Palliative Thoracic Radiotherapy in the Era of Modern Cancer Care for NSCLC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Palliative Thoracic Radiotherapy Schedules: For Symptomatic and Asymptomatic Patients
3. Dose, Fractionation, and Techniques
4. Palliative Thoracic Radiotherapy in Combination with Chemotherapy
5. Palliative Thoracic Radiotherapy in Combination with Immunotherapy
6. Palliative Thoracic Radiotherapy in Combination with Targeted Therapy
7. Conclusions
Funding
Conflicts of Interest
References
- Wang, X.S.; Bai, Y.F.; Verma, V.; Yu, R.-L.; Tian, W.; Ao, R.; Deng, Y.; Zhu, X.-Q.; Liu, H.; Pan, H.-X.; et al. Randomized trial of first-line tyrosine kinase inhibitor with or without radiotherapy for synchronous oligometastatic EGFR mutated NSCLC. J. Natl. Cancer Inst. 2022, 115, 742–748. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: Long-term results of the SABR-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R., Jr.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: Long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef]
- Teo, P.; Tai, T.; Choy, D.; Tsui, K. A randomized 264 study on palliative radiation therapy for inoperable non small cell carcinoma of the lung. Int. J. Radiat. Oncol. Biol. Phys. 1988, 14, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Kramer, G.W.; Wanders, S.L.; Noordijk, E.M.; Vonk, E.J.; van Houwelingen, H.C.; van den Hout, W.B.; Geskus, R.B.; Scholten, M.; Leer, J.W. Results of the Dutch national study of the palliative effect of irradiation using two different treatment schemes for non–small-cell lung cancer. J. Clin. Oncol. 2005, 23, 2962–2970. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.; Harris, K.; Barnes, E.; Wong, R.; Lutz, S.; Bezjak, A.; Cheung, P.; Chow, E. Palliative thoracic radiotherapy for lung cancer: A systematic review. J. Clin. Oncol. 2008, 26, 4001–4011. [Google Scholar] [CrossRef] [PubMed]
- Kraus, K.M.; Fischer, J.; Borm, K.J.; Vogel, M.M.E.; Pigorsch, S.U.; Devecka, A.; Combs, S.E. Evaluation of practical experiences of German speaking radiation oncologists in combining radiation therapy with checkpoint blockade. Sci. Rep. 2021, 11, 7624. [Google Scholar] [CrossRef] [PubMed]
- Van Aken, E.S.M.; van der Linden, Y.M.; van Thienen, J.V.; de Langen, A.J.; Marijnen, C.A.M.; de Jong, M.C.; Dutch Platform for Palliative Radiotherapy (LPPR). Hypofractionated radiotherapy combined with targeted therapy or immunotherapy: Dutch survey on current practice, knowledge and challenges. Clin. Transl. Radiat. Oncol. 2022, 33, 93. [Google Scholar] [CrossRef]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.C.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
- Basse, C.; Carton, M.; Milder, M.; Geiss, R.; Du Rusquec, P.; Daniel, C.; Massiani, M.-A.; Livartowsky, A.; Girard, N. Real-word survival impact of new treatment strategies for lung cancer: A 2000–2020 French cohort. Cancers 2024, 16, 2768. [Google Scholar] [CrossRef]
- Kepka, L.; Socha, J. Dose and fractionation schedules in radiotherapy for non-small cell lung cancer. Transl. Lung. Cancer Res. 2021, 10, 1969–1982. [Google Scholar] [CrossRef]
