Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Exosome Isolation and DNA Extraction
2.3. DNA Methylation Testing
2.4. Statistical Analysis and Data Visualization
3. Results
3.1. Marker Selection
3.2. Clinical Performance of the Selected Marker Combination
3.3. Methylation Distributions of the Biomarkers
3.4. Methylation and Patient Demographics
3.5. Marker Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Tomasik, B.; Skrzypski, M.; Bienkowski, M.; Dziadziuszko, R.; Jassem, J. Current and future applications of liquid biopsy in non-small-cell lung cancer-a narrative review. Transl. Lung Cancer Res. 2023, 12, 594–614. [Google Scholar] [CrossRef] [PubMed]
- Babar, L.; Modi, P.; Anjum, F. Lung Cancer Screening; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Chen, H.; Ma, Y.; Xu, J.; Wang, W.; Lu, H.; Quan, C.; Yang, F.; Lu, Y.; Wu, H.; Qiu, M. Circulating microbiome DNA as biomarkers for early diagnosis and recurrence of lung cancer. Cell Rep. Med. 2024, 5, 101499. [Google Scholar] [CrossRef] [PubMed]
- Basumallik, N.; Agarwal, M. Small Cell Lung Cancer; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cittolin-Santos, G.F.; Knapp, B.; Ganesh, B.; Gao, F.; Waqar, S.; Stinchcombe, T.E.; Govindan, R.; Morgensztern, D. The changing landscape of small cell lung cancer. Cancer 2024, 130, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.S.; Kim, H.C.; Kim, S.H.; Kim, T.J.; Kim, H.K.; Moon, M.H.; Beck, K.S.; Suh, Y.G.; Song, C.; Ahn, J.S.; et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res. Treat. 2023, 55, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer with Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tan, F.; Xie, Y.; Tang, W.; Wang, F.; Xu, Y.; Cao, W.; Qin, C.; Dong, X.; Zheng, Y.; et al. A strategy to reduce the false-positive rate after low-dose computed tomography in lung cancer screening: A multicenter prospective cohort study. Cancer Med. 2023, 12, 14781–14793. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Milanese, G.; Ledda, R.E.; Pastorino, U.; Sverzellati, N. Screen-detected solid nodules: From detection of nodule to structured reporting. Transl. Lung Cancer Res. 2021, 10, 2335–2346. [Google Scholar] [CrossRef]
- Bartlett, E.C.; Silva, M.; Callister, M.E.; Devaraj, A. False-Negative Results in Lung Cancer Screening-Evidence and Controversies. J. Thorac. Oncol. 2021, 16, 912–921. [Google Scholar] [CrossRef]
- Kalkanis, A.; Papadopoulos, D.; Testelmans, D.; Kopitopoulou, A.; Boeykens, E.; Wauters, E. Bronchoalveolar Lavage Fluid-Isolated Biomarkers for the Diagnostic and Prognostic Assessment of Lung Cancer. Diagnostics 2022, 12, 2949. [Google Scholar] [CrossRef]
- Domagala-Kulawik, J. The relevance of bronchoalveolar lavage fluid analysis for lung cancer patients. Expert Rev. Respir. Med. 2020, 14, 329–337. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, D.; Li, S.; Ren, J.; Huang, W.; Liu, D.; Wang, W. Bronchoalveolar lavage fluid assessment facilitates precision medicine for lung cancer. Cancer Biol. Med. 2023, 21, 230–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, E.Y.; Kim, T.; Chang, Y.S. Compared to plasma, bronchial washing fluid shows higher diagnostic yields for detecting EGFR-TKI sensitizing mutations by ddPCR in lung cancer. Respir. Res. 2020, 21, 142. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Kim, W.J. DNA Methylation Markers in Lung Cancer. Curr. Genom. 2021, 22, 79–87. [Google Scholar] [CrossRef]
