Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. PBPK Model Development
2.2. Testing Model Parameters
2.3. Area under the TAC (AUC) and Dose
2.4. Biologically Effective Dose (BED)
2.4.1. G Described by Lea–Catcheside
2.4.2. G as Simplified Version of Lea–Catcheside
2.4.3. G Described by Kalogianni et al. [28]
2.4.4. G Described by Howell et al. [29]
2.5. Figure-of-Merit Biological Effective Dose (fBED)
2.6. Sensitivity Analysis
2.7. The Effect of Offsetting Tumor Release Rate to Zero
2.8. Time–Activity Features
2.9. Relative Biological Effectiveness (RBE)
3. Results
3.1. The Effect of PBPK Modeling Parameters on AUC, Dose, BED, and fBED
3.2. Impact of PBPK Modeling Parameters on AUC, Dose, BED, and fBED by Considering a Zero Value of the Tumor Release Rate
3.3. Impact of PBPK Modeling Parameters on Time–Activity Curve Features
3.4. Impact of PBPK Modeling Parameters on RBE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Guercio, B.J.; Sahasrabudhe, D. Current Trends in Chemotherapy in the Treatment of Metastatic Prostate Cancer. Cancers 2023, 15, 3969. [Google Scholar] [CrossRef] [PubMed]
- Atiq, M.; Chandran, E.; Karzai, F.; Madan, R.A.; Aragon-Ching, J.B. Emerging treatment options for prostate cancer. Expert Rev. Anticancer. Ther. 2023, 23, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Seitzer, K.E.; Seifert, R.; Kessel, K.; Roll, W.; Schlack, K.; Boegemann, M.; Rahbar, K. Lutetium-177 Labelled PSMA Targeted Therapy in Advanced Prostate Cancer: Current Status and Future Perspectives. Cancers 2021, 13, 3715. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Rahbar, K.; Herrmann, K.; Kratochwil, C.; Eiber, M. 177Lu-PSMA Radioligand Therapy for Prostate Cancer. J. Nucl. Med. 2017, 58, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Kumar, A.R.; Murphy, D.G.; et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 825–833. [Google Scholar] [CrossRef]
- Iravani, A.; Violet, J.; Azad, A.; Hofman, M.S. Lutetium-177 prostate-specific membrane antigen (PSMA) theranostics: Practical nuances and intricacies. Prostate Cancer Prostatic Dis. 2020, 23, 38–52. [Google Scholar] [CrossRef]
- Lesko, L.J. Perspective on model-informed drug development. Pharmacomet. Syst. Pharmacol. 2021, 10, 1127–1129. [Google Scholar] [CrossRef]
- Siebinga, H.; de Wit-van der Veen, B.J.; Stokkel, M.D.M.; Huitema, A.D.R.; Hendrikx, J.J.M.A. Current use and future potential of (physiologically based) pharmacokinetic modelling of radiopharmaceuticals: A review. Theranostics 2022, 12, 7804–7820. [Google Scholar] [CrossRef]
- Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm. Res. 2022, 39, 1701–1731. [Google Scholar] [CrossRef]
- Wang, W.; Ouyang, D. Opportunities and challenges of physiologically based pharmacokinetic modeling in drug delivery. Drug Discov. Today 2022, 27, 2100–2120. [Google Scholar] [CrossRef]
- Kaikousidis, C.; Dokoumetzidis, A. In Silico Dosimetry Study of Tc99m-Tetrofosmin in Children Using a Novel PBPK Model in Humans Built from SPECT Imaging Data. Pharm. Res. 2023, 40, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Hardiansyah, D.; Guo, W.; Attarwala, A.A.; Kletting, P.; Mottaghy, F.M.; Glatting, G. Treatment planning in PRRT based on simulated PET data and a PBPK model. Nukl. -Nucl. 2017, 56, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Rahmim, A.; Brosch-Lenz, J.; Fele-Paranj, A.; Yousefirizi, F.; Soltani, M.; Uribe, C.; Saboury, B. Theranostic digital twins for personalized radiopharmaceutical therapies: Reimagining theranostics via computational nuclear oncology. Front. Oncol. 2022, 12, 1062592. [Google Scholar] [CrossRef] [PubMed]
- Brosch-Lenz, J.; Uribe, C.; Rahmim, A.; Saboury, B. Theranostic Digital Twins: An indispensable prerequisite for personalized cancer care. J. Nucl. Med. 2023, 64, 501. [Google Scholar] [CrossRef]
- Abdollahi, H.; Yousefiriz, F.; Shiri, I.; Brosch-Lenz, J.; Mollaheydar, E.; Fele-Paranj, A.; Shi, K.; Zaidi, H.; Alberts, I.; Soltani, M.; et al. Theranostic digital twins: Concept, framework and roadmap towards personalized radiopharmaceutical therapies. Theranostics 2024, 14, 3404–3422. [Google Scholar] [CrossRef]
- Hardiansyah, D.; Guo, W.; Kletting, P.; Mottaghy, F.M.; Glatting, G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise. Med. Phys. 2016, 43, 5145. [Google Scholar] [CrossRef]