- Sepulveda, C.; Marlin, A.; Yoshida, T.; Ullrich, A. Palliative care: The World Health Organization’s Global Perspective. J. Pain Symptom Manag. 2002, 24, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.; Girling, D.; White, R.; Hopwood, P.; Harvey, A.; Qian, W.; Stephens, R.J.; Medical Research Council Lung Cancer Working Party. Immediate versus delayed palliative thoracic radiotherapy in patients with unresectable locally advanced non-small cell lung cancer and minimal thoracic symptoms: Randomised controlled trial. Br. Med. J. 2002, 325, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Sundstrom, S.; Bremnes, R.; Brunsvig, P.; Aasebø, U.; Olbjørn, K.; Fayers, P.M.; Kaasa, S.; Norwegian Lung Cancer Study Group. Immediate or delayed radiotherapy in advanced non-small cell lung cancer (NSCLC)? Data from a prospective randomised study. Radiother. Oncol. 2005, 75, 141–148. [Google Scholar] [CrossRef]
- Stevens, R.; Macbeth, F.; Toy, E.; Coles, B.; Lester, J.F. Palliative radiotherapy regimens for patients with thoracic symptoms from non-small cell lung cancer. Cochrane Database Syst. Rev. 2015, 1, CD002143. [Google Scholar] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Méndez Romero, A.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef]
- Medical Research Council Lung Cancer Working Party. Inoperable non-small-cell lung cancer (NSCLC): A Medical Research Council (MRC) randomised trial of palliative radiotherapy with two fractions or ten fractions. Br. J. Cancer 1991, 63, 265–270. [Google Scholar] [CrossRef]
- Medical Research Council Lung Cancer Working Party. A Medical Research Council (MRC) randomised trial of palliative radiotherapy with two fractions or a single fraction in patients with inoperable non-small-cell lung cancer (NSCLC) and poor performance status. Br. J. Cancer 1992, 65, 934–941. [Google Scholar] [CrossRef]
- Medical Research Council Lung Cancer Working Party. Randomised trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable NSCLC and good performance status. Clin. Oncol. 1996, 8, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Rees, G.J.; Devrell, C.E.; Barley, V.L.; Newman, H.F. Palliative radiotherapy for lung cancer; two versus five fractions. Clin. Oncol. 1997, 9, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Bezjak, A.; Dixon, P.; Brundage, M.; Tu, D.; Palmer, M.J.; Blood, P.; Grafton, C.; Lochrin, C.; Leong, C.; Mulroy, L.; et al. Randomized phase III trial of single versus fractionated thoracic radiation in the palliation of patients with lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Sundstrom, S.; Bremnes, R.; Aasebo, U.; Aamdal, S.; Hatlevoll, R.; Brunsvig, P.; Johannessen, D.C.; Klepp, O.; Fayers, P.M.; Kaasa, S. Hypofractionated palliative radiotherapy (17 Gy per 2 fractions) in advanced non-small cell lung carcinoma is comparable to standard fractionation for symptom control and survival: A national phase III trial. J. Clin. Oncol. 2004, 22, 801–810. [Google Scholar] [CrossRef]
- Erridge, S.C.; Gaze, M.N.; Price, A.; Kelly, C.G.; Kerr, G.R.; Cull, A.; MacDougall, R.H.; Howard, G.C.; Cowie, V.J.; Gregor, A. Symptom control and quality of life in people with lung cancer: A randomised trial of two palliative radiotherapy fractionation schedules. Clin. Oncol. 2005, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Senkus-Konefka, E.; Dziadziuszko, R.; Bednaruk-Mlynski, E.; Pliszka, A.; Kubrak, J.; Lewandowska, A.; Małachowski, K.; Wierzchowski, M.; Matecka-Nowak, M.; Jassem, J. A prospective randomised study to compare two palliative radiotherapy schedules for non-small cell lung cancer (NSCLC). Br. J. Cancer 2005, 92, 1038–1045. [Google Scholar] [CrossRef]
- Or, M.; Liu, B.; Lam, J.; Vinod, S.; Xuan, W.; Yeghiaian-Alvandi, R.; Hau, E. A systematic review and meta-analysis of treatment-related toxicities of curative and palliative radiation therapy in non-small cell lung cancer. Sci. Rep. 2021, 11, 5939. [Google Scholar] [CrossRef]