- Liang, W.; Chen, Z.; Li, C.; Liu, J.; Tao, J.; Liu, X.; Zhao, D.; Yin, W.; Chen, H.; Cheng, C.; et al. Accurate diagnosis of pulmonary nodules using a noninvasive DNA methylation test. J. Clin. Investig. 2021, 131, e145973. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, Z.; Yang, S.; Yang, H.; Jin, J.; Zhu, Y.; Tao, J.; Chen, S.; Xu, J.; Liu, Y.; et al. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin. Epigenetics 2021, 13, 185. [Google Scholar] [CrossRef]
- Lu, H.; Lin, D. Diagnostic value of exfoliated tumor cells combined with DNA methylation in bronchoalveolar lavage fluid for lung cancer. Medicine 2023, 102, e34955. [Google Scholar] [CrossRef]
- Zeng, D.; Wang, C.; Mu, C.; Su, M.; Mao, J.; Huang, J.; Xu, J.; Shao, L.; Li, B.; Li, H.; et al. Cell-free DNA from bronchoalveolar lavage fluid (BALF): A new liquid biopsy medium for identifying lung cancer. Ann. Transl. Med. 2021, 9, 1080. [Google Scholar] [CrossRef]
- Casagrande, G.M.S.; Silva, M.O.; Reis, R.M.; Leal, L.F. Liquid Biopsy for Lung Cancer: Up-to-Date and Perspectives for Screening Programs. Int. J. Mol. Sci. 2023, 24, 2505. [Google Scholar] [CrossRef]
- Hur, J.Y.; Lee, J.S.; Kim, I.A.; Kim, H.J.; Kim, W.S.; Lee, K.Y. Extracellular vesicle-based EGFR genotyping in bronchoalveolar lavage fluid from treatment-naive non-small cell lung cancer patients. Transl. Lung Cancer Res. 2019, 8, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.A.; Hur, J.Y.; Kim, H.J.; Kim, W.S.; Lee, K.Y. Extracellular Vesicle-Based Bronchoalveolar Lavage Fluid Liquid Biopsy for EGFR Mutation Testing in Advanced Non-Squamous NSCLC. Cancers 2022, 14, 2744. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.K.; Shanmugam, P.; Karn, V.; Gupta, S.; Mishra, R.; Rustagi, S.; Chouhan, M.; Verma, D.; Jha, N.K.; Kumar, S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers 2024, 16, 2179. [Google Scholar] [CrossRef]
- Karn, V.; Ahmed, S.; Tsai, L.W.; Dubey, R.; Ojha, S.; Singh, H.N.; Kumar, M.; Gupta, P.K.; Sadhu, S.; Jha, N.K.; et al. Extracellular Vesicle-Based Therapy for COVID-19: Promises, Challenges and Future Prospects. Biomedicines 2021, 9, 1373. [Google Scholar] [CrossRef]
- Tatischeff, I. Extracellular Vesicle-DNA: The Next Liquid Biopsy Biomarker for Early Cancer Diagnosis? Cancers 2023, 15, 1456. [Google Scholar] [CrossRef]
- Wang, X.; Tian, L.; Lu, J.; Ng, I.O. Exosomes and cancer—Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022, 11, 54. [Google Scholar] [CrossRef]
- Tai, Y.L.; Chen, K.C.; Hsieh, J.T.; Shen, T.L. Exosomes in cancer development and clinical applications. Cancer Sci. 2018, 109, 2364–2374. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Na, Y.; Whang, M.Y.; Ho, J.Y.; Han, M.R.; Park, S.W.; Song, H.; Hur, S.Y.; Choi, Y.J. MGMT Methylation Is Associated with Human Papillomavirus Infection in Cervical Dysplasia: A Longitudinal Study. J. Clin. Med. 2023, 12, 6188. [Google Scholar] [CrossRef]
