NRG1 Gene Fusions—What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Structure and Biology of NRG1 Fusions
3. Occurrence of NRG1 Fusions
4. Detection of NRG1 Fusions
5. NRG1 Fusion as the Predictive Factor in Lung Cancer Treatment
6. NRG1 Fusion as a Secondary Target in Lung Cancer Treatment
7. Clinical Trials Related to Patients with Solid Tumors Harboring NRG1 Fusions
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European Cancer Burden in 2020: Incidence and Mortality Estimates for 40 Countries and 25 Major Cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward Personalized Treatment Approaches for Non-Small-Cell Lung Cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, P.; Wei, J.; Zhang, X.; Guo, J.; Lin, Y. Recent Progress in Targeted Therapy for Non-Small Cell Lung Cancer. Front. Pharmacol. 2023, 14, 1125547. [Google Scholar] [CrossRef]
- Schram, A.M.; Chang, M.T.; Jonsson, P.; Drilon, A. Fusions in Solid Tumours: Diagnostic Strategies, Targeted Therapy, and Acquired Resistance. Nat. Rev. Clin. Oncol. 2017, 14, 735–748. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Lv, J.; Lu, W.; Zhang, Y.; Wang, D.; Song, Y. Clinical Characteristics and Targeted Therapy of Different Gene Fusions in Non-Small Cell Lung Cancer: A Narrative Review. Transl. Lung Cancer Res. 2023, 12, 895–908. [Google Scholar] [CrossRef]
- Horak, P.; Griffith, M.; Danos, A.M.; Pitel, B.A.; Madhavan, S.; Liu, X.; Chow, C.; Williams, H.; Carmody, L.; Barrow-Laing, L.; et al. Standards for the Classification of Pathogenicity of Somatic Variants in Cancer (Oncogenicity): Joint Recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet. Med. Off. J. Am. Coll. Med. Genet. 2022, 24, 986–998. [Google Scholar] [CrossRef]
- Fernandez-Cuesta, L.; Plenker, D.; Osada, H.; Sun, R.; Menon, R.; Leenders, F.; Ortiz-Cuaran, S.; Peifer, M.; Bos, M.; Daßler, J.; et al. CD74-NRG1 Fusions in Lung Adenocarcinoma. Cancer Discov. 2014, 4, 415–422. [Google Scholar] [CrossRef]
- Gay, N.D.; Wang, Y.; Beadling, C.; Warrick, A.; Neff, T.; Corless, C.L.; Tolba, K. Durable Response to Afatinib in Lung Adenocarcinoma Harboring NRG1 Gene Fusions. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2017, 12, e107–e110. [Google Scholar] [CrossRef]
- Jonna, S.; Feldman, R.A.; Swensen, J.; Gatalica, Z.; Korn, W.M.; Borghaei, H.; Ma, P.C.; Nieva, J.J.; Spira, A.I.; Vanderwalde, A.M.; et al. Detection of NRG1 Gene Fusions in Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4966–4972. [Google Scholar] [CrossRef]
- Severson, E.; Achyut, B.R.; Nesline, M.; Pabla, S.; Previs, R.A.; Kannan, G.; Chenn, A.; Zhang, S.; Klein, R.; Conroy, J.; et al. RNA Sequencing Identifies Novel NRG1 Fusions in Solid Tumors That Lack Co-Occurring Oncogenic Drivers. J. Mol. Diagn. 2023, 25, 454–466. [Google Scholar] [CrossRef]
- Muscarella, L.A.; Trombetta, D.; Fabrizio, F.P.; Scarpa, A.; Fazio, V.M.; Maiello, E.; Rossi, A.; Graziano, P. ALK and NRG1 Fusions Coexist in a Patient with Signet Ring Cell Lung Adenocarcinoma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2017, 12, e161–e163. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, S.H.; Choi, M.; Bae, Y.-K.; Han, C.; Choi, B.K.; Kim, S.S.; Han, J.-Y. Oncogenic KRAS Promotes Growth of Lung Cancer Cells Expressing SLC3A2-NRG1 Fusion via ADAM17-Mediated Shedding of NRG1. Oncogene 2022, 41, 280–292. [Google Scholar] [CrossRef]
- Xia, D.; Le, L.P.; Iafrate, A.J.; Lennerz, J. KIF13B-NRG1 Gene Fusion and KRAS Amplification in a Case of Natural Progression of Lung Cancer. Int. J. Surg. Pathol. 2017, 25, 238–240. [Google Scholar] [CrossRef]