- McDermott, R.L.; Armstrong, J.G.; Thirion, P.; Dunne, M.; Finn, M.; Small, C.; Byrne, M.; O’Shea, C.; O’Sullivan, L.; Shannon, A.; et al. Cancer Trials Ireland (ICORG) 06-34: A multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer. Radiother. Oncol. 2018, 127, 253–258. [Google Scholar] [CrossRef]
- Granton, P.V.; Palma, D.A.; Louie, A.V. Intentional avoidance of the esophagus using intensity modulated radiation therapy to reduce dysphagia after palliative thoracic radiation. Radiat. Oncol. 2017, 12, 27. [Google Scholar] [CrossRef]
- Louie, A.V.; Granton, P.V.; Fairchild, A.; Gopaul, D.; Mulroy, L.; Brade, A.; Warner, A.; Debenham, B.; Bowes, D.; Kuk, J.; et al. Palliative radiation for advanced central lung tumors with intentional avoidance of the esophagus (PROACTIVE): A phase 3 randomized clinical trial. JAMA Oncol. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Ball, D.; Mai, G.T.; Vinod, S.; Babington, S.; Ruben, J.; Kron, T.; Chesson, B.; Herschtal, A.; Vanevski, M.; Rezo, A.; et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): A phase 3, open-label, randomised controlled trial. Lancet Oncol. 2019, 20, 494–503. [Google Scholar] [CrossRef]
- Gensheimer, M.F.; Gee, H.; Shirato, H.; Taguchi, H.; Snyder, J.; Chin, A.L.; Vitzhum, L.K.; Maxim, P.G.; Wakelee, H.A.; Neal, J.; et al. Individualized stereotactic ablative radiotherapy for lung tumors: The iSABR phase 2 nonrandomized controlled trial. JAMA Oncol. 2023, 9, 1525–1534. [Google Scholar] [CrossRef]
- Zhu, Z.; Ni, J.; Cai, X.; Su, S.; Zhuang, H.; Yang, Z.; Chen, M.; Ma, S.; Xie, C.; Xu, Y.; et al. International consensus on radiotherapy in metastatic non-small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 1763–1795. [Google Scholar] [CrossRef]
- Cardona, A.F.; Reveiz, L.; Ospina, E.G.; Ospina, V.; Yepes, A. Palliative endobronchial brachytherapy for non-small cell lung cancer. Cochrane Database Syst. Rev. 2008, 16, CD004284. [Google Scholar]
- Ung, Y.; Yu, E.; Falkson, C.; Haynes, A.E.; Stys-Norman, D.; Evans, W.K.; Lung Cancer Disease Site Group of Cancer Care Ontario’s Program In Evidence-Based Care. The role of high-dose-rate brachytherapy in the palliation of symptoms in patients with non–small-cell lung cancer: A systematic review. Brachytherapy 2006, 5, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, S.; Krzakowski, M.; Wasilewska-Teśluk, E.; Kowalski, D.; Rucinska, M.; Dziadziuszko, R.; Sowa, A. Concurrent chemotherapy and short-course radiotherapy in patients with stage IIIA to IIIB non-small cell lung cancer not eligible for radical treatment. J. Thorac. Oncol. 2010, 5, 1255–1262. [Google Scholar] [CrossRef]
- Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Fløtten, O.; Aasebø, U. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small cell lung cancer: A randomized trial by the Norwegian Lung Cancer Study Group. Br. J. Cancer 2013, 109, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Moeller, B.; Balagamwala, A.H.; Chen, A.; Creach, K.M.; Giaccone, G.; Koshy, M.; Zaky, S.; Rodrigues, G. Palliative thoracic radiation therapy for non-small cell lung cancer: 2018 update of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 2018, 8, 245–250. [Google Scholar] [CrossRef]
- Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Aasebø, U. Poor prognosis patients with inoperable locally advanced NSCLC and large tumors benefit from palliative chemoradiotherapy: A subset analysis from a randomized clinical phase III trial. J. Thorac. Oncol. 2014, 9, 825–833. [Google Scholar] [CrossRef]
