Influence of Lymphatic, Microvascular and Perineural Invasion on Oncological Outcome in Patients with Neuroendocrine Tumors of the Small Intestine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Survival Analysis
3.3. Curative Surgery
3.4. Survival Analysis of siNET Patients Undergoing Curative Surgery
3.5. Cox’s Regression Model for Progression-Free and Disease-Free Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef]
- Selberherr, A.; Freermann, S.; Koperek, O.; Niederle, M.B.; Riss, P.; Scheuba, C.; Niederle, B. Neuroendocrine liver metastasis from the small intestine: Is surgery beneficial for survival? Orphanet J. Rare Dis. 2021, 16, 30. [Google Scholar] [CrossRef]
- Niederle, B.; Selberherr, A.; Niederle, M.B. How to Manage Small Intestine (Jejunal and Ileal) Neuroendocrine Neoplasms Presenting with Liver Metastases? Curr. Oncol. Rep. 2021, 23, 85. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Wiedenmann, B.; Auernhammer, C.; Bartenstein, P.; Bartsch, D.K.; Begum, A.; Faiss, S.; Fottner, C.; Gebauer, B.; Goretzki, P.; et al. Practice guideline neuroendocrine tumors—AWMF-Reg. 021-27. Z. Gastroenterol. 2018, 56, 583–681. [Google Scholar] [CrossRef]
- Perren, A.; Couvelard, A.; Scoazec, J.Y.; Costa, F.; Borbath, I.; Delle Fave, G.; Gorbounova, V.; Gross, D.; Grossma, A.; Jense, R.T.; et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology: Diagnosis and Prognostic Stratification. Neuroendocrinology 2017, 105, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Wakahara, M.; Ikeda, K.; Umekita, Y. Perineural Invasion Predicts Unfavorable Prognosis in Patients With Invasive Breast Cancer. Cancer Diagn. Progn. 2023, 3, 208–214. [Google Scholar] [CrossRef]
- Felsenstein, M.; Lindhammer, F.; Feist, M.; Hillebrandt, K.H.; Timmermann, L.; Benzing, C.; Globke, B.; Zocholl, D.; Hu, M.; Fehrenbach, U.; et al. Perineural Invasion in Pancreatic Ductal Adenocarcinoma (PDAC): A Saboteur of Curative Intended Therapies? J. Clin. Med. 2022, 11, 2367. [Google Scholar] [CrossRef] [PubMed]
- Shalkamy, M.S.A.; Bae, J.H.; Lee, C.S.; Han, S.R.; Kim, J.H.; Kye, B.H.; Lee, I.K.; Lee, Y.S. Oncological impact of vascular invasion in colon cancer might differ depending on tumor sidedness. J. Minim. Invasive Surg. 2022, 25, 53–62. [Google Scholar] [CrossRef]
- Ichikawa, D.; Kubota, T.; Kikuchi, S.; Fujiwara, H.; Konishi, H.; Tsujiura, M.; Ikoma, H.; Nakanishi, M.; Okamoto, K.; Sakakura, C.; et al. Prognostic impact of lymphatic invasion in patients with node-negative gastric cancer. J. Surg. Oncol. 2009, 100, 111–114. [Google Scholar] [CrossRef]
- Izumo, W.; Higuchi, R.; Furukawa, T.; Yazawa, T.; Uemura, S.; Matsunaga, Y.; Shiihara, M.; Takayama, Y.; Tahara, J.; Shimizu, K.; et al. Evaluation of the Significance of Lymphatic, Microvascular and Perineural Invasion in Patients With Pancreatic Neuroendocrine Neoplasms. Cancer Diagn. Progn. 2022, 2, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.S.; Kwon, M.J.; Kim, T.H.; Han, J.; Ju, Y.S. Lymphovascular invasion as a prognostic value in small rectal neuroendocrine tumor treated by local excision: A systematic review and meta-analysis. Pathol. Res. Prac. 2019, 215, 152642. [Google Scholar] [CrossRef]
