Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. BM Sample Manipulation and Characterization
2.3. Minimal Residual Disease (MRD) Assessment
2.4. CELLSEARCH Enumeration of CMMCs
2.5. Single-Cell Sorting and Genomic Characterization of CMMCs
2.6. Statistical and Bioinformatic Analyses
3. Results
3.1. CMMC Enumeration in SMM Patients: At Diagnosis and Over Time
3.2. High CMMC Amounts Describe an Aggressive Phenotype in NDMM Patients at Diagnosis
3.3. CMMC Counts in MM Patients under Treatment: Comparison with Biochemical Markers’ and MRDs’ Dynamics
3.4. A Different CMMCs Dynamic Was Observed in MM Patients after Treatment: The Definition of the coMMstant Index
3.5. Single-Cell CMMC CNA Profiles Unveil High Sub-Clonal Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
amp | Amplification |
ASCT | Autologous Stem Cell Transplantation |
B2M | Beta-2 Microglobulin |
BM | Bone Marrow |
CCR3 | C-C Motif Chemokine Receptor 3 |
CMMC | Circulating Multiple Myeloma Cell |
CNA | Copy Number Alteration |
CR | Complete Response |
CTC | Circulating Tumor Cell |
CXCL12 | C-X-C Motif Chemokine Ligand 12 |
CXCR3 | C-X-C Motif Chemokine Receptor 3 |
del | Deletion |
DNA | Deoxyribonucleic Acid |
FISH | Fluorescence In Situ Hybridization |
FL | Focal Lesion |
HR | Hazard Ratio |
IGH | Immunoglobulin Heavy Chain |
IMGW | International Myeloma Working Group |
ISS | International Staging System |
LDH | Lactate Dehydrogenase |
MGUS | Monoclonal Gammopathy of Unknown Significance |
MM | Multiple Myeloma |
MRD | Measurable Residual Disease |
nCR | Near Complete Response |
NDMM | Newly Diagnosed Multiple Myeloma |
NGS | Next-Generation Sequencing |
OS | Overall Survival |
PB | Peripheral Blood |
PC | Plasma Cell |
PD | Progression Disease |
PD-L1 | Programmed Death-Ligand 1 |
PFS | Progression-Free Survival |
PR | Partial Response |
R-ISS | Revised International Staging System |
sCR | Stringent Complete Response |
SD | Stable Disease |
SMM | Smouldering Multiple Myeloma |
t | Translocation |
TCR | T-Cell Receptor |
TTP | Time-To-Progress |
ULP-WGS | Ultra-Low Pass-Whole Genome Sequencing |
VGPR | Very Good Partial Response |
References
- An, G.; Qin, X.; Acharya, C.; Xu, Y.; Deng, S.; Shi, L.; Zang, M.; Sui, W.; Yi, S.; Li, Z.; et al. Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Ann. Hematol. 2015, 94, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Jevremovic, D.; Nandakumar, B.; Dispenzieri, A.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. Enhancing the R-ISS classification of newly diagnosed multiple myeloma by quantifying circulating clonal plasma cells. Am. J. Hematol. 2020, 95, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Sanoja-Flores, L.; Flores-Montero, J.; Pérez-Andrés, M.; Puig, N.; Orfao, A. Detection of Circulating Tumor Plasma Cells in Monoclonal Gammopathies: Methods, Pathogenic Role, and Clinical Implications. Cancers 2020, 12, 1499. [Google Scholar] [CrossRef]
- Garcés, J.J.; Cedena, M.T.; Puig, N.; Burgos, L.; Perez, J.J.; Cordon, L.; Flores-Montero, J.; Sanoja-Flores, L.; Calasanz, M.J.; Ortiol, A.; et al. Circulating Tumor Cells for the Staging of Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3151–3161. [Google Scholar] [CrossRef]
- Bertamini, L.; Oliva, S.; Rota-Scalabrini, D.; Paris, L.; Morè, S.; Corradini, P.; Ledda, A.; Gentile, M.; De Sabbata, G.; Pietrantuono, G.; et al. High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3120–3131. [Google Scholar] [CrossRef]