- Fife, K.; Bang, A. Combined radiotherapy and new systemic therapies: Have we moved beyond palliation. Clin. Oncol. 2020, 32, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019, 5, 1283–1290. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Yang, Z.; Hu, M.; Lu, J.; Zhang, Y.; Qian, F.; Zhang, B.; Wang, S.; Wang, K.; et al. Local consolidative therapy for synchronous oligometastatic non-small cell lung cancer treated with first-line pembrolizumab: A retrospective observational study. Thorac. Cancer 2022, 13, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Samuel, E.; Lie, G.; Balasubramanian, A.; Hiong, A.; So, Y.; Voskoboynik, M.; Moore, M.; Shackleton, M.; Haydon, A.; John, T.; et al. Impact of radiotherapy on the efficacy and toxicity of anti-PD-1 inhibitors in metastatic NSCLC. Clin. Lung Cancer 2021, 22, e425–e430. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, N.; Xu, H.; Zheng, Y.; Ming, P.; Jiang, Z.; Ge, W.; Cao, D. The safety and efficacy of immunotherapy and palliative radiotherapy in patients with metastatic non-small cell lung cancer: A systematic review and meta-analysis of 13 prospective studies. Expert Rev. Anticancer Ther. 2023, 23, 761–773. [Google Scholar] [CrossRef]
- Kaur, P.; Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol. 2012, 2, 191. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, S.G. Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv. Radiat. Oncol. 2018, 3, 512–519. [Google Scholar] [CrossRef]
- Swanson, G.P.; Hammonds, K.; Jhavar, S. Lymphocyte response and recovery to radiation therapy alone. Ann. Blood. 2023, 8, 2. [Google Scholar] [CrossRef]
- Friedes, C.; Chakrabarti, T.; Olson, S.; Prichett, L.; Brahmer, J.; Forde, P.M.; Voong, R.K.; Marrone, K.A.; Lam, V.K.; Hann, C.L.; et al. Association of severe lymphopenia and disease progression in unresectable locally advanced non-small cell lung cancer treated with definitive chemoradiation and immunotherapy. Lung Cancer 2021, 154, 36–43. [Google Scholar] [CrossRef]
- Upadhyay, R.; Venkatesulu, B.P.; Giridhar, P.; Kim, B.K.; Sharma, A.; Elghazawy, H.; Dhanireddy, B.; Elumalai, T.; Mallick, S.; Harkenrider, M. Risk and impact of radiation related lymphopenia in lung cancer: A systematic review and meta-analysis. Radiother. Oncol. 2021, 157, 225–233. [Google Scholar] [CrossRef]
- Jagodinsky, J.C.; Harari, P.M.; Morris, Z.S. The promise of combining radiation therapy with immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 6–16. [Google Scholar] [CrossRef]
- Marciscano, A.E.; Haimovitz-Friedman, A.; Lee, P.; Tran, P.T.; Tome, W.A.; Guha, C.; Kong, F.-M.S.; Sahgal, A.; El Naqa, I.; Rimner, A.; et al. Immunomodulatory effects of stereotactic body radiation therapy: Preclinical insights and clinical opportunities. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.; McGarry, R.; Yiannoutsos, C.; Papiez, L.; Tudor, K.; DeLuca, J.; Ewing, M.; Abdulrahman, R.; DesRosiers, C.; Williams, M.; et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early stage lung cancer. J. Clin. Oncol. 2006, 24, 4833–4839. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, K.; Grozman, V.; Karlsson, K.; Lindberg, S.; Lax, I.; Wersäll, P.; Persson, G.F.; Josipovic, M.; Khalil, A.A.; Moeller, D.S.; et al. The HILUS-trial: A prospective Nordic multicenter phase 2 study of ultracentral lung tumors treated with stereotactic body radiotherapy. J. Thorac. Oncol. 2021, 16, 1200–1210. [Google Scholar] [CrossRef]
