Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetic and Molecular Insights
3. Adjusting Immunosuppressive Regimens
4. Treatment of Premalignant Lesions
5. Surgery
6. Radiation
7. Traditional Chemotherapy and Targeted Therapy
Author | Study Design | Cohort | Treatment | Results |
---|---|---|---|---|
Hanna et al. [70] | Nonrandomized trial | 12 renal transplant recipients | Cemiplimab | 46% response rate to the treatment with no kidney rejection or loss |
Joo et al. [32] | Case study | 1 heart transplant recipient | mTOR inhibitor prophylaxis + talimogene laherparepvec (T-VEC) injection | No allograft rejection occurred after treatment |
Ali et al. [71] | Case study | 1 renal transplant recipient | Cemiplimab | Complete disease remission with no allograft rejection after treatment |
Schenk et al. [72] | Prospective trial | 12 renal transplant recipient | Nivolumab + tacrolimus + prednisone ± ipilimumab | Tacrolimus and prednisone failed to provide sufficient allograft protection |
Alloghbi et al. [73] | Case study | 1 HIV patient | Cemiplimab | Complete response with no toxicities |
Brereton et al. [74] | Case study | 1 AIDS patient | Cemimplimab-rwlc | No signs or symptoms of metastatic disease |
8. Immunotherapy
9. Prevention and Prophylaxis
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.Y.; Kozlow, J.H.; Mittal, B.; Moyer, J.; Olenecki, T.; Rodgers, P.; Alam, M.; Armstrong, A.; Baum, C.; Bordeaux, J.S.; et al. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [CrossRef] [PubMed]
- Fania, L.; Didona, D.; Di Pietro, F.R.; Verkhovskaia, S.; Morese, R.; Paolino, G.; Donati, M.; Ricci, F.; Coco, V.; Ricci, F.; et al. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Massey, P.R.; Schmults, C.D.; Li, S.J.; Arron, S.T.; Asgari, M.M.; Bavinck, J.N.B.; Billingsley, E.; Blalock, T.W.; Blasdale, K.; Carroll, B.T.; et al. Consensus-Based Recommendations on the Prevention of Squamous Cell Carcinoma in Solid Organ Transplant Recipients: A Delphi Consensus Statement. JAMA Dermatol. 2021, 157, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Zavdy, O.; Coreanu, T.; Bar-On, D.Y.; Ritter, A.; Bachar, G.; Shpitzer, T.; Kurman, N.; Mansour, M.; Ad-El, D.; Rozovski, U.; et al. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients-A Comparison between Different Immunomodulating Conditions. Cancers 2023, 15, 1764. [Google Scholar] [CrossRef]
- Chang, A.Y.; Doiron, P.; Maurer, T. Cutaneous malignancies in HIV. Curr. Opin. HIV AIDS 2017, 12, 57–62. [Google Scholar] [CrossRef]
- Tam, S.; Yao, C.M.K.L.; Amit, M.; Gajera, M.; Luo, X.; Treistman, R.; Khanna, A.; Aashiq, M.; Nagarajan, P.; Bell, D.; et al. Association of Immunosuppression with Outcomes of Patients with Cutaneous Squamous Cell Carcinoma of the Head and Neck. JAMA Otolaryngol. Head. Neck Surg. 2020, 146, 128. [Google Scholar] [CrossRef]
- Oliveira, W.R.P.; Tirico, M.C.C.P.; Souza, A.A.V.; Codarin, F.R.; Silva, L.L.C.; Festa Neto, C. Skin lesions in organ transplant recipients: A study of 177 consecutive Brazilian patients. Int. J. Dermatol. 2019, 58, 440–448. [Google Scholar] [CrossRef]
- Fuente, M.J.; Sabat, M.; Roca, J.; Lauzurica, R.; Fernández-Figueras, M.T.; Ferrándiz, C. A prospective study of the incidence of skin cancer and its risk factors in a Spanish Mediterranean population of kidney transplant recipients. Br. J. Dermatol. 2003, 149, 1221–1226. [Google Scholar] [CrossRef]
- Lopez, A.; Babadzhanov, M.; Cheraghlou, S.; Canavan, T.; Doudican, N.; Stevenson, M.; Carucci, J.A. Immunosuppressed patients are at increased risk of local recurrence, metastasis, and disease specific death from cutaneous squamous cell carcinoma. Arch. Dermatol. Res. 2023, 315, 1429–1433. [Google Scholar] [CrossRef]