- Gulla, A.; Anderson, K.C. Multiple myeloma: The (r)evolution of current therapy and a glance into future. Haematologica 2020, 105, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Waldschmidt, J.M.; Anand, P.; Knoechel, B.; Lohr, J.G. Comprehensive characterization of circulating and bone marrow-derived multiple myeloma cells at minimal residual disease. Semin. Hematol. 2018, 55, 33–37. [Google Scholar] [CrossRef]
- Paiva, B.; Paino, T.; Sayagues, J.M.; Garayoa, M.; San-Segundo, L.; Martín, M.; Mota, I.; Sanchez, M.L.; Bárcena, P.; Aires-Mejia, I.; et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013, 122, 3591–3598. [Google Scholar] [CrossRef]
- Klimienė, I.; Radzevičius, M.; Matuzevičienė, R.; Sinkevič-Belliot, K.; Kučinskienė, Z.A.; Pečeliūnas, V. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int. J. Lab. Hematol. 2021, 43, 403–408. [Google Scholar] [CrossRef]
- Vora, N.; Shekhar, P.; Esmail, M.; Patra, A.; Georgakoudi, I. Label-free flow cytometry of rare circulating tumor cell clusters in whole blood. Sci. Rep. 2022, 12, 10721. [Google Scholar] [CrossRef] [PubMed]
- Sanoja-Flores, L.; Flores-Montero, J.; Puig, N.; Contreras-Sanfeliciano, T.; Pontes, R.; Corral-Mateos, A.; García-Sánchez, O.; Díez-Campelo, M.; Pessoa de Magalhães, R.J.; García-Martín, L.; et al. Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy. Blood 2019, 134, 2218–2222. [Google Scholar] [CrossRef] [PubMed]
- Mack, E.K.M.; Hartmann, S.; Ross, P.; Wollmer, E.; Mann, C.; Neubauer, A.; Brendel, C.; Hoffmann, J. Monitoring multiple myeloma in the peripheral blood based on cell-free DNA and circulating plasma cells. Ann. Hematol. 2022, 101, 811–824. [Google Scholar] [CrossRef]
- Li, S.; Zhang, E.; Cai, Z. Liquid biopsy by analysis of circulating myeloma cells and cell-free nucleic acids: A novel noninvasive approach of disease evaluation in multiple myeloma. Biomark. Res. 2023, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Millner, L.M.; Linder, M.W.; Valdes, R., Jr. Circulating tumor cells: A review of present methods and the need to identify heterogeneous phenotypes. Ann. Clin. Lab. Sci. 2013, 43, 295–304. [Google Scholar] [PubMed]
- Durie, B.G.; Harousseau, J.L.; Miguel, J.S.; Bladé, J.; Barlogie, B.; Anderson, K.; Gertz, M.; Dimopoulos, M.; Westin, J.; Sonneveld, P.; et al. International uniform response criteria for multiple myeloma. Leukemia 2006, 20, 1467–1473, Erratum in Leukemia 2006, 20, 2220; Erratum in Leukemia 2007, 21, 1134. [Google Scholar] [CrossRef] [PubMed]
- Foulk, B.; Schaffer, M.; Gross, S.; Rao, C.; Smirnov, D.; Connelly, M.C.; Chaturvedi, S.; Reddy, M.; Brittingham, G.; Mata, M.; et al. Enumeration and characterization of circulating multiple myeloma cells in patients with plasma cell disorders. Br. J. Haematol. 2018, 180, 71–81. [Google Scholar] [CrossRef]
- Dutta, A.K.; Alberge, J.B.; Lightbody, E.D.; Boehner, C.J.; Dunford, A.; Sklavenitis-Pistofidis, R.; Mouhieddine, T.H.; Cowan, A.N.; Su, N.K.; Horowitz, E.M.; et al. MinimuMM-seq: Genome Sequencing of Circulating Tumor Cells for Minimally Invasive Molecular Characterization of Multiple Myeloma Pathology. Cancer Discov. 2023, 13, 348–363. [Google Scholar] [CrossRef]
- Di Trapani, M.; Manaresi, N.; Medoro, G. DEPArray™ system: An automatic image-based sorter for isolation of pure circulating tumor cells. Cytom. Part A 2018, 93, 1260–1266. [Google Scholar] [CrossRef]