- Lindberg, S.; Grozman, V.; Karlsson, K.; Onjukka, E.; Lindbäck, E.; Jirf, K.A.; Lax, I.; Wersäll, P.; Persson, G.F.; Josipovic, M.; et al. Expanded HILUS trial: A pooled analysis of risk factors for toxicity from stereotactic body radiation therapy of central and ultracentral lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Anscher, M.S.; Arora, S.; Weinstock, C.; Amatya, A.; Bandaru, P.; Tang, C.; Girvin, A.T.; Fiero, M.H.; Tang, S.; Lubitz, R.; et al. Association of radiation therapy with risk of adverse events in patients receiving immunotherapy: A pooled analysis of trials in the US Food and Drug Administration database. JAMA Oncol. 2022, 8, 232–240. [Google Scholar] [CrossRef]
- Welsh, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; de Groot, P.; Nguyen, Q.N.; Varghese, R.; et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: A randomized phase I/II trial. J. Immunother. Cancer 2020, 8, e001001. [Google Scholar] [CrossRef]
- Bestvina, C.M.; Pointer, K.B.; Karrison, T.; Al-Hallaq, H.; Hoffman, P.C.; Jelinek, M.J.; Juloori, A.; Melotek, J.M.; Murgu, S.; Partouche, J.; et al. A phase 1 trial of concurrent or sequential ipilimumab, nivolumab, and stereotactic body radiotherapy in patients with stage IV NSCLC study. J. Thorac. Oncol. 2022, 17, 130–140. [Google Scholar] [CrossRef]
- Siva, S.; McMahon, R.; Bressel, M.; Dsouza, C.; Castle, R.G.; Difulio, J.; Jennens, R.; Thai, A.; Tan, L.; Morris, T.; et al. SABRSeq: A randomized phase Ib trial of SABR sequencing with pembrolizumab in metastatic non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 2023, 117S, e58. [Google Scholar] [CrossRef]
- Desideri, I.; Francolini, G.; Scotti, V.; Pezzulla, D.; Becherini, C.; Terziani, F.; Delli Paoli, C.; Olmetto, E.; Visani, L.; Meattini, I.; et al. Benefit of ablative versus palliative-only radiotherapy in combination with nivolumab in patients affected by metastatic kidney and lung cancer. Clin. Transl. Oncol. 2019, 21, 933–938. [Google Scholar] [CrossRef]
- Ratnayake, G.; Shanker, M.; Roberts, K.; Mason, R.; Hughes, B.G.M.; Lwin, Z.; Jain, V.; O’Byrne, K.; Lehman, M.; Chua, B. Prior or concurrent radiotherapy and nivolumab immunotherapy in non-small cell lung cancer. Asia Pac. J. Clin. Oncol. 2020, 16, 56–62. [Google Scholar] [CrossRef]
- Fiorica, F.; Belluomini, L.; Stefanelli, A.; Santini, A.; Urbini, B.; Giorgi, C.; Frassoldati, A. Immune Checkpoint Inhibitor Nivolumab and Radiotherapy in Pretreated Lung Cancer Patients: Efficacy and Safety of Combination. Am. J. Clin. Oncol. 2018, 41, 1101–1105. [Google Scholar] [CrossRef]
- Ansari, J.; Farrag, A.; Ali, A.; Abdelgelil, M.; Murshid, E.; Alhamad, A.; Ali, M.; Ansari, H.; Hussain, S.; Glaholm, J. Concurrent use of nivolumab and radiotherapy for patients with metastatic non-small cell lung cancer and renal cell carcinoma with oligometastatic disease progression on nivolumab. Mol. Clin. Oncol. 2021, 15, 214. [Google Scholar] [CrossRef]
- Tachihara, M.; Tsujino, K.; Ishihara, T.; Hayashi, H.; Sato, Y.; Kurata, T.; Sugawara, S.; Shiraishi, Y.; Teraoka, S.; Azuma, K.; et al. Durvalumab plus concurrent radiotherapy for treatment of locally advanced non-small cell lung cancer: The DOLPHIN phase 2 nonrandomized controlled trial. JAMA Oncol. 2023, 9, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, S.G.C.; Pavic, M.; Stellamans, K.; Lievens, Y.; Becherini, C.; Scorsetti, M.; Alongi, F.; Ricardi, U.; Jereczek-Fossa, B.A.; Westhoff, P.; et al. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: Systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol. 2023, 24, e121–e132. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.; Chargari, C.; Galluzzi, L.; Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019, 20, e452–e463. [Google Scholar] [CrossRef]
