada, D.; Juaneda-Magdalena, L.; et al. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch. Pathol. Lab. Med. 2024, 148, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Filippi, R.; Depetris, I.; Satolli, M.A. Evaluating larotrectinib for the treatment of advanced solid tumors harboring an NTRK gene fusion. Expert. Opin. Pharmacother. 2021, 22, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Martens, U.M.; Bochum, S. Larotrectinib (LOXO-101). Recent. Results Cancer Res. 2018, 211, 141–151. [Google Scholar] [CrossRef]
- VITRAKVI® (larotrectinib) Capsules, for Oral Use: FDA Packaging Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/210861s010lbl.pdf (accessed on 5 August 2024).
- Khotskaya, Y.B.; Holla, V.R.; Farago, A.F.; Mills Shaw, K.R.; Meric-Bernstam, F.; Hong, D.S. Targeting TRK family proteins in cancer. Pharmacol. Ther. 2017, 173, 58–66. [Google Scholar] [CrossRef]
- Rolfo, C.; Ruiz, R.; Giovannetti, E.; Gil-Bazo, I.; Russo, A.; Passiglia, F.; Giallombardo, M.; Peeters, M.; Raez, L. Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert. Opin. Investig. Drugs 2015, 24, 1493–1500. [Google Scholar] [CrossRef]
- ROZLYTREK (entrectinib) Capsules, for Oral Use: FDA Packaging Insert. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212725s011lbl.pdf (accessed on 5 August 2024).
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Scott, L.J. Larotrectinib: First Global Approval. Drugs 2019, 79, 201–206. [Google Scholar] [CrossRef]
- Drilon, A.; Shen, L.; van Tilburg, C.; Doz, F.; Tan, D.S.W.; Lin, J.J.; Kummar, S.; Lassen, U.N.; McDermott, R.S.; Dierselhuis, M.P.; et al. Efficacy and safety of larotrectinib in a pooled analysis of patients (Pts) with tropomyosin receptor kinase (TRK) fusion cancer. Ann. Oncol. 2023, 34, S470. [Google Scholar] [CrossRef]
- Hong, D.S.; Xu, R.H.; McDermott, R.S.; Shen, L.; Dierselhuis, M.P.; Doz, F.; Tahara, M.; Bernard-Gauthier, V.; Norenberg, R.; Brega, N.; et al. Efficacy and safety of larotrectinib (laro) as first-line treatment for patients (pts) with tropomyosin receptor kinase (TRK) fusion cancer. Ann. Oncol. 2023, 34, S469. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients With NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.E.; DuBois, S.G.; Farago, A.F.; Geoerger, B.; Grilley-Olson, J.E.; Hong, D.S.; Sohal, D.; van Tilburg, C.M.; Ziegler, D.S.; Ku, N.; et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J. Clin. Oncol. 2019, 37, 2006. [Google Scholar] [CrossRef]
- John, T.; Chiu, C.H.; Cho, B.C.; Fakih, M.; Farago, A.F.; Demetri, G.D.; Goto, K.; Doebele, R.C.; Siena, S.; Drilon, A.; et al. 364O Intracranial efficacy of entrectinib in patients with NTRK fusion-positive solid tumours and baseline CNS metastases. Ann. Oncol. 2020, 31, S397–S398. [Google Scholar] [CrossRef]
- Liu, D.; Flory, J.; Lin, A.; Offin, M.; Falcon, C.J.; Murciano-Goroff, Y.R.; Rosen, E.; Guo, R.; Basu, E.; Li, B.T.; et al. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann. Oncol. 2020, 31, 1207–1215. [Google Scholar] [CrossRef]
- Smeyne, R.J.; Klein, R.; Schnapp, A.; Long, L.K.; Bryant, S.; Lewin, A.; Lira, S.A.; Barbacid, M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 1994, 368, 246–249. [Google Scholar] [CrossRef]
- Lin, J.C.; Tsao, D.; Barras, P.; Bastarrachea, R.A.; Boyd, B.; Chou, J.; Rosete, R.; Long, H.; Forgie, A.; Abdiche, Y.; et al. Appetite enhancement and weight gain by peripheral administration of TrkB agonists in non-human primates. PLoS ONE 2008, 3, e1900. [Google Scholar] [CrossRef]
- Lyons, W.E.; Mamounas, L.A.; Ricaurte, G.A.; Coppola, V.; Reid, S.W.; Bora, S.H.; Wihler, C.; Koliatsos, V.E.; Tessarollo, L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA 1999, 96, 15239–15244. [Google Scholar] [CrossRef]
- Richardson, C.A.; Leitch, B. Phenotype of cerebellar glutamatergic neurons is altered in stargazer mutant mice lacking brain-derived neurotrophic factor mRNA expression. J. Comp. Neurol. 2005, 481, 145–159. [Google Scholar] [CrossRef]