- Kim, H.; Chu, J.; Do, I.-G.; Lee, Y.-P.; Kim, H.K.; Yang, Y.; Kwon, J.; Lee, K.H.; Batochir, C.; Jo, E.; et al. Novel diagnostic biomarkers for pancreatic cancer: Assessing methylation status with epigenetic-specific peptide nucleic acid and KRAS mutation in cell-free DNA. Front. Oncol. 2024, 14, 1395473. [Google Scholar] [CrossRef]
- Danos, P.; Giannoni-Luza, S.; Murillo Carrasco, A.G.; Acosta, O.; Guevara-Fujita, M.L.; Cotrina Concha, J.M.; Guerra Miller, H.; Pinto Oblitas, J.; Aguilar Cartagena, A.; Araujo, J.M.; et al. Promoter hypermethylation of RARB and GSTP1 genes in plasma cell-free DNA as breast cancer biomarkers in Peruvian women. Mol. Genet. Genom. Med. 2023, 11, e2260. [Google Scholar] [CrossRef]
- Tuncel, F.C.; Serin, I.; Pehlivan, S.; Oyaci, Y.; Pehlivan, M. Epigenetic and genetic investigation of SOCS-1 gene in patients with multiple myeloma. Blood Res. 2022, 57, 250–255. [Google Scholar] [CrossRef]
- Du, C.; Tan, L.; Xiao, X.; Xin, B.; Xiong, H.; Zhang, Y.; Ke, Z.; Yin, J. Detection of the DNA methylation of seven genes contribute to the early diagnosis of lung cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 77. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Ke, Z.B.; Dong, R.N.; Chen, H.; Lin, F.; Zheng, W.C.; Chen, S.H.; Zhu, J.M.; Chen, S.M.; Zheng, Q.S.; et al. The prognostic value of homeobox A9 (HOXA9) methylation in solid tumors: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 4347–4354. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Xu, G.; Xu, C.; Liu, B.; Liu, D. Potential prognostic biomarkers identified by DNA methylation profiling analysis for patients with lung adenocarcinoma. Oncol. Lett. 2018, 15, 3552–3557. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Xu, H.; Ma, J.; Liang, F.; Zou, Q.; Lin, F. Silencing NID2 by DNA Hypermethylation Promotes Lung Cancer. Pathol. Oncol. Res. 2020, 26, 801–811. [Google Scholar] [CrossRef]
- Zhang, X.; Rong, X.; Chen, Y.; Su, L. Methylation-mediated loss of SFRP2 enhances invasiveness of non-small cell lung cancer cells. Hum. Exp. Toxicol. 2018, 37, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Valk, K.; Vooder, T.; Kolde, R.; Reintam, M.A.; Petzold, C.; Vilo, J.; Metspalu, A. Gene expression profiles of non-small cell lung cancer: Survival prediction and new biomarkers. Oncology 2010, 79, 283–292. [Google Scholar] [CrossRef]
- Sun, X.; Yi, J.; Yang, J.; Han, Y.; Qian, X.; Liu, Y.; Li, J.; Lu, B.; Zhang, J.; Pan, X.; et al. An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Theranostics 2021, 11, 5346–5364. [Google Scholar] [CrossRef]
- Kondo, K.; Muguruma, K.; Soejima, S.; Takai, C.; Kenzaki, K.; Kawakita, N.; Toba, H.; Takizawa, H. Aberrant DNA Methylation of NPTX2 as an Indicator of Malignant Behavior in Thymic Epithelial Tumors. Cancers 2024, 16, 329. [Google Scholar] [CrossRef]
- Su, Y.; Huang, Q.; Lu, L.; Qu, H.; Wang, D.; Qiu, J.; Li, W.; Lin, M.; Liu, H.; Wang, Z.; et al. Promoter Methylation-Mediated NPTX2 Silencing Promotes Tumor Growth in Human Prostate Cancer. J. Cancer 2022, 13, 706–714. [Google Scholar] [CrossRef]