- Polzer, B.; Medoro, G.; Pasch, S.; Fontana, F.; Zorzino, L.; Pestka, A.; Andergassen, U.; Meier-Stiegen, F.; Czyz, Z.T.; Alberter, B.; et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol. Med. 2014, 6, 1371–1386. [Google Scholar] [CrossRef]
- Ferrarini, A.; Forcato, C.; Buson, G.; Tononi, P.; Del Monaco, V.; Terracciano, M.; Bolognesi, C.; Fontana, F.; Medoro, G.; Neves, R.; et al. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products. PLoS ONE 2018, 13, e0193689. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, L.M.; Fitzmaurice, G.M. Regression models for the analysis of longitudinal Gaussian data from multiple sources. Stat. Med. 2005, 24, 1725–1744. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchetti, G.; Poletti, A.; Solli, V.; Borsi, E.; Martello, M.; Vigliotta, I.; Armuzzi, S.; Taurisano, B.; Zamagni, E.; Cavo, M.; et al. BoBafit: A copy number clustering tool designed to refit and recalibrate the baseline region of tumors’ profiles. Comput. Struct. Biotechnol. J. 2022, 20, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Bustoros, M.; Sklavenitis-Pistofidis, R.; Park, J.; Redd, R.; Zhitomirsky, B.; Dunford, A.J.; Salem, K.; Tai, Y.T.; Anand, S.; Mouhieddine, T.H.; et al. Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. J. Clin. Oncol. 2020, 38, 2380–2389. [Google Scholar] [CrossRef]
- Zhu, X.; Suo, Y.; Fu, Y.; Zhang, F.; Ding, N.; Pang, K.; Xie, C.; Weng, X.; Tian, M.; He, H.; et al. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. Light Sci. Appl. 2021, 10, 110. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Ntanasis-Stathopoulos, I.; Rousakis, P.; Malandrakis, P.; Panteli, C.; Eleutherakis-Papaiakovou, E.; Angelis, N.; Spiliopoulou, V.; Syrigou, R.E.; Bakouros, P.; et al. Low Levels of Circulating Tumor Cells Correlate with Favorable Clinical Outcome and Unique Biological Features in Newly Diagnosed Multiple Myeloma Patients. Blood 2023, 142 (Suppl. S1), 880, ISSN 0006-4971. [Google Scholar] [CrossRef]
- Garcés, J.J.; San-Miguel, J.; Paiva, B. Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora’s Box of Multiple Myeloma. Cancers 2022, 14, 1430. [Google Scholar] [CrossRef]
- Zang, M.; Zou, D.; Yu, Z.; Li, F.; Yi, S.; Ai, X.; Qin, X.; Feng, X.; Zhou, W.; Xu, Y.; et al. Detection of recurrent cytogenetic aberrations in multiple myeloma: A comparison between MLPA and iFISH. Oncotarget 2015, 6, 34276–34287. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Li, C.; Magrangeas, F.; Gouraud, W.; Charbonnel, C.; Harousseau, J.L.; Attal, M.; Marit, G.; Mathiot, C.; Facon, T.; et al. Prognostic significance of copy-number alterations in multiple myeloma. J. Clin. Oncol. 2009, 27, 4585–4590. [Google Scholar] [CrossRef] [PubMed]
- Vigliotta, I.; Armuzzi, S.; Barone, M.; Solli, V.; Pistis, I.; Borsi, E.; Taurisano, B.; Mazzocchetti, G.; Martello, M.; Poletti, A.; et al. The ALLgorithMM: How to define the hemodilution of bone marrow samples in lymphoproliferative diseases. Front. Oncol. 2022, 12, 1001048. [Google Scholar] [CrossRef]
- Mithraprabhu, S.; Chen, M.; Savvidou, I.; Reale, A.; Spencer, A. Liquid biopsy: An evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 2021, 35, 2771–2783, Erratum in Leukemia 2021, 35, 3037. [Google Scholar] [CrossRef]