- Klein, R.; Silos-Santiago, I.; Smeyne, R.J.; Lira, S.A.; Brambilla, R.; Bryant, S.; Zhang, L.; Snider, W.D.; Barbacid, M. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 1994, 368, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Smeyne, R.J.; Wurst, W.; Long, L.K.; Auerbach, B.A.; Joyner, A.L.; Barbacid, M. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 1993, 75, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Fuse, M.J.; Okada, K.; Oh-Hara, T.; Ogura, H.; Fujita, N.; Katayama, R. Mechanisms of Resistance to NTRK Inhibitors and Therapeutic Strategies in NTRK1-Rearranged Cancers. Mol. Cancer Ther. 2017, 16, 2130–2143. [Google Scholar] [CrossRef] [PubMed]
- Harada, G.; Choudhury, N.J.; Schram, A.M.; Rosen, E.; Murciano-Goroff, Y.R.; Falcon, C.J.; Wilhelm, C.; Kaplanis, L.A.; Liu, D.; Chang, J.C.; et al. Mechanisms of acquired resistance to TRK inhibitors. J. Clin. Oncol. 2022, 40, 3104. [Google Scholar] [CrossRef]
- Khadiullina, R.; Mirgayazova, R.; Davletshin, D.; Khusainova, E.; Chasov, V.; Bulatov, E. Assessment of Thermal Stability of Mutant p53 Proteins via Differential Scanning Fluorimetry. Life 2022, 13, 31. [Google Scholar] [CrossRef]
- Cocco, E.; Schram, A.M.; Kulick, A.; Misale, S.; Won, H.H.; Yaeger, R.; Razavi, P.; Ptashkin, R.; Hechtman, J.F.; Toska, E.; et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med. 2019, 25, 1422–1427. [Google Scholar] [CrossRef]
- Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol. 2019, 30, viii23–viii30. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, P.; Dong, L.; Wang, W.; Duan, S.; Wang, B.; Gong, X.; Ye, L.; Wang, H.; Tian, J. Discovery of the Next-Generation Pan-TRK Kinase Inhibitors for the Treatment of Cancer. J. Med. Chem. 2021, 64, 10286–10296. [Google Scholar] [CrossRef]
- Drilon, A.; Ou, S.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; et al. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent- Front Mutations. Blood 2018, 8, 1227–1236. [Google Scholar] [CrossRef]
- Dhillon, S. Repotrectinib: First Approval. Drugs 2024, 84, 239–246. [Google Scholar] [CrossRef]
- Besse, B.; Springfeld, C.; Baik, C.; Hervieu, A.; Solomon, B.; Moreno, V.; Bazhenova, L.; Goto, K.; Kim, Y.C.; Lu, S.; et al. Update from the ongoing phase 1/2 registrational trial of repotrectinib: Results in TKI-naïve and TKI-pretreated patients with NTRK fusion-positive advanced solid tumors (TRIDENT-1). Eur. J. Cancer 2022, 174, S75–S76. [Google Scholar] [CrossRef]
- Solomon, B.J.; Drilon, A.; Lin, J.J.; Bazhenova, L.; Goto, K.; De Langen, J.; Kim, D.W.; Wolf, J.; Springfeld, C.; Popat, S.; et al. 1372P Repotrectinib in patients (pts) with NTRK fusion-positive (NTRK+) advanced solid tumors, including NSCLC: Update from the phase I/II TRIDENT-1 trial. Ann. Oncol. 2023, 34, S787–S788. [Google Scholar] [CrossRef]
- Chen, M.F.; Yang, S.R.; Shia, J.; Girshman, J.; Punn, S.; Wilhelm, C.; Kris, M.G.; Cocco, E.; Drilon, A.; Raj, N. Response to Repotrectinib After Development of NTRK Resistance Mutations on First- and Second-Generation TRK Inhibitors. Jco Precis. Oncol. 2023, 7, e2200697. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.; Kummar, S.; Farago, A.; Geoerger, B.; Mau-Sorensen, M.; Taylor, M.; Garralda, E.; Nagasubramanian, R.; Natheson, M.; Song, L.; et al. Abstract CT127: Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi). Cancer Res. 2019, 79, CT127. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Borazanci, E.; Shaw, A.T.; Katayama, R.; Shimizu, Y.; Zhu, V.W.; Sun, T.Y.; Wakelee, H.A.; Madison, R.; Schrock, A.B.; et al. U.S. Phase I First-in-human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 4785–4794. [Google Scholar] [CrossRef]
- Harada, G.; Drilon, A. TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults. Cancer Genet. -Ny. 2022, 264–265, 33–39. [Google Scholar] [CrossRef]
- Hagopian, G.; Nagasaka, M. Oncogenic fusions: Targeting NTRK. Crit. Rev. Oncol. Hematol. 2024, 194, 104234. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/results?cond=braf&term=&cntry=&state=&city=&dist= (accessed on 11 September 2024).