- Manyam, B.V.; Garsa, A.A.; Chin, R.; Reddy, C.A.; Gastman, B.; Thorstad, W.; Yom, S.S.; Nussenbaum, B.; Wang, S.J.; Vidimos, A.T.; et al. A multi-institutional comparison of outcomes of immunosuppressed and immunocompetent patients treated with surgery and radiation therapy for cutaneous squamous cell carcinoma of the head and neck. Cancer 2017, 123, 2054–2060. [Google Scholar] [CrossRef]
- Chang, D.; Shain, A.H. The landscape of driver mutations in cutaneous squamous cell carcinoma. NPJ Genom. Med. 2021, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Young, R.J.; Bressel, M.; Angel, C.; McDowell, L.; Tiong, A.; Bucknell, N.W.; Fellowes, A.; Xu, H.; Trigos, A.; et al. Comprehensive profiling identifies tumour and immune microenvironmental differences in clinical subsets of cutaneous squamous cell carcinoma. Br. J. Dermatol. 2023, 189, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Bibee, K.P.; Kulkarni, A.; Lee, S.; Ho, J.; Osmanbeyoglu, H.U.; Ferris, R.L.; Zandberg, D.P. Genomic and transcriptomic analysis of cutaneous squamous cell carcinoma arising in immunocompetent and immunosuppressed patients. Oral Oncol. 2024, 148, 106582. [Google Scholar] [CrossRef] [PubMed]
- Canueto, J.; Cardenoso, E.; Garcia, J.L.; Santos-Briz, A.; Castellanos-Martin, A.; Fernandez-Lopez, E.; Blanco Gomez, A.; Perez-Losada, J.; Roman-Curto, C. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br. J. Dermatol. 2017, 176, 1279–1287. [Google Scholar] [CrossRef]
- Chang, S.S.; Califano, J. Current status of biomarkers in head and neck cancer. J. Surg. Oncol. 2008, 97, 640–643. [Google Scholar] [CrossRef]
- Adelmann, C.H.; Truong, K.A.; Liang, R.J.; Bansal, V.; Gandee, L.; Saporito, R.C.; Lee, W.; Du, L.; Nicholas, C.; Napoli, M.; et al. MEK Is a Therapeutic and Chemopreventative Target in Squamous Cell Carcinoma. J. Investig. Dermatol. 2016, 136, 1920–1924. [Google Scholar] [CrossRef]
- Dantal, J.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus for Secondary Prevention of Skin Cancer in Kidney Transplant Recipients: 5-Year Results. J. Clin. Oncol. 2018, 36, 2612–2620. [Google Scholar] [CrossRef]
- Mathew, T.; Kreis, H.; Friend, P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: Results from five multicenter studies. Clin. Transplant. 2004, 18, 446–449. [Google Scholar] [CrossRef]
- Harwood, C.; Toland, A.; Proby, C.; Euvrard, S.; Hofbauer, G.; Tommasino, M.; Bavinck, J.B.; the KeraCon Consortium. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br. J. Dermatol. 2017, 177, 1217–1224. [Google Scholar] [CrossRef]
- Frazzette, N.; Khodadadi-Jamayran, A.; Doudican, N.; Santana, A.; Felsen, D.; Pavlick, A.C.; Tsirigos, A.; Carucci, J.A. Decreased cytotoxic T cells and TCR clonality in organ transplant recipients with squamous cell carcinoma. NPJ Precis. Oncol. 2020, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fujita, H.; Mitsui, H.; Yanofsky, V.R.; Fuentes-Duculan, J.; Pettersen, J.S.; Suárez-Fariñas, M.; Gonzalez, J.; Wang, C.Q.F.; Krueger, J.G.; et al. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS ONE 2013, 8, e62154. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, M.; Dziunycz, P.; Suárez-Fariñas, M.; Mühleisen, B.; Schärer, L.; Läuchli, S.; Hafner, J.; French, L.E.; Schmidt-Weber, C.; Carucci, J.A.; et al. Immunosuppression affects CD4+ mRNA expression and induces Th2 dominance in the microenvironment of cutaneous squamous cell carcinoma in organ transplant recipients. J. Immunother. 2010, 33, 538–546. [Google Scholar] [CrossRef]
- Bottomley, M.J.; Harden, P.N.; Wood, K.J. CD8+ Immunosenescence Predicts Post-Transplant Cutaneous Squamous Cell Carcinoma in High-Risk Patients. J. Am. Soc. Nephrol. 2016, 27, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Hufbauer, M.; Akgül, B. Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis. Viruses 2017, 9, 187. [Google Scholar] [CrossRef]