- Gutiontov, S.I.; Pitroda, S.P.; Chmura, S.J.; Arina, A.; Weichselbaum, R.R. Cytoreduction and the optimization of immune checkpoint inhibition with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Hatten, S.J., Jr.; Lehrer, E.J.; Liao, J.; Sha, C.M.; Trifiletti, D.M.; Siva, S.; McBride, S.M.; Palma, D.; Holder, S.L.; Zaorsky, N.G. A patient level data meta-analysis of the abscopal effect. Adv. Radiat. Oncol. 2022, 7, 100909. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.S.M.E.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.U.; Aerts, J.G.J.V.; Bahce, I.; Niemeijer, A.L.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir. Med. 2021, 9, 467–475. [Google Scholar] [CrossRef]
- Ricciuti, B.; Dahlberg, S.E.; Adeni, A.; Sholl, L.M.; Nishino, M.; Awad, M.M. Immune checkpoint inhibitor outcomes for patients with non-small-cell lung cancer receiving baseline corticosteroids for palliative versus nonpalliative indications. J. Clin. Oncol. 2019, 37, 1927–1934. [Google Scholar] [CrossRef]
- Petrelli, F.; Signorelli, D.; Ghidini, M.; Ghidini, A.; Pizzutilo, E.G.; Ruggieri, L.; Cabiddu, M.; Borgonovo, K.; Dognini, G.; Brighenti, M.; et al. Association of steroids use with survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers 2020, 12, 546. [Google Scholar] [CrossRef]
- Albarran, V.; Guerrero, P.; de Quevedo, C.G.; Gonzales, C.; Chamorro, J.; Rosero, D.I.; Moreno, J.; Calvo, J.C.; de Aguado, P.P.; Alía, V.; et al. Negative association of steroids with immunotherapy efficacy in a multi-tumor cohort: Time and dose-dependent. Cancer Immunol. Immunother. 2024, 73, 186. [Google Scholar] [CrossRef]
- Soria, J.C.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; et al. Osimertinib in untreated EGFR-mutated advanced non-small cell lung cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall survival with Osimertinib in untreated EGFR-mutated advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Viray, H.; Piper-Vallillo, A.J.; Widick, P.; Academia, E.; Shea, M.; Rangachari, D.; VanderLaan, P.A.; Kobayashi, S.S.; Costa, D.B. A real-world study of patient characteristics and clinical outcomes in EGFR mutated lung cancer treated with first-line Osimertinib: Expanding the FLAURA trial results into routine clinical practice. Cancers 2024, 16, 1079. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Jiang, M.; Wang, H.; Sun, H.; Zhu, J.; Zhao, W.; Fang, Q.; Yu, J.; Chen, P.; Wu, S.; et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann. Transl. Med. 2021, 9, 1351. [Google Scholar] [CrossRef]
- Chaft, J.E.; Oxnard, G.R.; Sima, C.S.; Kris, M.; Miller, V.A.; Riely, G.J. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: Implications for clinical trial design. Clin. Cancer Res. 2011, 17, 6298–6303. [Google Scholar] [CrossRef]
- Patel, S.H.; Rimner, A.; Foster, A.; Zhang, Z.; Woo, K.M.; Yu, H.A.; Riely, G.J.; Wu, A.J. Patterns of initial and intracranial failure in metastatic EGFR-mutant non-small cell lung cancer treated with erlotinib. Lung Cancer 2017, 108, 109–114. [Google Scholar] [CrossRef]