- Morris, Z.S.; Wang, A.Z.; Knox, S.J. The Radiobiology of Radiopharmaceuticals. Semin. Radiat. Oncol. 2021, 31, 20–27. [Google Scholar] [CrossRef]
- Solanki, J.H.; Tritt, T.; Pasternack, J.B.; Kim, J.J.; Leung, C.N.; Domogauer, J.D.; Colangelo, N.W.; Narra, V.R.; Howell, R.W. Cellular Response to Exponentially Increasing and Decreasing Dose Rates: Implications for Treatment Planning in Targeted Radionuclide Therapy. Radiat. Res. 2017, 188, 221–234. [Google Scholar] [CrossRef]
- Lu, J.; Deng, K.; Zhang, X.; Liu, G.; Guan, Y. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. Iscience 2021, 24, 102804. [Google Scholar] [CrossRef]
- Fele-Paranj, A.; Saboury, B.; Uribe, C.; Rahmim, A. Physiologically based RadioPharmacoKinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: Studies of non-linearities, multi-bolus injections, and albumin binding. EJNMMI Radiopharm. Chem. 2024, 9, 6. [Google Scholar] [CrossRef]
- Begum, N.J.; Glatting, G.; Wester, H.-J.; Eiber, M.; Beer, A.J.; Kletting, P. The effect of ligand amount, affinity and internalization on PSMA-targeted imaging and therapy: A simulation study using a PBPK model. Sci. Rep. 2019, 9, 20041. [Google Scholar] [CrossRef] [PubMed]
- Kletting, P.; Schuchardt, C.; Kulkarni, H.R.; Shahinfar, M.; Singh, A.; Glatting, G.; Richard, P.; Baum, R.P.; Beer, A.J. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides. PLoS ONE 2016, 11, e0162303. [Google Scholar] [CrossRef] [PubMed]
- Piranfar, A.; Soltani, M.; Kashkooli, F.M.; Uribe, C.F.; Rahmim, A. Spatiotemporal modeling of radiopharmaceutical transport in solid tumors: Application to 177Lu-PSMA therapy of prostate cancer. Comput. Methods Programs Biomed. 2024, 245, 108004. [Google Scholar] [CrossRef]
- Capasso, G.; Stefanucci, A.; Tolomeo, A. A systematic review on the current status of PSMA-targeted imaging and radioligand therapy. Eur. J. Med. Chem. 2024, 263, 115966. [Google Scholar] [CrossRef] [PubMed]
- Umbricht, C.A.; Benešová, M.; Schibli, R.; Müller, C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Mol. Pharm. 2018, 15, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Bolch, W.E.; Chiti, A.; Dewaraja, Y.K.; Emfietzoglou, D.; Hobbs, R.F.; Konijnenberg, M.; Sjögreen-Gleisner, K.; Strigari, L.; Yen, T.-C.; et al. ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. J. ICRU 2021, 21, 1–212. [Google Scholar] [CrossRef]
- Lea, D.E.; Catcheside, D.G. The mechanism of the induction by radiation of chromosome aberrations inTradescantia. J. Genet. 1942, 44, 216–245. [Google Scholar] [CrossRef]
- Kalogianni, E.; Flux, G.D.; Malaroda, A. The use of BED and EUD concepts in heterogeneous radioactivity distributions on a multicellular scale for targeted radionuclide therapy. Cancer Biother. Radiopharm. 2007, 22, 143–150. [Google Scholar] [CrossRef]
- Howell, R.W.; Goddu, S.M.; Rao, D.V. Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy. Med. Phys. 1998, 25, 37–42. [Google Scholar] [CrossRef]
- Tao, Y.; Jakobsson, V.; Chen, X.; Zhang, J. Exploiting Albumin as a Versatile Carrier for Cancer Theranostics. Acc. Chem. Res. 2023, 56, 2403–2415. [Google Scholar] [CrossRef]
- Ravi, P.; Whelpley, B.; Kelly, E.; Wolanski, A.; Ritzer, J.; Robertson, M.; Shah, H.; Morgans, A.K.; Wei, X.X.; Sunkara, R.; et al. Clinical implementation of 177Lu-PSMA-617 in the United States: Lessons learned and ongoing challenges. J. Nucl. Med. 2023, 64, 349–350. [Google Scholar] [CrossRef]
- Sun, M.; Niaz, M.O.; Nelson, A.; Skafida, M.; Niaz, M.J. Review of 177Lu-PSMA-617 in Patients With Metastatic Castration-Resistant Prostate Cancer. Cureus 2020, 12, e8921. [Google Scholar] [CrossRef]
- Salerno, K.E.; Roy, S.; Ribaudo, C.; Fisher, T.; Patel, R.B.; Mena, E.; Escorcia, F.E. A Primer on Radiopharmaceutical Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2022, 115, 48–59. [Google Scholar] [CrossRef]
- Zhang, H.; Koumna, S.; Pouliot, F.; Beauregard, J.-M.; Kolinsky, M. PSMA theranostics: Current landscape and future outlook. Cancers 2021, 13, 4023. [Google Scholar] [CrossRef]
- Gafita, A.; Wang, H.; Robertson, A.; Armstrong, W.R.; Zaum, R.; Weber, M.; Yagubbayli, F.; Kratochwil, C.; Grogan, T.R.; Nguyen, K.; et al. Tumor Sink Effect in 68Ga-PSMA-11 PET: Myth or Reality? J. Nucl. Med. 2022, 63, 226–232. [Google Scholar] [CrossRef]