- Strickley, J.D.; Messerschmidt, J.L.; Awad, M.E.; Li, T.; Hasegawa, T.; Ha, D.T.; Nabeta, H.W.; Bevins, P.A.; Ngo, K.H.; Asgari, M.M.; et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature 2019, 575, 519–522. [Google Scholar] [CrossRef]
- Coghill, A.E.; Johnson, L.G.; Berg, D.; Resler, A.J.; Leca, N.; Madeleine, M.M. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study within the Skin Cancer after Organ Transplant (SCOT) Cohort. Am. J. Transplant. 2016, 16, 565–573. [Google Scholar] [CrossRef]
- Funk-Debleds, P.; Ducroux, E.; Guillaud, O.; Ursic-Bedoya, J.; Decullier, E.; Vallin, M.; Euvrard, S.; Pageaux, G.-P.; Boillot, O.; Dumortier, J. Subsequent nonmelanoma skin cancers and impact of immunosuppression in liver transplant recipients. J. Am. Acad. Dermatol. 2018, 79, 84–91. [Google Scholar] [CrossRef]
- Bangash, H.K.; Colegio, O.R. Management of non-melanoma skin cancer in immunocompromised solid organ transplant recipients. Curr. Treat. Options Oncol. 2012, 13, 354–376. [Google Scholar] [CrossRef]
- Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med. 2012, 367, 329–339. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) -Squamous Cell Skin Cancer Version 1.2024. 2023. Available online: https://www.aad.org/public/diseases/skin-cancer/ (accessed on 18 June 2024).
- Joo, V.; Abdelhamid, K.; Noto, A.; Latifyan, S.; Martina, F.; Daoudlarian, D.; De Micheli, R.; Pruijm, M.; Peters, S.; Hullin, R.; et al. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat. Commun. 2024, 15, 3664. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, G.F.L.; Attard, N.R.; Harwood, C.A.; McGregor, J.M.; Dziunycz, P.; Iotzova-Weiss, G.; Straub, G.; Meyer, R.; Kamenisch, Y.; Berneburg, M.; et al. Reversal of UVA skin photosensitivity and DNA damage in kidney transplant recipients by replacing azathioprine. Am. J. Transplant. 2012, 12, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Birnie, A.J.; Bordea, C.; Cheung, S.T.; Mann, J.; A Morton, C.; Salim, A.; Hasan, Z.-U.; Hashme, M.; Kiaee, Z.M.; et al. British Association of Dermatologists guidelines for the management of people with cutaneous squamous cell carcinoma in situ (Bowen disease) 2022. Br. J. Dermatol. 2023, 188, 186–194. [Google Scholar] [CrossRef]
- Queen, D.; Trager, M.H.; Fan, W.; Gordon, E.R.; Samie, F.H. Assessing outcomes of topical 5-fluorouracil as primary and adjuvant therapy for squamous cell carcinoma in-situ. Arch. Dermatol. Res. 2024, 316, 220. [Google Scholar] [CrossRef] [PubMed]
- Eisen, D.B.; Asgari, M.M.; Bennett, D.D.; Connolly, S.M.; Dellavalle, R.P.; Freeman, E.E.; Goldenberg, G.; Leffell, D.J.; Peschin, S.; Sligh, J.E.; et al. Guidelines of care for the management of actinic keratosis. J. Am. Acad. Dermatol. 2021, 85, e209–e233. [Google Scholar] [CrossRef]
- Jansen, M.H.; Kessels, J.P.; Nelemans, P.J.; Kouloubis, N.; Arits, A.H.; van Pelt, H.P.; Quaedvlieg, P.J.; Essers, B.A.; Steijlen, P.M.; Kelleners-Smeets, N.W.; et al. Randomized Trial of Four Treatment Approaches for Actinic Keratosis. N. Engl. J. Med. 2019, 380, 935–946. [Google Scholar] [CrossRef]
- Hasan, Z.-U.; Ahmed, I.; Matin, R.N.; Homer, V.; Lear, J.T.; Ismail, F.; Whitmarsh, T.; Green, A.C.; Thomson, J.; Milligan, A.; et al. Topical treatment of actinic keratoses in organ transplant recipients: A feasibility study for SPOT (Squamous cell carcinoma Prevention in Organ transplant recipients using Topical treatments). Br. J. Dermatol. 2022, 187, 324. [Google Scholar] [CrossRef]
- Heppt, M.V.; Steeb, T.; Leiter, U.; Berking, C. Efficacy of photodynamic therapy combined with topical interventions for the treatment of actinic keratosis: A meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 863–873. [Google Scholar] [CrossRef]