- Płużański, A.; Piórek, A. Side effects of tyrosine kinase inhibitors management guidelines. Oncol. Clin. Pract. 2016, 12, 113–118. [Google Scholar]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Okamoto, I.; Nakagawa, K. Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 2015, 88, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Ready, N.; Janne, P.A.; Bogart, J.; Dipetrillo, T.; Garst, J.; Graziano, S.; Gu, L.; Wang, X.; Green, M.R.; Vokes, E.E.; et al. Chemoradiotherapy and gefitinib in stage III non-small cell lung cancer with epidermal growth factor receptor and KRAS mutation analysis: Cancer and leukemia group B (CALEB) 30106, a CALGB-stratified phase II trial. J. Thorac. Oncol. 2010, 5, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Niho, S.; Ohe, Y.; Ishikura, S.; Atagi, S.; Yokoyama, A.; Ichinose, Y.; Okamoto, H.; Takeda, K.; Shibata, T.; Tamura, T.; et al. Induction chemotherapy followed by gefitinib and concurrent thoracic radiotherapy for unresectable locally advanced adenocarcinoma of the lung: A multicenter feasibility study (JCOG 0402). Ann. Oncol. 2012, 23, 2253–2258. [Google Scholar] [CrossRef]
- Choong, N.W.; Mauer, A.M.; Haraf, D.J.; Lester, E.; Hoffman, P.C.; Kozloff, M.; Lin, S.; Dancey, J.E.; Szeto, L.; Grushko, T.; et al. Phase I trial of erlotinib-based multimodality therapy for inoperable stage III non-small cell lung cancer. J. Thorac. Oncol. 2008, 3, 1003–1011. [Google Scholar] [CrossRef]
- Martinez, E.; Martinez, M.; Rico, M.; Hernanadez, B.; Casas, F.; Vinolas, N.; Perez-Casas, A.; Domine, M.; Minguez, J. Feasibility, tolerability, and efficacy of the concurrent addition of erlotinib to thoracic radiotherapy in locally advanced unresectable non-small-cell lung cancer: A Phase II trial. OncoTargets Ther. 2016, 9, 1057–1066. [Google Scholar] [CrossRef]
- Wang, J.; Xia, T.Y.; Wang, Y.J.; Li, H.-Q.; Li, P.; Wang, J.-D.; Chang, D.S.; Liu, L.-Y.; Di, Y.-P.; Wang, X.; et al. Prospective study of epidermal growth factor receptor tyrosine kinase inhibitors concurrent with individualized radiotherapy for patients with locally advanced or metastatic non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e59–e65. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Xu, Z.; Yang, Q.; Zhu, G.; Liao, X.-Y.; Chen, X.; Zhu, B.; Duan, Y.; Sun, J. Concurrent EGFR-TKI and thoracic radiotherapy as first-line treatment for stage IV non-small cell lung cancer harboring EGFR active mutations. Oncologist 2019, 24, 1031–e612. [Google Scholar] [CrossRef]
- Jia, W.; Guo, H.; Jing, W.; Jing, X.; Li, J.; Wang, M.; Yu, J.; Zhu, H. An especially high rate of radiation pneumonitis observed in patients treated with thoracic radiotherapy and simultaneous osimertinib. Radiother. Oncol. 2020, 152, 96–100. [Google Scholar] [CrossRef]
- Smith, C.P.; Xiang, M.; Yoon, S.M.; Lee, A.; Ruan, D.; Goldman, J.W.; Cummings, A.L.; Lisberg, A.; Garon, E.B.; Moghanaki, D. Brief report: Severe pneumonitis after combined thoracic radiotherapy and osimertinib. JTO Clin. Res. Rep. 2023, 4, 100468. [Google Scholar] [CrossRef]
- Wrona, A.; Dziadziuszko, R.; Jassem, J. Combining radiotherapy with targeted therapies in non-small cell lung cancer: Focus on anti-EGFR, anti-ALK and anti-angiogenic agents. Transl. Lung Cancer Res. 2021, 10, 2032–2047. [Google Scholar] [CrossRef] [PubMed]
- Banla, L.I.; Tzeng, A.; Baillieul, J.P.; Kandekhar, M.J.; Fitzgerald, K.J.; LoPiccolo, J.; Poitras, H.A.; Soto, D.E.; Rotow, J.K.; Singer, L.; et al. Pneumonitis in patients receiving thoracic radiotherapy and osimertinib: A multiinstitutional study. JTO Clin. Res. Rep. 2023, 4, 100559. [Google Scholar] [PubMed]