- Blakely, A.M.; Raoof, M.; Ituarte, P.H.G.; Fong, Y.; Singh, G.; Lee, B. Lymphovascular Invasion Is Associated with Lymph Node Involvement in Small Appendiceal Neuroendocrine Tumors. Ann. Surg. Oncol. 2019, 26, 4008–4015. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Knigge, U.; Capdevila, J.; Bartsch, D.K.; Baudin, E.; Falkerby, J.; Kianmanesh, R.; Kos-Kudla, B.; Niederle, B.; Nieveen van Dijkum, E.; O’Toole, D.; et al. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology 2017, 105, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Landerholm, K.; Zar, N.; Andersson, R.E.; Falkmer, S.E.; Jarhult, J. Survival and prognostic factors in patients with small bowel carcinoid tumour. Br. J. Surg. 2011, 98, 1617–1624. [Google Scholar] [CrossRef]
- Eriksson, J.; Garmo, H.; Hellman, P.; Ihre-Lundgren, C. The Influence of Preoperative Symptoms on the Death of Patients with Small Intestinal Neuroendocrine Tumors. Ann. Surg. Oncol. 2017, 24, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Garmo, J.E.H.; Ihre-Lundgren, C.; Hellman, P. Prognostic factors for death after surgery for small intestinal neuroendocrine tumours. BJS Open 2018, 2, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Norlen, O.; Stalberg, P.; Oberg, K.; Eriksson, J.; Hedberg, J.; Hessman, O.; Janson, E.T.; Hellman, P.; Akerstrom, G. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World J. Surg. 2012, 36, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.; Lombard-Bohas, C.; Delmas, C.; Dominguez-Tinajero, S.; Ruszniewski, P.; Samalin, E.; Raoul, J.L.; Renard, P.; Baudin, E.; Robaskiewicz, M.; et al. Relapse factors for ileal neuroendocrine tumours after curative surgery: A retrospective French multicentre study. Dig. Liver Dis. 2011, 43, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Evers, M.; Rinke, A.; Rutz, J.; Ramaswamy, A.; Maurer, E.; Bartsch, D.K. Prognostic Factors in Curative Resected Locoregional Small Intestine Neuroendocrine Neoplasms. World J. Surg. 2021, 45, 1109–1117. [Google Scholar] [CrossRef]
- Reinhard, L.; Mogl, M.T.; Benz, F.; Dukaczewska, A.; Butz, F.; Dobrindt, E.M.; Tacke, F.; Pratschke, J.; Goretzki, P.E.; Jann, H. Prognostic differences in grading and metastatic lymph node pattern in patients with small bowel neuroendocrine tumors. Langenbecks Arch. Surg. 2023, 408, 237. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Anaya, D.A.; Soares, H.; Coppola, D.; Strosberg, J. Analysis of Postoperative Recurrence in Stage I-III Midgut Neuroendocrine Tumors. J. Natl. Cancer Inst. 2018, 110, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.P.; Mramba, L.K.; Bishnoi, R.; Unnikrishnan, A.; Duff, J.M.; Chandana, S.R. Survival trends of metastatic small intestinal neuroendocrine tumor: A population-based analysis of SEER database. J. Gastrointest. Oncol. 2019, 10, 869–877. [Google Scholar] [CrossRef]
- Kiritani, S.; Arita, J.; Mihara, Y.; Nagata, R.; Ichida, A.; Kawaguchi, Y.; Ishizawa, T.; Akamatsu, N.; Kaneko, J.; Hasegawa, K. Venous invasion and lymphatic invasion are correlated with the postoperative prognosis of pancreatic neuroendocrine neoplasm. Surgery 2023, 173, 365–372. [Google Scholar] [CrossRef]