- Heppt, M.V.; Steeb, T.; Ruzicka, T.; Berking, C. Cryosurgery combined with topical interventions for actinic keratosis: A systematic review and meta-analysis. Br. J. Dermatol. 2019, 180, 740–748. [Google Scholar] [CrossRef]
- Mehta, N.K.; Nguyen, S.A.; Chang, B.A.; Nathan, C.A. Trend Analysis of Cutaneous Squamous Cell Carcinoma of the External Lip From 1975 to 2016. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 624–631. [Google Scholar] [CrossRef]
- Bibee, K.; Swartz, A.; Sridharan, S.; Kurten, C.H.; Wessel, C.B.; Skinner, H.; Zandberg, D.P. Cutaneous squamous cell carcinoma in the organ transplant recipient. Oral Oncol. 2020, 103, 104562. [Google Scholar] [CrossRef] [PubMed]
- Mehrany, K.; Byrd, D.R.; Roenigk, R.K.; Weenig, R.H.; Phillips, P.K.; Nguyen, T.H.; Otley, C.C. Lymphocytic infiltrates and subclinical epithelial tumor extension in patients with chronic leukemia and solid-organ transplantation. Dermatol. Surg. 2003, 29, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Goldenberg, A.; Cowan, N.; Eilers, R.; Hau, J.; Jiang, S.I.B. A 4-year retrospective assessment of postoperative complications in immunosuppressed patients following Mohs micrographic surgery. J. Am. Acad. Dermatol. 2019, 80, 1594–1601. [Google Scholar] [CrossRef]
- Balakirski, G.; Kotliar, K.; Pauly, K.J.; Krings, L.K.; Rübben, A.; Baron, J.M.; Schmitt, L. Surgical Site Infections after Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience. Dermatol. Surg. 2018, 44, 1525–1536. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Rowe, G.; Harris, K.; Ko, S.; Ko, M.; Gharavi, N.M. Antibiotic Use and Surgical Site Infections in Immunocompromised Patients After Mohs Micrographic Surgery: A Single-Center Retrospective Study. Dermatol. Surg. 2022, 48, 1283–1288. [Google Scholar] [CrossRef]
- Manyam, B.V.; Gastman, B.; Zhang, A.Y.; Reddy, C.A.; Burkey, B.B.; Scharpf, J.; Alam, D.S.; Fritz, M.A.; Vidimos, A.T.; Koyfman, S.A. Inferior outcomes in immunosuppressed patients with high-risk cutaneous squamous cell carcinoma of the head and neck treated with surgery and radiation therapy. J. Am. Acad. Dermatol. 2015, 73, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Tam, S.; Gross, N.D. Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Curr. Oncol. Rep. 2019, 21, 82. [Google Scholar] [CrossRef]
- Harris, B.N.; Pipkorn, P.; Nguyen, K.N.B.; Jackson, R.S.; Rao, S.; Moore, M.G.; Farwell, D.G.; Bewley, A.F. Association of Adjuvant Radiation Therapy with Survival in Patients with Advanced Cutaneous Squamous Cell Carcinoma of the Head and Neck. JAMA Otolaryngol. Head. Neck Surg. 2019, 145, 153–158. [Google Scholar] [CrossRef]
- Hirshoren, N.; Ruskin, O.; McDowell, L.J.; Magarey, M.; Kleid, S.; Dixon, B.J. Management of Parotid Metastatic Cutaneous Squamous Cell Carcinoma: Regional Recurrence Rates and Survival. Otolaryngol. Head. Neck Surg. 2018, 159, 293–299. [Google Scholar] [CrossRef]
- Ruiz, E.S.; Kus, K.J.; Smile, T.D.; Murad, F.; Zhou, G.; Ilori, E.O.; Schoenfeld, J.D.; Margalit, D.N.; Tishler, R.B.; Vidimos, A.T.; et al. Adjuvant radiation following clear margin resection of high T-stage cutaneous squamous cell carcinoma halves the risk of local and locoregional recurrence: A dual-center retrospective study. J. Am. Acad. Dermatol. 2022, 87, 87–94. [Google Scholar] [CrossRef]
- Nottage, M.K.; Lin, C.; Hughes, B.G.M.; Kenny, L.; Smith, D.D.; Houston, K.; Francesconi, A. Prospective study of definitive chemoradiation in locally or regionally advanced squamous cell carcinoma of the skin. Head Neck 2017, 39, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.; Arnold, R.; Frei, U.; Hetzer, R.; Neuhaus, P.; Stockfleth, E. Skin Changes Following Organ Transplantation: An Interdisciplinary Challenge. Dtsch. Arztebl. Int. 2014, 111, 188. [Google Scholar] [CrossRef] [PubMed]