- Falls, D.L. Neuregulins: Functions, Forms, and Signaling Strategies. Exp. Cell Res. 2003, 284, 14–30. [Google Scholar] [CrossRef]
- Liu, S.V. NRG1 Fusions: Biology to Therapy. Lung Cancer Amst. Neth. 2021, 158, 25–28. [Google Scholar] [CrossRef]
- Meyer, D.; Yamaai, T.; Garratt, A.; Riethmacher-Sonnenberg, E.; Kane, D.; Theill, L.E.; Birchmeier, C. Isoform-Specific Expression and Function of Neuregulin. Dev. Camb. Engl. 1997, 124, 3575–3586. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; Stefansson, H.; Ghosh, S.; Birgisdottir, B.; Bjornsdottir, S.; Fasquel, A.C.; Olafsson, O.; Stefansson, K.; Gulcher, J.R. Multiple Novel Transcription Initiation Sites for NRG1. Gene 2004, 342, 97–105. [Google Scholar] [CrossRef]
- Wang, J.Y.; Miller, S.J.; Falls, D.L. The N-Terminal Region of Neuregulin Isoforms Determines the Accumulation of Cell Surface and Released Neuregulin Ectodomain. J. Biol. Chem. 2001, 276, 2841–2851. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Cao, H.; Wang, T.; Yang, S.; Tong, Y.; Wang, L.; Liu, Q. Analysis on the Pathogenesis and Treatment Progress of NRG1 Fusion-Positive Non-Small Cell Lung Cancer. Front. Oncol. 2024, 14, 1405380. [Google Scholar] [CrossRef]
- Gollamudi, M.; Nethery, D.; Liu, J.; Kern, J.A. Autocrine Activation of ErbB2/ErbB3 Receptor Complex by NRG-1 in Non-Small Cell Lung Cancer Cell Lines. Lung Cancer 2004, 43, 135–143. [Google Scholar] [CrossRef]
- Fernandez-Cuesta, L.; Thomas, R.K. Molecular Pathways: Targeting NRG1 Fusions in Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 1989–1994. [Google Scholar] [CrossRef]
- Guy, P.M.; Platko, J.V.; Cantley, L.C.; Cerione, R.A.; Carraway, K.L. Insect Cell-Expressed p180erbB3 Possesses an Impaired Tyrosine Kinase Activity. Proc. Natl. Acad. Sci. USA 1994, 91, 8132–8136. [Google Scholar] [CrossRef]
- Kim, H.-G.; Lee, C.-K.; Cho, S.-M.; Whang, K.; Cha, B.-H.; Shin, J.-H.; Song, K.-H.; Jeong, S.-W. Neuregulin 1 Up-Regulates the Expression of Nicotinic Acetylcholine Receptors through the ErbB2/ErbB3-PI3K-MAPK Signaling Cascade in Adult Autonomic Ganglion Neurons. J. Neurochem. 2013, 124, 502–513. [Google Scholar] [CrossRef]
- Muthuswamy, S.K.; Gilman, M.; Brugge, J.S. Controlled Dimerization of ErbB Receptors Provides Evidence for Differential Signaling by Homo- and Heterodimers. Mol. Cell. Biol. 1999, 19, 6845–6857. [Google Scholar] [CrossRef]
- Drilon, A.; Somwar, R.; Mangatt, B.P.; Edgren, H.; Desmeules, P.; Ruusulehto, A.; Smith, R.S.; Delasos, L.; Vojnic, M.; Plodkowski, A.J.; et al. Response to ERBB3-Directed Targeted Therapy in NRG1-Rearranged Cancers. Cancer Discov. 2018, 8, 686–695. [Google Scholar] [CrossRef]
- Nakaoku, T.; Tsuta, K.; Ichikawa, H.; Shiraishi, K.; Sakamoto, H.; Enari, M.; Furuta, K.; Shimada, Y.; Ogiwara, H.; Watanabe, S.; et al. Druggable Oncogene Fusions in Invasive Mucinous Lung Adenocarcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 3087–3093. [Google Scholar] [CrossRef]
- Jones, M.R.; Lim, H.; Shen, Y.; Pleasance, E.; Ch’ng, C.; Reisle, C.; Leelakumari, S.; Zhao, C.; Yip, S.; Ho, J.; et al. Successful Targeting of the NRG1 Pathway Indicates Novel Treatment Strategy for Metastatic Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 3092–3097. [Google Scholar] [CrossRef]
- Dhanasekaran, S.M.; Balbin, O.A.; Chen, G.; Nadal, E.; Kalyana-Sundaram, S.; Pan, J.; Veeneman, B.; Cao, X.; Malik, R.; Vats, P.; et al. Transcriptome Meta-Analysis of Lung Cancer Reveals Recurrent Aberrations in NRG1 and Hippo Pathway Genes. Nat. Commun. 2014, 5, 5893. [Google Scholar] [CrossRef]