- Filss, C.; Heinzel, A.; Miiller, B.; Vogg, A.T.J.; Langen, K.-J.; Mottaghy, F.M. Relevant tumor sink effect in prostate cancer patients receiving 177Lu-PSMA-617 radioligand therapy. Nukl. -Nucl. 2018, 57, 19–25. [Google Scholar] [CrossRef]
- Winter, G.; Vogt, A.; Jiménez-Franco, L.D.; Rinscheid, A.; Yousefzadeh-Nowshahr, E.; Solbach, C.; Beer, A.J.; Glatting, G.; Kletting, P. Modelling the internalisation process of prostate cancer cells for PSMA-specific ligands. Nucl. Med. Biol. 2019, 72–73, 20–25. [Google Scholar] [CrossRef]
- Warkentin, B.; Stavrev, P.; Stavreva, N.; Field, C.; Fallone, B.G. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J. Appl. Clin. Med. Phys. 2004, 5, 50–63. [Google Scholar] [CrossRef]
- Kuo, H.-T.; Lin, K.-S.; Zhang, Z.; Uribe, C.F.; Merkens, H.; Zhang, C.; Bénard, F. 177Lu-Labeled Albumin-Binder–Conjugated PSMA-Targeting Agents with Extremely High Tumor Uptake and Enhanced Tumor-to-Kidney Absorbed Dose Ratio. J. Nucl. Med. 2021, 62, 521–527. [Google Scholar] [CrossRef]
- Jiménez-Franco, L.D.; Kletting, P.; Beer, A.J.; Glatting, G. Treatment planning algorithm for peptide receptor radionuclide therapy considering multiple tumor lesions and organs at risk. Med. Phys. 2018, 45, 3516–3523. [Google Scholar] [CrossRef]
Parameter | Definition | Assigned Values | Unit |
---|---|---|---|
Association rate | Rate at which radioligand binds to target receptors. | 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1 | L/nmol/min |
Internalization rate | Rate at which radioligand is taken into cells. | 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 | L/min |
Serum protein-binding rate | Rate at which radioligand binds to serum proteins. | 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 | L/min |
Release rate | Rate at which radioligand is released from the cells. | 0, 0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.00025, 0.0003, 0.0005, 0.001 | L/min |
Receptor density | Concentration of target receptors on tumor cells. | 1, 5, 50, 100, 500, 1000, 2000, 5000 | nmol/L |
Ligand amount | Quantity of injected radioligand ligands. | 1, 5, 10, 25, 50, 100, | nmol |
Tumor volume | Size or volume of the tumor being treated. | 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 | L |
Feature | Definition |
---|---|
Amax | The maximum concentration of the radiopharmaceutical in the tissue. |
Amean | The mean concentration of the radiopharmaceutical in the tissue. |
AStdev | The standard deviation of the concentration of the radiopharmaceutical in the tissue. |
Amedian | The media concentration of the radiopharmaceutical in the tissue. |
Skewness | A measure of the asymmetry in the distribution of the concentration values within the time–concentration profile of the radiopharmaceutical, indicating the dominance of higher or lower concentrations. |
Entropy | A measure of the unpredictability or randomness in the distribution of the concentration values over time in the radiopharmaceutical profile, reflecting the complexity and diversity of the pattern. |
Percentile50 | The value at which 50% of the activity measurements lie below it and 50% lie above it. |
Percentile90 | The value below which 90% of the activity measurements fall. |
Ti | The approximate time required for the radiopharmaceutical dose rate to increase to one-half of its maximum value. |
Td | The approximate time required for the radiopharmaceutical dose rate to decrease to one-half of its maximum value. |
Increasing times (T10–T90) | The time at which the activity first reaches 10–90% of its maximum value during the initial increase. |
Decreasing times (T−10–T−90) | The time at which the activity decreases to 10–90% of its maximum value during the decay phase. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahi, H.; Fele-Paranj, A.; Rahmim, A. Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy. Cancers 2024, 16, 3120. https://doi.org/10.3390/cancers16183120
Abdollahi H, Fele-Paranj A, Rahmim A. Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy. Cancers. 2024; 16(18):3120. https://doi.org/10.3390/cancers16183120
Chicago/Turabian StyleAbdollahi, Hamid, Ali Fele-Paranj, and Arman Rahmim. 2024. "Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy" Cancers 16, no. 18: 3120. https://doi.org/10.3390/cancers16183120
APA StyleAbdollahi, H., Fele-Paranj, A., & Rahmim, A. (2024). Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy. Cancers, 16(18), 3120. https://doi.org/10.3390/cancers16183120