- Trodello, C.; Pepper, J.P.; Wong, M.; Wysong, A. Cisplatin and Cetuximab Treatment for Metastatic Cutaneous Squamous Cell Carcinoma: A Systematic Review. Dermatol. Surg. 2017, 43, 40–49. [Google Scholar] [CrossRef]
- Tanvetyanon, T.; Padhya, T.; McCaffrey, J.; Kish, J.A.; Deconti, R.C.; Trotti, A.; Rao, N.G. Postoperative concurrent chemotherapy and radiotherapy for high-risk cutaneous squamous cell carcinoma of the head and neck. Head Neck 2015, 37, 840–845. [Google Scholar] [CrossRef]
- Goyal, U.; Prabhakar, N.K.; Davuluri, R.; Morrison, C.M.; Yi, S.K. Role of Concurrent Systemic Therapy with Adjuvant Radiation Therapy for Locally Advanced Cutaneous Head and Neck Squamous Cell Carcinoma. Cureus 2017, 9, e1784. [Google Scholar] [CrossRef]
- Trosman, S.J.; Zhu, A.; Nicolli, E.A.; Leibowitz, J.M.; Sargi, Z.B. High-Risk Cutaneous Squamous Cell Cancer of the Head and Neck: Risk Factors for Recurrence and Impact of Adjuvant Treatment. Laryngoscope 2021, 131, E136–E143. [Google Scholar] [CrossRef] [PubMed]
- Porceddu, S.V.; Bressel, M.; Poulsen, M.G.; Stoneley, A.; Veness, M.J.; Kenny, L.M.; Wratten, C.; Corry, J.; Cooper, S.; Fogarty, G.B.; et al. Postoperative Concurrent Chemoradiotherapy Versus Postoperative Radiotherapy in High-Risk Cutaneous Squamous Cell Carcinoma of the Head and Neck: The Randomized Phase III TROG 05.01 Trial. J. Clin. Oncol. 2018, 36, 1275–1283. [Google Scholar] [CrossRef]
- Krisl, J.C.; Doan, V.P. Chemotherapy and Transplantation: The Role of Immunosuppression in Malignancy and a Review of Antineoplastic Agents in Solid Organ Transplant Recipients. Am. J. Transplant. 2017, 17, 1974–1991. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Langer, C.J. Epidermal growth factor receptors as a target for cancer treatment: The emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin. Oncol. 2002, 29 (Suppl. 4), 27–36. [Google Scholar] [CrossRef]
- Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 1997, 3 Pt 2, 2703–2707. [Google Scholar]
- Maubec, E.; Petrow, P.; Scheer-Senyarich, I.; Duvillard, P.; Lacroix, L.; Gelly, J.; Certain, A.; Duval, X.; Crickx, B.; Buffard, V.; et al. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J. Clin. Oncol. 2011, 29, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
- Kreinbrink, P.J.; Mierzwa, M.L.; Huth, B.; Redmond, K.P.; Wise-Draper, T.M.; Casper, K.; Li, J.; Takiar, V. Adjuvant radiation and cetuximab improves local control in head and neck cutaneous squamous cell carcinoma: Phase II study. Head Neck 2021, 43, 3408–3416. [Google Scholar] [CrossRef]
- Jarkowski, A.; Hare, R.; Loud, P.; Skitzki, J.J.; Kane, J.M.; May, K.S.; Zeitouni, N.C.; Nestico, J.; Vona, K.L.; Groman, A.; et al. Systemic Therapy in Advanced Cutaneous Squamous Cell Carcinoma (CSCC): The Roswell Park Experience and a Review of the Literature. Am. J. Clin. Oncol. 2016, 39, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.M.; Lien, W.W. Concurrent Radiotherapy with Cetuximab or Platinum-based Chemotherapy for Locally Advanced Cutaneous Squamous Cell Carcinoma of the Head and Neck. Am. J. Clin. Oncol. 2018, 41, 95–99. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Withycombe, B.M.; Kim, Y.; Brohl, A.S.; Eroglu, Z.; Markowitz, J.; Tarhini, A.A.; Tsai, K.Y.; Khushalani, N.I. Cetuximab for Immunotherapy-Refractory/Ineligible Cutaneous Squamous Cell Carcinoma. Cancers 2023, 15, 3180. [Google Scholar] [CrossRef]
- William, W.N.; Feng, L.; Ferrarotto, R.; Ginsberg, L.; Kies, M.; Lippman, S.; Glisson, B.; Kim, E.S. Gefitinib for patients with incurable cutaneous squamous cell carcinoma: A single-arm phase II clinical trial. J. Am. Acad. Dermatol. 2017, 77, 1110–1113.e2. [Google Scholar] [CrossRef] [PubMed]