- Jung, Y.; Yong, S.; Kim, P.; Lee, H.-Y.; Jung, Y.; Keum, J.; Lee, S.; Kim, J.; Kim, J. VAMP2-NRG1 Fusion Gene Is a Novel Oncogenic Driver of Non-Small-Cell Lung Adenocarcinoma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 1107–1111. [Google Scholar] [CrossRef]
- McCoach, C.E.; Le, A.T.; Gowan, K.; Jones, K.; Schubert, L.; Doak, A.; Estrada-Bernal, A.; Davies, K.D.; Merrick, D.T.; Paul, A.; et al. Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 3334. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Ye, T.; Zhao, Y.; Gao, Z.; Yuan, H.; Zheng, D.; Zheng, S.; Li, H.; Li, Y.; et al. Detection of Novel NRG1, EGFR, and MET Fusions in Lung Adenocarcinomas in the Chinese Population. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 2003–2008. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, P.; Bie, Z.; Song, C.; Zhang, M.; Ma, D.; Cui, D.; Cheng, G.; Li, H.; Lei, Y.; et al. Durable Response to Afatinib in Advanced Lung Adenocarcinoma Harboring a Novel NPTN-NRG1 Fusion: A Case Report. World J. Surg. Oncol. 2023, 21, 246. [Google Scholar] [CrossRef]
- Drilon, A.; Duruisseaux, M.; Han, J.-Y.; Ito, M.; Falcon, C.; Yang, S.-R.; Murciano-Goroff, Y.R.; Chen, H.; Okada, M.; Molina, M.A.; et al. Clinicopathologic Features and Response to Therapy of NRG1 Fusion-Driven Lung Cancers: The eNRGy1 Global Multicenter Registry. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 2791–2802. [Google Scholar] [CrossRef]
- Murumägi, A.; Ungureanu, D.; Khan, S.; Hirasawa, A.; Arjama, M.; Välimäki, K.; Mikkonen, P.; Niininen, W.; Kumar, A.; Eldfors, S.; et al. Abstract 2945: Clinical Implementation of Precision Systems Oncology in the Treatment of Ovarian Cancer Based on Ex-Vivo Drug Testing and Molecular Profiling. Cancer Res. 2019, 79, 2945. [Google Scholar] [CrossRef]
- Heining, C.; Horak, P.; Uhrig, S.; Codo, P.L.; Klink, B.; Hutter, B.; Fröhlich, M.; Bonekamp, D.; Richter, D.; Steiger, K.; et al. NRG1 Fusions in KRAS Wild-Type Pancreatic Cancer. Cancer Discov. 2018, 8, 1087–1095. [Google Scholar] [CrossRef]
- Laskin, J.; Liu, S.V.; Tolba, K.; Heining, C.; Schlenk, R.F.; Cheema, P.; Cadranel, J.; Jones, M.R.; Drilon, A.; Cseh, A.; et al. NRG1 Fusion-Driven Tumors: Biology, Detection, and the Therapeutic Role of Afatinib and Other ErbB-Targeting Agents. Ann. Oncol. 2020, 31, 1693–1703. [Google Scholar] [CrossRef]
- Jones, M.R.; Williamson, L.M.; Topham, J.T.; Lee, M.K.C.; Goytain, A.; Ho, J.; Denroche, R.E.; Jang, G.; Pleasance, E.; Shen, Y.; et al. NRG1 Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4674–4681. [Google Scholar] [CrossRef]
- Howarth, K.D.; Mirza, T.; Cooke, S.L.; Chin, S.-F.; Pole, J.C.; Turro, E.; Eldridge, M.D.; Garcia, R.M.; Rueda, O.M.; Boursnell, C.; et al. NRG1 Fusions in Breast Cancer. Breast Cancer Res. 2021, 23, 3. [Google Scholar] [CrossRef]
- Ptáková, N.; Martínek, P.; Holubec, L.; Janovský, V.; Vančurová, J.; Grossmann, P.; Navarro, P.A.; Rodriguez Moreno, J.F.; Alaghehbandan, R.; Hes, O.; et al. Identification of Tumors with NRG1 Rearrangement, Including a Novel Putative Pathogenic UNC5D-NRG1 Gene Fusion in Prostate Cancer by Data-Drilling a de-Identified Tumor Database. Genes. Chromosomes Cancer 2021, 60, 474–481. [Google Scholar] [CrossRef]