- Elamin, Y.Y.; Antonoff, M.; Blakely, C.; Baggstorm, M.; Bivona, T.; Le, X.; Louie, A.V.; Doebele, R.C.; Rusthoven, C.; Lee, P.; et al. Randomized phase II trial of osimertinib with or without local consolidation therapy (LCT) for patients with EGFR-mutant NSCLC (NORTHSTAR). Annal. Oncol. 2018, 29, VIII547. [Google Scholar] [CrossRef]
- Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xue, J.; Zhou, L.; Lan, J.; He, J.; Na, F.; Yang, L.; Deng, L.; Lu, Y. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells. Cancer Lett. 2015, 365, 79–88. [Google Scholar] [CrossRef]
- Spigel, D.R.; Hainsworth, J.D.; Yardley, D.A.; Raefsky, E.; Patton, J.; Peacock, N.; Farley, C.; Burris, H.A., 3rd; Greco, A. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J. Clin. Oncol. 2010, 28, 43–48. [Google Scholar] [CrossRef]
- Socinski, M.A.; Stinchcombe, T.E.; Moore, D.T.; Gettinger, S.N.; Decker, R.H.; Petty, W.J.; Blackstock, A.W.; Schwartz, G.; Lankford, S.; Khandani, A.; et al. Incorporating bevacizumab and erlotinib in the combined-modality treatment of stage III non-small-cell lung cancer: Results of a phase I/II trial. J. Clin. Oncol. 2012, 30, 3953–3959. [Google Scholar] [CrossRef]
- Lind, J.S.; Senan, S.; Smit, E.F. Pulmonary toxicity after bevacizumab and concurrent thoracic radiotherapy observed in a phase I study for inoperable stage III non-small cell lung cancer. J. Clin. Oncol. 2012, 30, e104–e108. [Google Scholar] [CrossRef]
- Wozniak, A.J.; Moon, J.; Thomas, C.R., Jr.; Kelly, K.; Mack, P.C.; Gaspar, L.E.; Raben, D.; Fitzgerald, T.J.; Pandya, K.J.; Gandara, D.R. A pilot trial of cisplatin/etoposide/radiotherapy followed by consolidation docetaxel and the combination of bevacizumab (NSC-704865) in patients with inoperable locally advanced stage III non-small-cell lung cancer: SWOG S0533. Clin. Lung Cancer 2015, 16, 340–347. [Google Scholar] [CrossRef]
- Haseltine, J.M.; Rimner, A.; Gelblum, D.Y.; Modh, A.; Rosenzweig, K.E.; Jackson, A.; Yorke, E.D.; Wu, A.J. Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree. Pract. Radiat. Oncol. 2016, 6, e27–e33. [Google Scholar] [CrossRef]
Symptomatic Patients | Asymptomatic Patients |
---|---|
For alleviation of symptoms caused by intrathoracic growth of the primary or nodal metastases:
| As prevention of the occurrence of symptoms |
For frail patients not amenable for curative doses of radiotherapy or systemic treatment | |
For patients who cannot receive curative doses of radiotherapy due to the extent of the disease in the chest | |
For oligoprogression during immunotherapy or targeted therapy and the extent of the disease preventing the use of high radiotherapy doses |
Technique of Radiotherapy | Advantages for Palliative Thoracic Radiotherapy | Disadvantages for Palliative Thoracic Radiotherapy |
---|---|---|
Two-dimensional radiotherapy |
|
|
3D-CRT |
|
|
Endobronchal brachytherapy |
|
|
IMRT (including V-MAT) |
|
|
SBRT |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kępka, L. Palliative Thoracic Radiotherapy in the Era of Modern Cancer Care for NSCLC. Cancers 2024, 16, 3018. https://doi.org/10.3390/cancers16173018
Kępka L. Palliative Thoracic Radiotherapy in the Era of Modern Cancer Care for NSCLC. Cancers. 2024; 16(17):3018. https://doi.org/10.3390/cancers16173018
Chicago/Turabian StyleKępka, Lucyna. 2024. "Palliative Thoracic Radiotherapy in the Era of Modern Cancer Care for NSCLC" Cancers 16, no. 17: 3018. https://doi.org/10.3390/cancers16173018
APA StyleKępka, L. (2024). Palliative Thoracic Radiotherapy in the Era of Modern Cancer Care for NSCLC. Cancers, 16(17), 3018. https://doi.org/10.3390/cancers16173018