- Foote, M.C.; McGrath, M.; Guminski, A.; Hughes, B.G.M.; Meakin, J.; Thomson, D.; Zarate, D.; Simpson, F.; Porceddu, S.V. Phase II study of single-agent panitumumab in patients with incurable cutaneous squamous cell carcinoma. Ann. Oncol. 2014, 25, 2047–2052. [Google Scholar] [CrossRef]
- Hourbeigt, K.; Ehret, M.; Visseaux, L.; Durlach, A.; Petit, A.; Sanchez, J.; Grange-Prunier, A.; Barbe, C.; Servagi-Vernat, S.; Grange, F. Efficacy and safety of panitumumab alone or in association with radiotherapy in unresectable cutaneous squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2789–2794. [Google Scholar] [CrossRef]
- Hanna, G.J.; Dharanesswaran, H.; Giobbie-Hurder, A.; Harran, J.J.; Liao, Z.; Pai, L.; Tchekmedyian, V.; Ruiz, E.S.; Waldman, A.H.; Schmults, C.D.; et al. Cemiplimab for Kidney Transplant Recipients with Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2024, 42, 1021–1030. [Google Scholar] [CrossRef]
- Ali, S.A.; Arman, H.E.; Patel, A.A.; Birhiray, R.E. Successful Administration of Cemiplimab to a Patient with Advanced Cutaneous Squamous Cell Carcinoma after Renal Transplantation. JCO Oncol. Pract. 2020, 16, 137–138. [Google Scholar] [CrossRef]
- Schenk, K.M.; Deutsch, J.S.; Chandra, S.; Davar, D.; Eroglu, Z.; Khushalani, N.I.; Luke, J.J.; Ott, P.A.; Sosman, J.A.; Aggarwal, V.; et al. Nivolumab + Tacrolimus + Prednisone ± Ipilimumab for Kidney Transplant Recipients with Advanced Cutaneous Cancers. J. Clin. Oncol. 2024, 42, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Alloghbi, A.; Ninia, J.; Alshare, B.; Hotaling, J.; Raza, S.; Sukari, A. Anti-PD-1 therapy using cemiplimab for advanced cutaneous squamous cell carcinoma in HIV patient: A case report. Clin. Case Rep. 2021, 9, 5228. [Google Scholar] [CrossRef] [PubMed]
- Brereton, C.; Bravo, A.; Hovenic, W. Metastatic Squamous Cell Carcinoma Presenting as Symptom of AIDS. J. Investig. Med. High Impact Case Rep. 2022, 10, 23247096211068271. [Google Scholar] [CrossRef]
- Petzold, A.; Steeb, T.; Wessely, A.; Schatton, T.; Berking, C.; Heppt, M.V. Comparative efficacy analysis identifies immune checkpoint blockade as a new survival benchmark in advanced cutaneous squamous cell carcinoma. Eur. J. Cancer. 2022, 170, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.F.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Hughes, B.; Munoz-Couselo, E.; Mortier, L.; Bratland, Å.; Gutzmer, R.; Roshdy, O.; Mendoza, R.G.; Schachter, J.; Arance, A.; Grange, F.; et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef]
- Munhoz, R.R.; Nader-Marta, G.; de Camargo, V.P.; Queiroz, M.M.; Cury-Martins, J.; Ricci, H.; de Mattos, M.R.; de Menezes, T.A.F.; Machado, G.U.C.; Bertolli, E.; et al. A phase 2 study of first-line nivolumab in patients with locally advanced or metastatic cutaneous squamous-cell carcinoma. Cancer 2022, 128, 4223–4231. [Google Scholar] [CrossRef]
- Rabinowits, G.; Park, S.J.; Ellison, D.M.; Worden, F.P.; Gentry, R.W.; Strasswimmer, J.; Venna, S.S.; Migden, M.R.; Chandra, S.; Ruiz, E.S.; et al. Checkpoint inhibition in immunosuppressed or immunocompromised patients with advanced cutaneous squamous cell carcinoma (CSCC): Data from prospective CemiplimAb-rwlc Survivorship and Epidemiology (C.A.S.E.) study. J. Clin. Oncol. 2021, 39 (Suppl. 15), 9547. [Google Scholar] [CrossRef]
- Murakami, N.; Mulvaney, P.; Danesh, M.; Abudayyeh, A.; Diab, A.; Abdel-Wahab, N.; Abdelrahim, M.; Khairallah, P.; Shirazian, S.; Kukla, A.; et al. A multi-center study on safety and efficacy of immune checkpoint inhibitors in cancer patients with kidney transplant. Kidney Int. 2021, 100, 196–205. [Google Scholar] [CrossRef]