- Dermawan, J.K.; Zou, Y.; Antonescu, C.R. Neuregulin 1 (NRG1) Fusion-Positive High-Grade Spindle Cell Sarcoma: A Distinct Group of Soft Tissue Tumors with Metastatic Potential. Genes Chromosomes Cancer 2022, 61, 123–130. [Google Scholar] [CrossRef]
- Sturgill, E.G.; Srivastava, J.; Correia, J.; Schumacher, C.; Luckett, D.; Perez, C.A.; Wang, J.S.; Divers, S.G.; Bashir, B.; Johnson, J.; et al. Abstract 921: Identification of NRG1 Fusions in Patients with Solid Tumors: Analysis from a Real-World Community Oncology Network. Cancer Res. 2023, 83, 921. [Google Scholar] [CrossRef]
- Chang, J.C.; Offin, M.; Falcon, C.; Brown, D.; Houck-Loomis, B.R.; Meng, F.; Rudneva, V.A.; Won, H.H.; Amir, S.; Montecalvo, J.; et al. Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes. Clin. Cancer Res. 2021, 27, 4066–4076. [Google Scholar] [CrossRef] [PubMed]
- Cappello, F.; Angerilli, V.; Munari, G.; Ceccon, C.; Sabbadin, M.; Pagni, F.; Fusco, N.; Malapelle, U.; Fassan, M. FFPE-Based NGS Approaches into Clinical Practice: The Limits of Glory from a Pathologist Viewpoint. J. Pers. Med. 2022, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, W.; Thomas, G.A. Why Formalin-Fixed, Paraffin-Embedded Biospecimens Must Be Used in Genomic Medicine: An Evidence-Based Review and Conclusion. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2020, 68, 543–552. [Google Scholar] [CrossRef]
- Dixon, A.R.; Bathany, C.; Tsuei, M.; White, J.; Barald, K.F.; Takayama, S. Recent Developments in Multiplexing Techniques for Immunohistochemistry. Expert Rev. Mol. Diagn. 2015, 15, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Graziano, P.; Scarpa, A.; Sparaneo, A.; Rossi, G.; Rossi, A.; Di Maio, M.; Antonello, D.; Mafficini, A.; Fabrizio, F.P.; et al. Frequent NRG1 Fusions in Caucasian Pulmonary Mucinous Adenocarcinoma Predicted by Phospho-ErbB3 Expression. Oncotarget 2018, 9, 9661–9671. [Google Scholar] [CrossRef] [PubMed]
- O’Hurley, G.; Sjöstedt, E.; Rahman, A.; Li, B.; Kampf, C.; Pontén, F.; Gallagher, W.M.; Lindskog, C. Garbage in, Garbage out: A Critical Evaluation of Strategies Used for Validation of Immunohistochemical Biomarkers. Mol. Oncol. 2014, 8, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Adélaïde, J.; Huang, H.-E.; Murati, A.; Alsop, A.E.; Orsetti, B.; Mozziconacci, M.-J.; Popovici, C.; Ginestier, C.; Letessier, A.; Basset, C.; et al. A Recurrent Chromosome Translocation Breakpoint in Breast and Pancreatic Cancer Cell Lines Targets the Neuregulin/NRG1 Gene. Genes Chromosomes Cancer 2003, 37, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Alì, G.; Bruno, R.; Savino, M.; Giannini, R.; Pelliccioni, S.; Menghi, M.; Boldrini, L.; Proietti, A.; Chella, A.; Ribechini, A.; et al. Analysis of Fusion Genes by NanoString System: A Role in Lung Cytology? Arch. Pathol. Lab. Med. 2018, 142, 480–489. [Google Scholar] [CrossRef]
- Shin, D.H.; Jo, J.Y.; Han, J.-Y. Dual Targeting of ERBB2/ERBB3 for the Treatment of SLC3A2-NRG1-Mediated Lung Cancer. Mol. Cancer Ther. 2018, 17, 2024–2033. [Google Scholar] [CrossRef]
- Rosas, D.; Raez, L.E.; Russo, A.; Rolfo, C. Neuregulin 1 Gene (NRG1). A Potentially New Targetable Alteration for the Treatment of Lung Cancer. Cancers 2021, 13, 5038. [Google Scholar] [CrossRef]
- Harvey, R.D.; Adams, V.R.; Beardslee, T.; Medina, P. Afatinib for the Treatment of EGFR Mutation-Positive NSCLC: A Review of Clinical Findings. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2020, 26, 1461–1474. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, X.; Xiang, Y.; Fang, T.; Liu, J.; Lu, K. Afatinib for the Treatment of NSCLC with Uncommon EGFR Mutations: A Narrative Review. Curr. Oncol. 2023, 30, 5337–5349. [Google Scholar] [CrossRef]