- Savino, F.D.; Rigali, F.; Giustini, V.; D’Aliberti, D.; Spinelli, S.; Piazza, R.; Sacco, A.; Roccaro, A.M. Liquid Biopsy in Cancer: Focus on Lymphoproliferative Disorders. Cancers 2022, 14, 5378. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Khoo, B.L. Liquid biopsy technologies for hematological diseases. Med. Res. Rev. 2021, 41, 246–274. [Google Scholar] [CrossRef]
- Trino, S.; Lamorte, D.; Caivano, A.; De Luca, L.; Sgambato, A.; Laurenzana, I. Clinical relevance of extracellular vesicles in hematological neoplasms: From liquid biopsy to cell biopsy. Leukemia 2021, 35, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Schwarzenbach, H.; Pantel, K. Circulating tumor cells and circulating tumor DNA. Annu. Rev. Med. 2012, 63, 199–215. [Google Scholar] [CrossRef]
- Andree, K.C.; van Dalum, G.; Terstappen, L.W. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 2016, 10, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Rostami, P.; Kashaninejad, N.; Moshksayan, K.; Saidi, M.S.; Firoozabadi, B.; Nguyen, N.-T. Novel approaches in cancer management with circulating tumor cell clusters. J. Sci. Adv. Mater. Devices 2019, 4, 1–18. [Google Scholar] [CrossRef]
- Garcés, J.J.; Simicek, M.; Vicari, M.; Brozova, L.; Burgos, L.; Bezdekova, R.; Alignani, D.; Calasanz, M.J.; Growkova, K.; Goicoechea, I.; et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: A new model to understand disease dissemination. Leukemia 2020, 34, 589–603. [Google Scholar] [CrossRef]
- Granell, M.; Calvo, X.; Garcia-Guiñón, A.; Escoda, L.; Abella, E.; Martínez, C.M.; Teixidó, M.; Gimenez, M.T.; Senín, A.; Sanz, P.; et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: Implications for plasma cell leukemia definition. Haematologica 2017, 102, 1099–1104. [Google Scholar] [CrossRef]
- Garcés, J.J.; Bretones, G.; Burgos, L.; Valdes-Mas, R.; Puig, N.; Cedena, M.T.; Alignani, D.; Rodriguez, I.; Puente, D.Á.; Álvarez, M.G.; et al. Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia 2020, 34, 3007–3018. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Garcés, J.J.; Paiva, B.; Puig, N.; García-Mateo, A.; García-Sánchez, O.; Corral-Mateos, A.; Burgos, L.; Blanco, E.; et al. Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018, 8, 117. [Google Scholar] [CrossRef]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef]
- Costa, F.; Vescovini, R.; Marchica, V.; Storti, P.; Notarfranchi, L.; Dalla Palma, B.; Toscani, D.; Burroughs-Garcia, J.; Catarozzo, M.T.; Sammarelli, G.; et al. PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients. Front. Immunol. 2021, 11, 613007. [Google Scholar] [CrossRef]
- Palma, B.D.; Guasco, D.; Pedrazzoni, M.; Bolzoni, M.; Accardi, F.; Costa, F.; Sammarelli, G.; Craviotto, L.; De Filippo, M.; Ruffini, L.; et al. Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: Role of chemokine (C-C motif) ligand 20. Leukemia 2016, 30, 409–416. [Google Scholar] [CrossRef]
- Thakurta, A.; Ortiz, M.; Blecua, P.; Towfic, F.; Corre, J.; Serbina, N.V.; Flynt, E.; Yu, Z.; Yang, Z.; Palumbo, A.; et al. High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma. Blood 2019, 133, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Guerrera, M.; Jiménez, C.; Chan, G.; Xu, L.; Kofides, A.; Demos, M.; Tsakmaklis, N.; Liu, X.; Munshi, M.; Chen, J.; et al. Impact of Chromosome 6q Deletions in Multiple Myeloma and Waldenström’s Macroglobulinemia by Next Generation RNA Sequencing. Clin. Lymphoma Myeloma Leuk. 2019, 19, e39. [Google Scholar] [CrossRef]