- García-Ortiz, M.V.; Cano-Ramírez, P.; Toledano-Fonseca, M.; Cano, M.T.; Inga-Saavedra, E.; Rodríguez-Alonso, R.M.; Guil-Luna, S.; Gómez-España, M.A.; Rodríguez-Ariza, A.; Aranda, E. Circulating NPTX2 methylation as a non-invasive biomarker for prognosis and monitoring of metastatic pancreatic cancer. Clin. Epigenetics 2023, 15, 118. [Google Scholar] [CrossRef] [PubMed]
- Paskeh, M.D.A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M.J.; Sabet, S.; Khoshbakht, M.A.; Hashemi, M.; Hushmandi, K.; et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Wandrey, M.; Jablonska, J.; Stauber, R.H.; Gul, D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life 2023, 13, 2033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Li, S.; Wang, M.; Dai, D.; Jing, H.; Liu, L. Upregulation of E-cadherin in bronchoalveolar lavage fluid-derived exosomes in patients with lung cancer. Thorac. Cancer 2020, 11, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Galamb, O.; Kalmar, A.; Bartak, B.K.; Patai, A.V.; Leiszter, K.; Peterfia, B.; Wichmann, B.; Valcz, G.; Veres, G.; Tulassay, Z.; et al. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. World J. Gastroenterol. 2016, 22, 10325–10340. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ganz, P.A.; Sehl, M.E. DNA Methylation, Aging, and Cancer Risk: A Mini-Review. Front. Bioinform. 2022, 2, 847629. [Google Scholar] [CrossRef] [PubMed]
- Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA Methylation in Cancer and Aging. Cancer Res. 2016, 76, 3446–3450. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.H.; Landi, M.T. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers 2022, 14, 961. [Google Scholar] [CrossRef] [PubMed]
- Powrozek, T.; Krawczyk, P.; Kucharczyk, T.; Milanowski, J. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: Preliminary report. Med. Oncol. 2014, 31, 917. [Google Scholar] [CrossRef]
- Hu, H.; Chen, X.; Zhou, C.; Li, B.; Yang, Y.; Ying, X.; Mao, Y.; Zhang, Y.; Zhong, J.; Dai, J.; et al. Aberrant methylation of mutL homolog 1 is associated with increased risk of non-small cell lung cancer. J. Clin. Lab. Anal. 2018, 32, e22370. [Google Scholar] [CrossRef]
- Bou-Samra, P.; Chang, A.; Kelly, N.; Yudien, M.; Galandarova, A.; Ibrahimli, A.; Kennedy, G.T.; Azari, F. Ground-glass opacities: A problem bound to get more challenging. Quant. Imaging Med. Surg. 2023, 13, 5447–5450. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.T. Management of Ground-Glass Nodules: When and How to Operate? Cancers 2022, 14, 715. [Google Scholar] [CrossRef] [PubMed]
- Brioulet, J.; David, A.; Sagan, C.; Cellerin, L.; Frampas, E.; Morla, O. Percutaneous CT-guided lung biopsy for the diagnosis of persistent pulmonary consolidation. Diagn. Interv. Imaging 2020, 101, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Bellantone, R.; Lombardi, C.P.; Raffaelli, M.; Traini, E.; De Crea, C.; Rossi, E.D.; Fadda, G. Management of cystic or predominantly cystic thyroid nodules: The role of ultrasound-guided fine-needle aspiration biopsy. Thyroid 2004, 14, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Uramoto, H.; Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [CrossRef]
- Yun, J.K.; Lee, G.D.; Choi, S.; Kim, Y.H.; Kim, D.K.; Park, S.I.; Kim, H.R. Various recurrence dynamics for non-small cell lung cancer depending on pathological stage and histology after surgical resection. Transl. Lung Cancer Res. 2022, 11, 1327–1336. [Google Scholar] [CrossRef]