- Cadranel, J.; Liu, S.V.; Duruisseaux, M.; Branden, E.; Goto, Y.; Weinberg, B.A.; Heining, C.; Schlenk, R.F.; Cheema, P.; Jones, M.R.; et al. Therapeutic Potential of Afatinib in NRG1 Fusion-Driven Solid Tumors: A Case Series. Oncologist 2021, 26, 7–16. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, D.; Shi, M.; Wang, F.; Li, Y.; Lin, Q. Successful Targeting of the NRG1 Fusion Reveals Durable Response to Afatinib in Lung Adenocarcinoma: A Case Report. Ann. Transl. Med. 2021, 9, 1507. [Google Scholar] [CrossRef]
- Liu, S.V.; Frohn, C.; Minasi, L.; Fernamberg, K.; Klink, A.J.; Gajra, A.; Savill, K.M.Z.; Jonna, S. Real-World Outcomes Associated with Afatinib Use in Patients with Solid Tumors Harboring NRG1 Gene Fusions. Lung Cancer 2024, 188, 107469. [Google Scholar] [CrossRef]
- Bhandari, V.; Hoey, C.; Liu, L.Y.; Lalonde, E.; Ray, J.; Livingstone, J.; Lesurf, R.; Shiah, Y.-J.; Vujcic, T.; Huang, X.; et al. Molecular Landmarks of Tumor Hypoxia across Cancer Types. Nat. Genet. 2019, 51, 308–318. [Google Scholar] [CrossRef]
- Estrada-Bernal, A.; Le, A.T.; Doak, A.E.; Tirunagaru, V.G.; Silva, S.; Bull, M.R.; Smaill, J.B.; Patterson, A.V.; Kim, C.; Liu, S.V.; et al. Tarloxotinib Is a Hypoxia-Activated Pan-HER Kinase Inhibitor Active against a Broad Range of HER-Family Oncogenes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1463–1475. [Google Scholar] [CrossRef]
- Odintsov, I.; Lui, A.J.W.; Sisso, W.J.; Gladstone, E.; Liu, Z.; Delasos, L.; Kurth, R.I.; Sisso, E.M.; Vojnic, M.; Khodos, I.; et al. The Anti-HER3 Monoclonal Antibody Seribantumab Effectively Inhibits Growth of Patient-Derived and Isogenic Cell Line and Xenograft Models with Oncogenic NRG1 Fusions. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 3154–3166. [Google Scholar] [CrossRef]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Shen, E.; Cao, F.; Li, L.; Li, X.; Wang, X.; Kariminia, S.; Chang, B.; Li, H.; et al. NRG1-Dependent Activation of HER3 Induces Primary Resistance to Trastuzumab in HER2-Overexpressing Breast Cancer Cells. Int. J. Oncol. 2017, 51, 1553–1562. [Google Scholar] [CrossRef]
- Guardia, C.; Bianchini, G.; Arpí-LLucià, O.; Menendez, S.; Casadevall, D.; Galbardi, B.; Dugo, M.; Servitja, S.; Montero, J.C.; Soria-Jiménez, L.; et al. Preclinical and Clinical Characterization of Fibroblast-Derived Neuregulin-1 on Trastuzumab and Pertuzumab Activity in HER2-Positive Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 5096–5108. [Google Scholar] [CrossRef]
- Udagawa, H.; Robichaux, J.P.; Elamin, Y.Y.; He, J.; Nilsson, M.B.; Heymach, J.V. Abstract 1182: Molecular Landscape and ErbB Family Signaling in NRG Fusion NSCLC: Therapeutic Implications for Pan-ErbB Family Inhibitors. Cancer Res. 2022, 82, 1182. [Google Scholar] [CrossRef]
- Trombetta, D.; Sparaneo, A.; Fabrizio, F.P.; Di Micco, C.M.; Rossi, A.; Muscarella, L.A. NRG1 and NRG2 Fusions in Non-Small Cell Lung Cancer (NSCLC): Seven Years between Lights and Shadows. Expert Opin. Ther. Targets 2021, 25, 865–875. [Google Scholar] [CrossRef]
- Taniguchi, H.; Yamada, T.; Wang, R.; Tanimura, K.; Adachi, Y.; Nishiyama, A.; Tanimoto, A.; Takeuchi, S.; Araujo, L.H.; Boroni, M.; et al. AXL Confers Intrinsic Resistance to Osimertinib and Advances the Emergence of Tolerant Cells. Nat. Commun. 2019, 10, 259. [Google Scholar] [CrossRef]