- Lang, R.; Welponer, T.; Richtig, E.; Wolf, I.; Hoeller, C.; Hafner, C.; Nguyen, V.A.; Kofler, J.; Barta, M.; Koelblinger, P.; et al. Nivolumab for locally advanced and metastatic cutaneous squamous cell carcinoma (NIVOSQUACS study)-Phase II data covering impact of concomitant haematological malignancies. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1799–1810. [Google Scholar] [CrossRef]
- Leiter, U.; Loquai, C.; Reinhardt, L.; Rafei-Shamsabadi, D.; Gutzmer, R.; Kaehler, K.; Heinzerling, L.; Hassel, J.C.; Glutsch, V.; Sirokay, J.; et al. Immune checkpoint inhibition therapy for advanced skin cancer in patients with concomitant hematological malignancy: A retrospective multicenter DeCOG study of 84 patients. J. Immunother. Cancer 2020, 8, e000897. [Google Scholar] [CrossRef] [PubMed]
- Rajdev, L.; Wang, C.J.; Joshi, H.; Lensing, S.; Lee, J.; Ramos, J.C.; Baiocchi, R.; Ratner, L.; Rubinstein, P.G.; Ambinder, R.; et al. Assessment of the safety of nivolumab in people living with HIV with advanced cancer on antiretroviral therapy: The AIDS Malignancy Consortium 095 Study. Cancer 2024, 130, 985–994. [Google Scholar] [CrossRef]
- Kim, C.; Cook, M.R. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients with HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019, 5, 1049–1053. [Google Scholar] [CrossRef]
- Babey, H.; Quéré, G.; Descourt, R.; Le Calloch, R.; Lanfranco, L.; Nousbaum, J.-B.; Cornec, D.; Tison, A.; Chouaid, C. Immune-checkpoint inhibitors to treat cancers in specific immunocompromised populations: A critical review. Expert. Rev. Anticancer Ther. 2018, 18, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab Therapy in Patients with Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Shah, M.; Lopez-Olivo, M.A.; Suarez-Almazor, M.E. Use of Immune Checkpoint Inhibitors in the Treatment of Patients with Cancer and Preexisting Autoimmune Disease: A Systematic Review. Ann. Intern. Med. 2018, 168, 121–130. [Google Scholar] [CrossRef]
- Gross, N.D.; Miller, D.M.; Khushalani, N.I.; Divi, V.; Ruiz, E.S.; Lipson, E.J.; Meier, F.; Su, Y.B.; Swiecicki, P.L.; Atlas, J.; et al. Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 387, 1557–1568. [Google Scholar] [CrossRef]
- Ciążyńska, M.; Pabianek, M.; Sławińska, M.; Reich, A.; Lewandowski, B.; Szczepaniak, K.; Ułańska, M.; Nejc, D.; Brodowski, R.; Sobjanek, M.; et al. Risk Factors and Clinicopathological Features for Developing a Subsequent Primary Cutaneous Squamous and Basal Cell Carcinomas. Cancers 2022, 14, 3069. [Google Scholar] [CrossRef]
- Joly, P.; Bastuji-Garin, S.; Frances, C.; Lebbe, C.; Aubin, F.; Penso-Assathiany, D.; D’Incan, M.; Avril, M.-F.; Lair, G.; Barete, S.; et al. Squamous cell carcinomas are associated with verrucokeratotic cutaneous lesions but not with common warts in organ-transplant patients. A case-control study. Transplantation 2010, 89, 1224–1230. [Google Scholar] [CrossRef]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Management of advanced and high-stage tumors. J. Am. Acad. Dermatol. 2018, 78, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Rabinowits, G.; Migden, M.R.; Schlesinger, T.E.; Ferris, R.L.; Freeman, M.; Guild, V.; Koyfman, S.; Pavlick, A.C.; Swanson, N.; Wolf, G.T.; et al. Evidence-Based Consensus Recommendations for the Evolving Treatment of Patients with High-Risk and Advanced Cutaneous Squamous Cell Carcinoma. JID Innov. 2021, 1, 100045. [Google Scholar] [CrossRef] [PubMed]
