Association of COVID-19 and Lung Cancer: Short-Term and Long-Term Interactions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Population
2.2. Diagnosis of SARS-CoV-2 Infection and Prognosis
2.3. Cancer Diagnosis, Medication Strategies and Prognosis
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. The Infectivity and Prognosis of COVID-19 between Healthy Individuals and Cancer Patients
3.3. The Infectivity and Prognosis of COVID-19 in Different Medication Lung Cancer Patients
3.4. Effect of COVID-19 on the Prognosis of Lung Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rugge, M.; Zorzi, M.; Guzzinati, S. SARS-CoV-2 infection in the Italian Veneto region: Adverse outcomes in patients with cancer. Nat. Cancer 2020, 1, 784–788. [Google Scholar] [CrossRef]
- Oldani, S.; Petrelli, F.; Dognini, G.; Borgonovo, K.; Parati, M.C.; Ghilardi, M.; Dottorini, L.; Cabiddu, M.; Luciani, A. COVID-19 and Lung Cancer Survival: An Updated Systematic Review and Meta-Analysis. Cancers 2022, 14, 5706. [Google Scholar] [CrossRef]
- Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020, 10, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Berger, N.A.; Xu, R. Analyses of Risk, Racial Disparity, and Outcomes Among US Patients With Cancer and COVID-19 Infection. JAMA Oncol. 2021, 7, 220–227. [Google Scholar] [CrossRef]
- Yu, J.; Ouyang, W.; Chua, M.L.K.; Xie, C. SARS-CoV-2 Transmission in Patients With Cancer at a Tertiary Care Hospital in Wuhan, China. JAMA Oncol. 2020, 6, 1108–1110. [Google Scholar] [CrossRef] [PubMed]
- Testart-Paillet, D.; Girard, P.; You, B.; Freyer, G.; Pobel, C.; Tranchand, B. Contribution of modelling chemotherapy-induced hematological toxicity for clinical practice. Crit. Rev. Oncol. Hematol. 2007, 63, 1–11. [Google Scholar] [CrossRef]
- Jayan, A.P.; Anandu, K.R.; Madhu, K.; Saiprabha, V.N. A pharmacological exploration of targeted drug therapy in non-small cell lung cancer. Med. Oncol. 2022, 39, 147. [Google Scholar] [CrossRef]
- Mamdani, H.; Matosevic, S.; Khalid, A.B.; Durm, G.; Jalal, S.I. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Front. Immunol. 2022, 13, 823618. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, L.K.; Jones, N.L. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol. 2013, 21, 602–612. [Google Scholar] [CrossRef]
- Rugge, M.; Zorzi, M.; Guzzinati, S. Malignancy in SARS-CoV2 Infection. 2020. Available online: https://figshare.com/articles/dataset/Malignancy_in_SARS-CoV2_infection/12666698/4 (accessed on 15 January 2023).
- Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014, 46, 736–741. [Google Scholar] [CrossRef]
- Initiative, C.-H.G. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe Covid-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Erdem, D.; Karaman, I. Awareness and perceptions related to COVID-19 among cancer patients: A survey in oncology department. Eur. J. Cancer Care 2020, 29, e13309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wan, H.; Liu, J.; Zhang, R.; Ma, Q.; Han, B.; Xiang, Y.; Che, J.; Cao, H.; Fei, X.; et al. The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncol. Rep. 2010, 23, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Metzger, R.; Klieser, E.; Sotlar, K.; Trakht, I.N.; Garcia, J.G.N. Tissue ACE phenotyping in lung cancer. PLoS ONE 2019, 14, e0226553. [Google Scholar] [CrossRef]
- Rugge, M.; Zorzi, M.; Guzzinati, S.; Stocco, C.; Avossa, F.; Del Zotto, S.; Clagnan, E.; Bricca, L.; Dal Maso, L.; Serraino, D. Outcomes of SARS-CoV-2 infection in cancer versus non-cancer-patients: A population-based study in northeastern Italy. Tumori J. 2023, 109, 38–46. [Google Scholar] [CrossRef]
- Hasan, S.; Awasthi, P.; Malik, S.; Dwivedi, M. Immunotherapeutic strategies to induce inflection in the immune response: Therapy for cancer and COVID-19. Biotechnol. Genet. Eng. Rev. 2022, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Mangsbo, S.M.; Sandin, L.C.; Anger, K.; Korman, A.J.; Loskog, A.; Totterman, T.H. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J. Immunother. 2010, 33, 225–235. [Google Scholar] [CrossRef]
- Morelli, T.; Fujita, K.; Redelman-Sidi, G.; Elkington, P.T. Infections due to dysregulated immunity: An emerging complication of cancer immunotherapy. Thorax 2022, 77, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Robilotti, E.V.; Babady, N.E.; Mead, P.A.; Rolling, T.; Perez-Johnston, R.; Bernardes, M.; Bogler, Y.; Caldararo, M.; Figueroa, C.J.; Glickman, M.S.; et al. Determinants of COVID-19 disease severity in patients with cancer. Nat. Med. 2020, 26, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Kim, Y.H.; Kanai, O.; Yoshida, H.; Mio, T.; Hirai, T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir. Med. 2019, 146, 66–70. [Google Scholar] [CrossRef]