- Taniguchi, H.; Akagi, K.; Dotsu, Y.; Yamada, T.; Ono, S.; Imamura, E.; Gyotoku, H.; Takemoto, S.; Yamaguchi, H.; Sen, T.; et al. Pan-HER Inhibitors Overcome Lorlatinib Resistance Caused by NRG1/HER3 Activation in ALK-Rearranged Lung Cancer. Cancer Sci. 2023, 114, 164–173. [Google Scholar] [CrossRef]
- Tanimura, K.; Yamada, T.; Okada, K.; Nakai, K.; Horinaka, M.; Katayama, Y.; Morimoto, K.; Ogura, Y.; Takeda, T.; Shiotsu, S.; et al. HER3 Activation Contributes toward the Emergence of ALK Inhibitor-Tolerant Cells in ALK-Rearranged Lung Cancer with Mesenchymal Features. NPJ Precis. Oncol. 2022, 6, 5. [Google Scholar] [CrossRef]
- Isozaki, H.; Ichihara, E.; Takigawa, N.; Ohashi, K.; Ochi, N.; Yasugi, M.; Ninomiya, T.; Yamane, H.; Hotta, K.; Sakai, K.; et al. Non-Small Cell Lung Cancer Cells Acquire Resistance to the ALK Inhibitor Alectinib by Activating Alternative Receptor Tyrosine Kinases. Cancer Res. 2016, 76, 1506–1516. [Google Scholar] [CrossRef]
- Saunus, J.M.; Quinn, M.C.J.; Patch, A.-M.; Pearson, J.V.; Bailey, P.J.; Nones, K.; McCart Reed, A.E.; Miller, D.; Wilson, P.J.; Al-Ejeh, F.; et al. Integrated Genomic and Transcriptomic Analysis of Human Brain Metastases Identifies Alterations of Potential Clinical Significance. J. Pathol. 2015, 237, 363–378. [Google Scholar] [CrossRef]
- Ye, L.; Chen, X.; Zhou, F. EGFR-Mutant NSCLC: Emerging Novel Drugs. Curr. Opin. Oncol. 2021, 33, 87–94. [Google Scholar] [CrossRef]
- Liu, J.F.; Ray-Coquard, I.; Selle, F.; Poveda, A.M.; Cibula, D.; Hirte, H.; Hilpert, F.; Raspagliesi, F.; Gladieff, L.; Harter, P.; et al. Randomized Phase II Trial of Seribantumab in Combination with Paclitaxel in Patients with Advanced Platinum-Resistant or -Refractory Ovarian Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 4345–4353. [Google Scholar] [CrossRef]
- Curley, M.D.; Sabnis, G.J.; Wille, L.; Adiwijaya, B.S.; Garcia, G.; Moyo, V.; Kazi, A.A.; Brodie, A.; MacBeath, G. Seribantumab, an Anti-ERBB3 Antibody, Delays the Onset of Resistance and Restores Sensitivity to Letrozole in an Estrogen Receptor-Positive Breast Cancer Model. Mol. Cancer Ther. 2015, 14, 2642–2652. [Google Scholar] [CrossRef]
- Sequist, L.V.; Gray, J.E.; Harb, W.A.; Lopez-Chavez, A.; Doebele, R.C.; Modiano, M.R.; Jackman, D.M.; Baggstrom, M.Q.; Atmaca, A.; Felip, E.; et al. Randomized Phase II Trial of Seribantumab in Combination with Erlotinib in Patients with EGFR Wild-Type Non-Small Cell Lung Cancer. Oncologist 2019, 24, 1095–1102. [Google Scholar] [CrossRef]
- Carrizosa, D.R.; Burkard, M.E.; Elamin, Y.Y.; Desai, J.; Gadgeel, S.M.; Lin, J.J.; Waqar, S.N.; Spigel, D.R.; Chae, Y.K.; Cheema, P.K.; et al. CRESTONE: Initial Efficacy and Safety of Seribantumab in Solid Tumors Harboring NRG1 Fusions. J. Clin. Oncol. 2022, 40, 3006. [Google Scholar] [CrossRef]
- Patil, T.; Carrizosa, D.R.; Burkard, M.E.; Reckamp, K.L.; Desai, J.; Chae, Y.K.; Liu, S.V.; Konduri, K.; Gadgeel, S.M.; Lin, J.J.; et al. Abstract CT229: CRESTONE: A Phase 2 Study of Seribantumab in Adult Patients with Neuregulin-1 (NRG1) Fusion Positive Locally Advanced or Metastatic Solid Tumors. Cancer Res. 2023, 83, CT229. [Google Scholar] [CrossRef]
- Schram, A.M.; Goto, K.; Kim, D.-W.; Martin-Romano, P.; Ou, S.-H.I.; O’Kane, G.M.; O’Reilly, E.M.; Umemoto, K.; Duruisseaux, M.; Neuzillet, C.; et al. Efficacy and Safety of Zenocutuzumab, a HER2 x HER3 Bispecific Antibody, across Advanced NRG1 Fusion (NRG1+) Cancers. J. Clin. Oncol. 2022, 40, 105. [Google Scholar] [CrossRef]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.-Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non-Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 710–718. [Google Scholar] [CrossRef]