- Bavinck, J.N.; Tieben, L.M.; Van der Woude, F.J.; Tegzess, A.M.; Hermans, J.; ter Schegget, J.; Vermeer, B.J. Prevention of skin cancer and reduction of keratotic skin lesions during acitretin therapy in renal transplant recipients: A double-blind, placebo-controlled study. J. Clin. Oncol. 1995, 13, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Harwood, C.A.; Leedham-Green, M.; Leigh, I.M.; Proby, C.M. Low-dose retinoids in the prevention of cutaneous squamous cell carcinomas in organ transplant recipients: A 16-year retrospective study. Arch. Dermatol. 2005, 141, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Jirakulaporn, T.; Endrizzi, B.; Lindgren, B.; Mathew, J.; Lee, P.K.; Dudek, A.Z. Capecitabine for skin cancer prevention in solid organ transplant recipients. Clin. Transplant. 2011, 25, 541–548. [Google Scholar] [CrossRef]
- Endrizzi, B.; Ahmed, R.L.; Ray, T.; Dudek, A.; Lee, P. Capecitabine to reduce nonmelanoma skin carcinoma burden in solid organ transplant recipients. Dermatol. Surg. 2013, 39, 634–645. [Google Scholar] [CrossRef]
- Chen, A.C.; Martin, A.J.; Choy, B.; Fernández-Peñas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef]
- Allen, N.C.; Martin, A.J.; Snaidr, V.A.; Eggins, R.; Chong, A.H.; Fernandéz-Peñas, P.; Gin, D.; Sidhu, S.; Paddon, V.L.; Banney, L.A.; et al. Nicotinamide for Skin-Cancer Chemoprevention in Transplant Recipients. N. Engl. J. Med. 2023, 388, 804–812. [Google Scholar] [CrossRef]
Author | Study Design | Cohort | Treatment | Results/Outcomes |
---|---|---|---|---|
Bavinck et al. [28] | Randomized controlled trial | 44 renal transplant recipients | Acitretin 30 mg/day × 6 months | Over 12 months, 2/19 patients in the treatment group developed new cSCC lesions and had a 13.4% decrease in keratotic lesions, while 9/19 patients in the placebo group developed new cSCC lesions and had a 28.2% increase in lesions. |
Harwood et al. [29] | Retrospective study | 32 organ transplant recipients | Continuous systemic retinoids 0.2 to 0.4 mg/kg/day for a minimum of 12 months | Mean reduction of 1.46 cSCC lesions developed per year after starting therapy. Statistically significant reduction in first 3 years of treatment. No serious adverse effects from therapy noted. |
Jirakulaporn et al. [30] | Retrospective study | 15 solid organ transplant recipients | Oral capecitabine 1 g/m2 BID × 14 days | 13/15 patients showed reduction in incidence of new cSCC lesions with treatment, with overall incidence reuction of 0.33. One patient required dose reduction due to toxicity. |
Endrizzi et al. [31] | Case series | 10 solid organ transplant recipients | Oral capecitabine 0.5–1.5 g/m2/day × 14 days | 9/10 patients showed reduction in incidence of new cSCC lesions in 12 months of treatment, with 68% mean reduction. 7/10 patients required dose adjustment due to toxicity. |
Allen et al. [33] | Randomized controlled trial | 158 organ transplant recipients | Nicotinamide 500 mg BID × 12 months | No significant difference noted in incidence of cSCC between groups, and no significant difference in number of adverse effects. |
Hasan et al. [47] | Randomized controlled trial | 40 organ transplant recipients | Topical 5% 5-fluorouracil (5-FU) vs. 5% imiquimod | After 12 months, 58% of 5-FU patients had at least 75% lasting reduction in keratotic lesions, with only 15% of sunscreen patients achieving 75% reduction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Townes, T.; Na’ara, S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers 2024, 16, 3118. https://doi.org/10.3390/cancers16183118
Li S, Townes T, Na’ara S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers. 2024; 16(18):3118. https://doi.org/10.3390/cancers16183118
Chicago/Turabian StyleLi, Sophie, Thomas Townes, and Shorook Na’ara. 2024. "Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients" Cancers 16, no. 18: 3118. https://doi.org/10.3390/cancers16183118
APA StyleLi, S., Townes, T., & Na’ara, S. (2024). Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers, 16(18), 3118. https://doi.org/10.3390/cancers16183118