Discovery (n, %) | Validation (n, %) | ||
---|---|---|---|
Age (mean) | Non-cancer | 68.4 | 68.5 |
Cancer | 72.1 | 70 | |
Sex | |||
Non-cancer | Male | 45 (64%) | 18 (51%) |
Female | 25 (36%) | 17 (49%) | |
Cancer | Male | 55 (81%) | 36 (55%) |
Female | 13 (19%) | 29 (45%) | |
Smoking status | |||
Non-cancer | Never | 33 (47%) | 24 (69%) |
Minimal ex-smoker | 2 (3%) | - | |
Ex-smoker | 6 (9%) | 4 (11%) | |
Smoker | 21 (30%) | 5 (14%) | |
NA 1 | 8 (11%) | 2 (6%) | |
Cancer | Never | 19 (28%) | 29 (45%) |
Minimal ex-smoker | 1 (1%) | 3 (5%) | |
Ex-smoker | 3 (4%) | 6 (9%) | |
Smoker | 45 (66%) | 27 (42%) | |
Histology | |||
Non-cancer | Nodule | 18 (26%) | 6 (17%) |
Ground–glass nodules (GGN) | - | 9 (26%) | |
Pneumonia | 19 (27%) | 6 (17%) | |
Tuberculosis (Tbc) | 19 (27%) | 9 (26%) | |
COPD | 11 (16%) | 5 (14%) | |
IPF | 1 (1%) | - | |
ND 2 | 2 (3%) | - | |
Cancer | Adenocarcinoma | 25 (37%) | 50 (77%) |
Squamous cell carcinoma (SqCC) | 30 (44%) | 10 (15%) | |
SCLC | 10 (15%) | 2 (3%) | |
LCLC | 2 (3%) | - | |
Not otherwise specified (NOS) | 1 (1%) | 3 (5%) | |
Cancer stage | NSCLC I | 13 (19%) | 25 (38%) |
NSCLC II | 1 (1%) | 3 (5%) | |
NSCLC III | 20 (29%) | 10 (15%) | |
NSCLC IV | 18 (26%) | 25 (38%) | |
NSCLC relapsed | 3 (4%) | 1 (2%) | |
NSCLC N/A | 2 (9%) | - | |
SCLC LD | 2 (3%) | - | |
SCLC ED | 9 (13%) | 1 (2%) |
Gene | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | AUC (95% CI) p < 0.05 |
---|---|---|---|---|
HOXA9 | 73.53% (61.43–83.50) | 91.43% (82.27–96.79) | 82.61% (75.24–88.53) | 0.88 (0.82–0.94) |
HOXD3 | 80.88% (69.53–89.41) | 65.71% (53.40–76.65) | 77.97 (64.99–80.37) | 0.79 (0.72–0.87) |
PCDH17 | 73.53% (61.43–83.50) | 84.29% (73.62–91.89) | 78.99 (71.23–85.45) | 0.82 (0.74–0.89) |
NID2 | 83.82% (72.90–91.64) | 88.57% (78.72–94.93) | 86.23 (79.34–91.50) | 0.91 (0.86–0.97) |
NPTX2 | 75.00% (63.02–87.71) | 77.14% (65.55–86.33) | 76.09 (68.09–82.93) | 0.80 (0.73–0.88) |
RASSF1A | 38.24% (26.71–50.82) | 95.71% (87.98–99.11) | 67.39 (58.90–75.12) | 0.64 (0.55–0.73) |
SFRP2 | 77.94% (66.24–87.10) | 85.71% (75.29–92.93) | 81.88 (74.43–87.92) | 0.87 (0.81–0.93) |
Seven-gene-combined analysis | 88.24% (78.13–94.78) | 97.14% (90.06–99.65) | 92.75 (87.08–96.47) | 0.97 (0.94–0.99) |
Gene | NSCLC Stage | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) p < 0.05 |
---|---|---|---|---|
Seven-gene-combined analysis | I | 84.62% (57.77–97.27%) | 97.14% (90.17–99.49) | 0.87 (0.76–1.00) |
III | 90.00% (69.90–98.22%) | 0.93 (0.84–1.00) | ||
IV | 94.44% (74.24–99.72%) | 0.95 (0.88–1.00) | ||
II/III/IV | 89.74% (76.42–95.94%) | 0.93 (0.86–0.99) | ||
I–IV | 88.46% (77.03–94.60%) | 0.92 (0.86–0.98) | ||
I–IV + N/A 1 | 88.89% (77.81–94.81%) | 0.92 (0.86–0.98) | ||
I–IV + N/A + RE 2 | 89.47% (78.88–95.09%) | 0.92 (0.87–0.98) |
Gene | Mean PMR | Fold Change 1 p < 0.05 | |
---|---|---|---|
Non-Cancer (n = 70) | Cancer (n = 68) | ||
HOXA9 | 2.505 | 25.04 | 9.996 |
HOXD3 | 20.80 | 35.42 | 1.703 |
PCDH17 | 0.272 | 3.634 | 13.360 |
NID2 | 0.901 | 6.437 | 7.144 |
NPTX2 | 2.255 | 13.79 | 6.115 |
RASSF1A | 0.403 | 1.992 | 4.943 |