- Darnell, E.P.; Mooradian, M.J.; Baruch, E.N.; Yilmaz, M.; Reynolds, K.L. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr. Oncol. Rep. 2020, 22, 39. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.S.; Wen, P.Y.; Gilbert, M.R.; Schiff, D. Management of treatment-associated toxicites of anti-angiogenic therapy in patients with brain tumors. Neuro-Oncology 2012, 14, 1203–1214. [Google Scholar] [CrossRef]
- Liu, S.; Kurzrock, R. Toxicity of targeted therapy: Implications for response and impact of genetic polymorphisms. Cancer Treat. Rev. 2014, 40, 883–891. [Google Scholar] [CrossRef]
- Widakowich, C.; de Castro, G., Jr.; de Azambuja, E.; Dinh, P.; Awada, A. Review: Side effects of approved molecular targeted therapies in solid cancers. Oncologist 2007, 12, 1443–1455. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Chang, C.J.; Huang, H.J.; Hsueh, S.; Chao, A.; Yang, J.E.; Lin, C.T.; Huang, S.L.; Hong, J.H.; Chou, H.H.; et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J. Clin. Oncol. 2007, 25, 3628–3634. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zheng, M.; Jiang, J.; Cao, D.; Wu, Y.; Zhang, Y.; Fu, Y.; Cao, X.; Positive, H. pylori status predicts better prognosis of non-cardiac gastric cancer patients: Results from cohort study and meta-analysis. BMC Cancer 2022, 22, 155. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, L.; Zhu, J.; Chen, P.; Wang, H.; Jiang, M.; Liu, X.; Sun, H.; Zhao, W.; Zheng, Z.; et al. Microbes in lung cancer initiation, treatment, and outcome: Boon or bane? Semin. Cancer Biol. 2022, 86, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Rizeq, B.; Elkord, E.; Vranic, S.; Al Moustafa, A.E. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers 2020, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019, 12, 134. [Google Scholar] [CrossRef]
Cancer Types | Model I | Model II | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
First part of data | ||||
Without cancer | 1 (reference) | 1 (reference) | ||
Non-lung cancer | 1.49 (1.37~1.62) | <0.001 | 0.98 (0.90~1.07) | 0.613 |
Lung cancer | 1.1 (0.70~1.74) | 0.677 | 0.61 (0.39~0.97) | 0.036 |
Second part of data | ||||
Without cancer | 1 (reference) | 1 (reference) | ||
Lung cancer | 0.52 (0.28~0.95) | 0.034 | 0.41 (0.18~0.94) | 0.036 |
Treatment | Model I | Model II | Model III | |||
---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |
Chemotherapy | 0 (reference) | 0 (reference) | 0 (reference) | |||
Immunotherapy | −0.17 (−0.41~0.06) | 0.145 | −0.05 (−0.3~0.2) | 0.712 | −0.01 (−0.25~0.23) | 0.932 |
Targeted therapy | −0.58 (−0.75~−0.41) | <0.001 | −0.59 (−0.76~−0.41) | <0.001 | −0.57 (−0.75~−0.4) | <0.001 |
Treatment | Model I | Model II | Model III | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Chemotherapy | 1 (reference) | 1 (reference) | 1 (reference) | |||
Immunotherapy | 1.19 (0.58~2.43) | 0.627 | 0.84 (0.35~2.06) | 0.71 | 0.94 (0.37~2.42) | 0.906 |
Targeted therapy | 0.12 (0.07~0.22) | <0.001 | 0.14 (0.07~0.27) | <0.001 | 0.12 (0.06~0.25) | <0.001 |
COVID-19 | Model I | Model II | Model III | |||
---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
PFS | ||||||
No infection | 1 (reference) | 1 (reference) | 1 (reference) | |||
Infection | 1.52 (0.98~2.38) | 0.063 | 3.28 (1.6~6.72) | 0.001 | 3.39 (1.45~7.95) | 0.005 |
PFSC | ||||||
No infection | 1 (reference) | 1 (reference) | 1 (reference) | |||
Infection | 1.41 (0.9~2.2) | 0.13 | 2.83 (1.39~5.76) | 0.004 | 3.84 (1.67~8.84) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.-L.; Wang, Z.-Y.; Zhong, R.-W.; Mei, S.-Q.; Liu, J.-Q.; Tang, L.-B.; Guo, Z.; Ren, Z.-R.; Wu, L.; Deng, Y.; et al. Association of COVID-19 and Lung Cancer: Short-Term and Long-Term Interactions. Cancers 2024, 16, 304. https://doi.org/10.3390/cancers16020304
Peng Y-L, Wang Z-Y, Zhong R-W, Mei S-Q, Liu J-Q, Tang L-B, Guo Z, Ren Z-R, Wu L, Deng Y, et al. Association of COVID-19 and Lung Cancer: Short-Term and Long-Term Interactions. Cancers. 2024; 16(2):304. https://doi.org/10.3390/cancers16020304
Chicago/Turabian StylePeng, Ying-Long, Zi-Yan Wang, Ri-Wei Zhong, Shi-Qi Mei, Jia-Qi Liu, Li-Bo Tang, Zhi Guo, Zi-Rui Ren, Lv Wu, Yu Deng, and et al. 2024. "Association of COVID-19 and Lung Cancer: Short-Term and Long-Term Interactions" Cancers 16, no. 2: 304. https://doi.org/10.3390/cancers16020304
APA StylePeng, Y. -L., Wang, Z. -Y., Zhong, R. -W., Mei, S. -Q., Liu, J. -Q., Tang, L. -B., Guo, Z., Ren, Z. -R., Wu, L., Deng, Y., Chen, Z. -H., Zhou, Q., & Xu, C. -R. (2024). Association of COVID-19 and Lung Cancer: Short-Term and Long-Term Interactions. Cancers, 16(2), 304. https://doi.org/10.3390/cancers16020304