- Stella, F.; Leone, P.; Pedrazzini, E.; Galvano, C.; Zurita, S.; Coccé, M.; Gallego, M.; Schultz, N.; Alfonso, G.; Canelos Moreno, J.; et al. Frequency and characteristics of del(6q) in patients with multiple myeloma from Latin-American countries. A real-world study. HemaSphere 2022, 6, 1844–1845. [Google Scholar] [CrossRef]
- Bernstein, Z.S.; Kim, E.B.; Raje, N. Bone Disease in Multiple Myeloma: Biologic and Clinical Implications. Cells 2022, 11, 2308. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Wang, J.; Zhang, X.; Zhang, J.J.; Wu, F.; Pang, Y.; Zhong, Y.; Wang, J.; Wang, W.; Lyu, X.; et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis. FEBS Lett. 2020, 594, 452–465. [Google Scholar] [CrossRef]
Median | Range | |||
---|---|---|---|---|
Age (y) | 61 | 46–72 | ||
Female (%) | Male (%) | |||
Gender | 21 (41) | 30 (59) | ||
SMM (%) | MM (%) | |||
Disease phase | 7 (14) | 44 (86) | ||
Median SMM | Range SMM | Median MM | Range MM | |
BM plasma cells (FC) | 2.4% | 1.3–14% | 2.7% | 0.1–40% |
Kappa (%) | Lambda (%) | Unknown (%) | ||
Light chain type | 38 (64) | 20 (34) | 1 (2) | |
I stage (%) | II stage (%) | III stage (%) | Unknown (%) | |
ISS | 26 (51) | 14 (27) | 5 (10) | 6 (12) |
I stage (%) | II stage (%) | III stage (%) | Unknown (%) | |
R-ISS | 21 (41) | 18 (35) | 2 (4) | 10 (20) |
Median MM | Range MM | Median SMM | Range SMM | |
CMMCs at diagnosis | 349 | 1–39,940 | 327 | 22–2463 |
Patient ID | Disease Phase | Time from Diagnosis (m) | CMMCs Count | |
---|---|---|---|---|
Non-progressive SMM | AIRC19_001 | SMM | 17 | 22 |
AIRC19_001 | SMM | 21 | 2 | |
AIRC19_001 | SMM | 38 | 52 | |
AIRC19_021 | SMM | 2 | 52 | |
AIRC19_021 | SMM | 7 | 159 | |
AIRC19_021 | SMM | 13 | 49 | |
AIRC19_021 | SMM | 26 | 138 | |
AIRC19_075 | SMM | 8 | 344 | |
AIRC19_075 | SMM | 12 | 656 | |
AIRC19_075 | SMM | 16 | 371 | |
SMM patients who progressed to MM | AIRC19_013 | SMM | 12 | 24 |
AIRC19_013 | SMM | 23 | 100 | |
AIRC19_013 | MM | 1 | 0 | |
AIRC19_051 | SMM | 1 | 976 | |
AIRC19_051 | MM | 0 | 960 | |
AIRC19_054 | SMM | 1 | 327 | |
AIRC19_054 | MM | 0 | 38 | |
AIRC19_055 | SMM | 4 | 2463 | |
AIRC19_055 | SMM | 11 | 390 | |
AIRC19_055 | MM | 0 | 619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigliotta, I.; Solli, V.; Armuzzi, S.; Martello, M.; Poletti, A.; Taurisano, B.; Pistis, I.; Mazzocchetti, G.; Borsi, E.; Pantani, L.; et al. Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients. Cancers 2024, 16, 2929. https://doi.org/10.3390/cancers16172929
Vigliotta I, Solli V, Armuzzi S, Martello M, Poletti A, Taurisano B, Pistis I, Mazzocchetti G, Borsi E, Pantani L, et al. Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients. Cancers. 2024; 16(17):2929. https://doi.org/10.3390/cancers16172929
Chicago/Turabian StyleVigliotta, Ilaria, Vincenza Solli, Silvia Armuzzi, Marina Martello, Andrea Poletti, Barbara Taurisano, Ignazia Pistis, Gaia Mazzocchetti, Enrica Borsi, Lucia Pantani, and et al. 2024. "Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients" Cancers 16, no. 17: 2929. https://doi.org/10.3390/cancers16172929
APA StyleVigliotta, I., Solli, V., Armuzzi, S., Martello, M., Poletti, A., Taurisano, B., Pistis, I., Mazzocchetti, G., Borsi, E., Pantani, L., Marzocchi, G., Testoni, N., Zamagni, E., Terracciano, M., Tononi, P., Garonzi, M., Ferrarini, A., Manaresi, N., Cavo, M., & Terragna, C. (2024). Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients. Cancers, 16(17), 2929. https://doi.org/10.3390/cancers16172929