SFRP2 | 3.279 | 12.67 | 3.864 |
Gene | MPMR Non-Cancer | NSCLC Stage I | NSCLC Stage II/III/IV | ||
---|---|---|---|---|---|
MPMR | Fold Change 1 | MPMR | Fold Change | ||
HOXA9 | 2.505 | 10.16 | 4.06 | 26.72 | 10.67 |
HOXD3 | 20.8 | 27.75 | 1.33 | 34.70 | 1.67 |
PCDH17 | 0.2722 | 1.74 | 6.39 | 3.71 | 13.61 |
NID2 | 0.9007 | 4.13 | 4.59 | 6.81 | 7.56 |
NPTX2 | 2.255 | 6.31 | 2.80 | 14.77 | 6.55 |
RASSF1A | 0.4033 | 1.21 | 3.01 | 1.27 | 3.16 |
SFRP2 | 3.279 | 9.30 | 2.84 | 12.98 | 3.96 |
Gene | Sex | Age | Smoking | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Cancer | Cancer | Non-Cancer | Cancer | Non-Cancer | Cancer | |||||||
Fold Change 1 | p Value | Fold Change 1 | p Value | Fold Change 2 | p Value | Fold Change 2 | p value | Fold Change 3 | p Value | Fold Change 3 | p Value | |
HOXA9 | 1.11 | 0.689 | 1.49 | 0.173 | 1.07 | 0.790 | 0.93 | 0.755 | 1.50 | 0.109 | 2.01 | 0.013 |
HOXD3 | 0.95 | 0.617 | 1.31 | 0.071 | 1.13 | 0.261 | 0.93 | 0.503 | 1.25 | 0.062 | 1.36 | 0.012 |
PCDH17 | 0.84 | 0.726 | 1.24 | 0.658 | 1.61 | 0.325 | 0.70 | 0.292 | 1.27 | 0.636 | 1.43 | 0.383 |
NID2 | 0.88 | 0.531 | 1.11 | 0.768 | 1.09 | 0.647 | 1.07 | 0.793 | 1.31 | 0.207 | 1.30 | 0.390 |
NPTX2 | 1.34 | 0.416 | 1.78 | 0.244 | 1.30 | 0.423 | 1.37 | 0.333 | 1.51 | 0.221 | 1.58 | 0.235 |
RASSF1A | 1.55 | 0.304 | 4.44 | 0.106 | 1.38 | 0.396 | 0.46 | 0.065 | 2.62 | 0.022 | 2.70 | 0.105 |
SFRP2 | 0.94 | 0.720 | 0.93 | 0.794 | 1.04 | 0.797 | 0.79 | 0.268 | 1.23 | 0.201 | 1.21 | 0.440 |
Method | Test Group (Cancer Stage) | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | AUC (95% CI) p < 0.05 |
---|---|---|---|---|---|
Seven-gene panel | Total sample | 93.85% (84.99–98.30) | 94.29% (80.84–99.30) | 94.00% (87.40–97.77) | 0.95 (0.90–0.99) |
Stage I | 88.00% (70.04–95.83) | 91.67% (81.61–97.24) | 0.92 (0.83–0.99) | ||
Stage II/III/IV | 97.37% (86.19–99.93) | 95.89% (88.46–99.14) | 0.96 (0.92–1.00) | ||
Seven-gene panel + smoking history | Total sample | 95.38% (87.10–99.04) | 95.00% (88.72–98.36) | 0.96 (0.91–1.00) | |
Stage I | 92.00% (73.97–99.02) | 93.33% (83.82–98.15) | 0.96 (0.91–1.00) | ||
Stage II/III/IV | 97.37% (86.19–99.93) | 95.89% (88.46–99.14) | 0.96 (0.92–1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batochir, C.; Kim, I.A.; Jo, E.J.; Kim, E.-B.; Kim, H.J.; Hur, J.Y.; Kim, D.W.; Park, H.K.; Lee, K.Y. Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile. Cancers 2024, 16, 2765. https://doi.org/10.3390/cancers16152765
Batochir C, Kim IA, Jo EJ, Kim E-B, Kim HJ, Hur JY, Kim DW, Park HK, Lee KY. Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile. Cancers. 2024; 16(15):2765. https://doi.org/10.3390/cancers16152765
Chicago/Turabian StyleBatochir, Chinbayar, In Ae Kim, Eun Ji Jo, Eun-Bi Kim, Hee Joung Kim, Jae Young Hur, Do Won Kim, Hee Kyung Park, and Kye Young Lee. 2024. "Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile" Cancers 16, no. 15: 2765. https://doi.org/10.3390/cancers16152765
APA StyleBatochir, C., Kim, I. A., Jo, E. J., Kim, E. -B., Kim, H. J., Hur, J. Y., Kim, D. W., Park, H. K., & Lee, K. Y. (2024). Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile. Cancers, 16(15), 2765. https://doi.org/10.3390/cancers16152765