- Cornelissen, R.; Prelaj, A.; Sun, S.; Baik, C.; Wollner, M.; Haura, E.B.; Mamdani, H.; Riess, J.W.; Cappuzzo, F.; Garassino, M.C.; et al. Poziotinib in Treatment-Naive NSCLC Harboring HER2 Exon 20 Mutations: ZENITH20-4, A Multicenter, Multicohort, Open-Label, Phase 2 Trial (Cohort 4). J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2023, 18, 1031–1041. [Google Scholar] [CrossRef]
- Socinski, M.A.; Cornelissen, R.; Garassino, M.C.; Clarke, J.; Tchekmedyian, N.; Molina, J.; Goldman, J.W.; Bhat, G.; Lebel, F.; Le, X. LBA60 ZENITH20, a Multinational, Multi-Cohort Phase II Study of Poziotinib in NSCLC Patients with EGFR or HER2 Exon 20 Insertion Mutations. Ann. Oncol. 2020, 31, S1188. [Google Scholar] [CrossRef]
Fusion Gene | Localization | Aberration | Cancer Type |
---|---|---|---|
ADAM9 | 8p11.22 | t(8;8)(p12;p11) | Breast Cancer |
AKAP13 | 15q25.3 | t(8;15)(p12;q25) | |
ARHGEF39 | 9p13.3 | t(8;9)(p12;p13) | |
BABAM2/BRE | 2p23.2 | t(8;2)(p12;p23) | |
CD9 | 12p13.31 | t(8;12)(p12;p13) | |
COX10-AS1 | 17p12 | t(8;17)(p12;p12) | |
DDHD2 | 8p11.23 | t(8;8)(p12;p11) | |
FAM91A1 | 8q24.13 | t(8;8)(p12;q24) | |
FOXA1 | 14q21.1 | t(8;14)(p12;q21) | |
FUT10 | 8p12 | t(8;8)(p12;p12) | |
TENM4 | 11q14.1 | t(8;11)(p12;q14) | |
ZNF704 | 8q21.13 | t(8;8)(p12;q21) | |
ATP1B1 | 1q24.2 | t(8;1)(p12;q24) | Breast Cancer/Cholangiocarcinoma/Pancreatic Ductal Adenocarcinoma |
ERO1L | 14q22.1 | t(8;14)(p12;q22) | |
IKBKB | 8p11.21 | t(8;8)(p12;p11) | Colorectal Cancer |
KCTD9 | 8p21.2 | t(8;8)(p12;q21) | |
POMK | 8p11.21 | t(8;8)(p12;p11) | |
TNFRSF10B | 8p21.3 | t(8;8)(p12;p21) | |
ZCCHC7 | 9p13.2 | t(8;9)(p12;p13) | |
BIN3 | 8p21.3 | t(8;8)(p12;p21) | Esophageal Carcinoma |
CCAR2 | 8p21.3 | t(8;8)(p12;p21) | |
NOTCH2 | 1p12 | t(8;1)(p12;p12) | Gallbladder Cancer |
PDE7A | 8q13.1 | t(8;8)(p12;q13) | Head and Neck Squamous Cell Carcinoma |
THBS1 | 15q14 | t(8;15)(p12;q14) | |
PCM1 | 8p22 | t(8;8)(p12;p22) | Kidney Renal Clear Cell Carcinoma |
CD74 | 5q33.1 | t(8;5)(p12;q33) | Lung Adenocarcinoma/Pancreatic Adenocarcinoma |
CADM1 | 11q23.3 | t(8;11)(p12;q23) | Lung Cancer |
DIP2B | 12q13.12 | t(8;12)(p12;q13) | |
DPYSL2 | 8p21.2 | t(8;8)(p12;p21) | |
F11R | 1q23.3 | t(8;1)(p12;q23) | |
FGFR1 | 8p11.23 | t(8;8)(p12;q11) | |
FLYWCH1 | 16p13.3 | t(8;16)(p12;p13) | |
ITGB1 | 10p11.22 | t(8;10)(p12;p11) | |
KIF13B | 8p12 | t(8;8)(p12;p12) | |
KRAS | 12p12.2 | t(8;12)(p12;p12) | |
MDK | 11p11.2 | t(8;11)(p12;p11) | |
MRPL13 | 8q24.12 | t(8;8)(p12;q24) | |
NPTN | 15q24.1 | t(8;15)(p12;q24) | |
PARP8 | 5q11.1 | t(8;5)(p12;q11) | |
PLCG2 | 16q23.3 | t(8;16)(p12;q23) | |
RALGAPA1 | 14q13.2 | t(8;14)(p12;q13) | |
SDC4 | 20q13.12 | t(8;20)(p12;q13) | |
SLC3A2 | 11q12.3 | t(8;11)(p12;q12) | |
SMAD4 | 18q21.2 | t(8;18)(p12;q21) | |
THAP7 | 22q11.21 | t(8;22)(p12;q11) | |
TNC | 9q33.1 | t(8;9)(p12;q33) | |
WRN | 8p12 | t(8;8)(p12;p12) | Lung Cancer/Breast Cancer |
RBPMS | 8p12 | t(8;8)(p12;p12) | Lung Cancer/Renal Cell Carcinoma |
HMBOX1 | 8p21.1-p12 | t(8;8)(p12;p21) | Neuroendocrine Tumor of the Nasopharynx/Spindle Cell Sarcoma |
CLU | 8p21.1 | t(8;8)(p12;p21) | Ovarian Cancer |
RAB3IL1 | 11q12.2-q12.3 | t(8;11)(p12;q12) | |
SETD4 | 21q22.12 | t(8;21)(p12;q22) | |
TSHZ2 | 20q13.2 | t(8;20)(p12;q13) | |
ZMYM2 | 13q12.11 | t(8;13)(p12;q11) | |
APP | 21q21.3 | t(8;21)(p12;q21) | Pancreatic Adenocarcinoma |
CDH1 | 16q22.1 | t(8;16)(p12;q22) | |
CDH6 | 5p13.3 | t(8;5)(p12;p13) | |