- Gouda, M.A.; Buschhorn, L.; Schneeweiss, A.; Wahida, A.; Subbiah, V. N-of-1 Trials in Cancer Drug Development. Blood 2023, 13, 1301–1309. [Google Scholar] [CrossRef]
- Subbiah, V.; Gouda, M.A.; Iorgulescu, J.B.; Dadu, R.; Patel, K.; Sherman, S.; Cabanillas, M.; Hu, M.; Castellanos, L.E.; Amini, B.; et al. Adaptive Darwinian off-target resistance mechanisms to selective RET inhibition in RET driven cancer. NPJ Precis. Oncol. 2024, 8, 62. [Google Scholar] [CrossRef]
Larotrectinib | Entrectinib | Repotrectinib | ||
---|---|---|---|---|
Year of FDA Approval | 2018 | 2019 | 2024 * | |
Other Targets | ROS1; ALK | ROS1 | ||
FDA Indication in NTRK-positive cancers | Adult and pediatric patients with solid tumors and neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation, are metastatic, or in whom surgical resection is likely to result in severe morbidity and have no satisfactory alternative treatments or who have progressed following treatment | Adult and pediatric patients older than 1 month of age with solid tumors and neurotrophic tyrosine receptor kinase (NTRK) gene fusion, as detected by an FDA-approved test, without a known acquired resistance mutation, are metastatic, or in whom surgical resection is likely to result in severe morbidity and who have progressed following treatment or have no satisfactory alternative therapy | Adult and pediatric patients 12 years of age and older with solid tumors and neurotrophic tyrosine receptor kinase (NTRK) gene fusion, are locally advanced or metastatic, or in whom surgical resection is likely to result in severe morbidity and who have progressed following treatment or have no satisfactory alternative therapy * | |
Other FDA-approved indications | None | Adult patients with ROS1-positive metastatic non-small-cell lung cancer (NSCLC) as detected by an FDA-approved test | Adult patients with locally advanced or metastatic ROS1-positive non-small-cell lung cancer (NSCLC) | |
Dosage | Adult and pediatric patients with a body surface area (BSA) ≥ 1 m2: 100 mg orally twice daily Pediatric patients with a BSA < 1 m2: 100 mg/m2 orally twice daily | Adults: 600 mg orally once daily Pediatric patients: | A total of 160 mg orally once daily for 14 days followed by 160 mg twice daily | |
Age | Dose based on BSA | |||
>6 months | ≤0.50 m2: 300 mg/m2 0.51 to 0.80 m2: 200 mg 0.81 to 1.10 m2: 300 mg 1.11 to 1.50 m2: 400 mg ≥1.51 m2: 600 mg once daily | |||
> 1 month to <=6 months | 250 mg/m2 once daily |
Drug | Clinical Trial ID | Phase |
---|---|---|
VMD-928 | NCT03556228 | I |
FCN-098 | NCT05212987 | I |
PBI-200 | NCT04901806 | I/II |
NCT05238337 | I | |
TY-2136 | NCT05769075 | I |
ICP-723 | NCT05745623 | II |
NCT05537987 | I | |
NCT04685226 | I/II | |
XZP-5955 | NCT04996121 | I/II |
FCN-011 | NCT04687423 | I/II |
SIM1803-1A | NCT04671849 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, M.A.; Thein, K.Z.; Hong, D.S. Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions. Cancers 2024, 16, 3395. https://doi.org/10.3390/cancers16193395
Gouda MA, Thein KZ, Hong DS. Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions. Cancers. 2024; 16(19):3395. https://doi.org/10.3390/cancers16193395
Chicago/Turabian StyleGouda, Mohamed A., Kyaw Z. Thein, and David S. Hong. 2024. "Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions" Cancers 16, no. 19: 3395. https://doi.org/10.3390/cancers16193395
APA StyleGouda, M. A., Thein, K. Z., & Hong, D. S. (2024). Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions. Cancers, 16(19), 3395. https://doi.org/10.3390/cancers16193395