CDK1 | 10q21.2 | t(8;10)(p12;q21) | |
ROCK1 | 18q11.1 | t(8;18)(p12;q11) | |
SARAF | 8p12 | t(8;8)(p12;p12) | |
UNC5D | 8p12 | t(8;8)(p12;p12) | |
VTCN1 | 1p13.1-p12 | t(8;1)(p12;p13) | |
STMN2 | 8q21.13 | t(8;8)(p12;q21) | Prostate Cancer |
WHSC1L1 | 8p11.23 | t(8;8)(p12;p11) | Sarcoma |
MTUS1 | 8p22 | t(8;8)(p12;p22) | Spindle Cell Sarcoma |
PPHLN1 | 12q12 | t(8;12)(p12;q12) | |
GDF15 | 19p13.11 | t(8;19)(p12;p13) | Urothelial Bladder Cancer |
PMEPA1 | 20q13.31 | t(8;20)(p12;q13) | Uterine Carcinosarcoma |
Drug | Studied Material | Effect | Reference |
---|---|---|---|
Afatinib | NSCLC patients | 10–12 months of durable response | Gay et al. [8] |
5–27 months of partial response 4 months of stable disease | Cadranel et al. [54] | ||
7 months of partial response | Wu et al. [55] | ||
48.3% of the overall response rate 6.8 months median duration of response 6.1 months median progression-free survival | Liu et al. [56] | ||
Tarloxotinib | patient-derived cell lines, murine xenograft models | inhibition of tumor growth cancer regression | Bhandari et al. [57] Estrada-Bernal et al. [58] |
Seribantumab | patient-derived cell lines, patient-derived xenograft models | reduction of proliferation induction of apoptosis | Odintsov et al. [59] |
patient-derived xenograft mouse model MDA-MB-175-VII cell line | durable tumor regression anti-proliferative activity | Drilon et al. [25] |
Clinical Trial ID (Duration) Status | Tested Drug (Phase) | Genetic Eligibility | Conditions (Cohort) | Primary Measured Outcomes |
---|---|---|---|---|
NCT05919537 (09.2023–03.2031) Recruiting | HMBD-001 with/without chemotherapy (Phase I) | NRG1 fusions Extracellular domain HER3 mutations | Advanced solid tumors (68) | 1. Adverse events 2. Incidence and nature of dose-limiting toxicities (DLTs) 3. ORR |
NCT02912949 (01.2015–12.2026) Recruiting | Zenocutuzumab (MCLA-128) (Phase 2) | NRG1 fusions | Solid tumors (250) | 1. ORR 2. Duration of response |
NCT04383210 (09.2020–03-2025) Active, not-recruiting | Seribantumab (Phase 2) | NRG1 fusions | Locally advanced or metastatic solid tumors (75) | ORR |
NCT04750824 (10.2020–12.2021) Completed | Afatinib (Observational) | NRG1 fusions | Solid tumors (110) | ORR |
NCT05057013 (11.2021–09.2026) Recruiting | HMBD-001 (Phase 1) | NRG1 fusions HER3 expression | Solid tumors (135) | 1. Recommended dose 2. Adverse events 3. ORR |
NCT03805841 (03.2019–04.2021) Terminated | Tarloxotinib (Phase 2) | NRG1 fusions ERBB family fusions EGFR Exon 20 Insertion HER2-activating mutations | NSCLC or advanced solid tumors (41) | ORR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharczyk, T.; Nicoś, M.; Kucharczyk, M.; Kalinka, E. NRG1 Gene Fusions—What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications. Cancers 2024, 16, 2766. https://doi.org/10.3390/cancers16152766
Kucharczyk T, Nicoś M, Kucharczyk M, Kalinka E. NRG1 Gene Fusions—What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications. Cancers. 2024; 16(15):2766. https://doi.org/10.3390/cancers16152766
Chicago/Turabian StyleKucharczyk, Tomasz, Marcin Nicoś, Marek Kucharczyk, and Ewa Kalinka. 2024. "NRG1 Gene Fusions—What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications" Cancers 16, no. 15: 2766. https://doi.org/10.3390/cancers16152766
APA StyleKucharczyk, T., Nicoś, M., Kucharczyk, M., & Kalinka, E. (2024). NRG1 Gene Fusions—What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications. Cancers, 16(15), 2766. https://doi.org/10.3390/cancers16152766