- Fujimoto, N.; Dieterich, L.C. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021, 10, 2585. [Google Scholar] [CrossRef] [PubMed]
- Vass, D.G.; Ainsworth, R.; Anderson, J.H.; Murray, D.; Foulis, A.K. The value of an elastic tissue stain in detecting venous invasion in colorectal cancer. J. Clin. Pathol. 2004, 57, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Ota, M.; Saito, S.; Kinugasa, Y.; Akamoto, S.; Ito, I. Lymphatic vessel invasion detected by monoclonal antibody D2-40 as a predictor of lymph node metastasis in T1 colorectal cancer. Int. J. Color. Dis. 2009, 24, 1069–1074. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Ikebe, D.; Hara, T.; Kato, K.; Komatsu, T.; Kondo, F.; Azemoto, R.; Komoda, F.; Tanaka, T.; Saito, H.; et al. Enhanced detection of lymphovascular invasion in small rectal neuroendocrine tumors using D2-40 and Elastica van Gieson immunohistochemical analysis. Cancer Med. 2016, 5, 3121–3127. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Ikegami, M.; Ikegami, T.; Aoki, H.; Ogawa, M.; Yano, F.; Eto, K. Risk Factors Associated with the Development of Metastases in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Retrospective Analysis. J. Clin. Med. 2021, 11, 60. [Google Scholar] [CrossRef]
- Khetan, P.; Oyewole, F.; Wolin, E.; Kim, M.K.; Divino, C.M. Prognostic Factors Associated With Progression for Advanced-Stage/G1 and G2 Small-Bowel Neuroendocrine Tumors After Multimodal Therapy: Experience From a Tertiary Referral Center. Pancreas 2020, 49, 509–513. [Google Scholar] [CrossRef]
- Manguso, N.; Johnson, J.; Harit, A.; Nissen, N.; Mirocha, J.; Hendifar, A.; Amersi, F. Prognostic Factors Associated with Outcomes in Small Bowel Neuroendocrine Tumors. Am. Surg. 2017, 83, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
n = 161 | ||
Sex ratio | Female:Male | 94:67 |
Age (years) 1 | 62 (27–84) | |
Distant metastasis | 102 (63.4%) | |
UICC stage | I | 8 (5.0%) |
II | 9 (5.6%) | |
III | 42 (26.1%) | |
IV | 102 (63.4%) | |
Curative surgery | 53 (32.9%) | |
Histopathological Parameters | ||
T stage | T1 | 12 (7.5%) |
T2 | 26 (16.1%) | |
T3 | 77 (47.8%) | |
T4 | 46 (28.8%) | |
N stage | N0 | 22 (13.7%) |
N1 | 139 (86.3%) | |
Resection margins | R0 | 113 (70.2%) |
R1 | 37 (23.0%) | |
R2 | 6 (3.7%) | |
Rx | 5 (3.1%) | |
Grading | G1 | 92 (57.1%) |
G2 | 69 (42.9%) | |
Lymphatic invasion 2 | L0 | 50 (32.2%) |
L1 | 105 (67.8%) | |
Microvascular invasion 3 | V0 | 87 (56.9%) |
V1 | 66 (43.1%) | |
Perineural invasion 4 | Pn0 | 38 (34.5%) |
Pn1 | 72 (65.5%) | |
Follow-up | ||
Disease progression | 87 (54.0%) | |
NET-related death | 31 (19.3%) |
L0 n = 50 | L1 n = 105 | p-Value | V0 n = 87 | V1 n = 66 | p-Value | Pn0 n = 38 | Pn1 n = 72 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Sex ratio F:M | 25:25 | 66:39 | 0.129 | 46:41 | 42:24 | 0.182 | 19:19 | 45:27 | 0.206 | ||
Age (years) 1 | 60 (27–78) | 63 (29–84) | 0.835 | 63 (27–80) | 60 (32–84) | 0.292 | 59 (27–78) | 62 (30–84) | 1.000 | ||
Distant metastases | 24 (48.0%) | 75 (71.4%) | 0.005 | 41 (47.1%) | 56 (84.8%) | <0.001 | 13 (34.2%) | 61 (84.7%) | <0.001 | ||
UICC stage | I–III | 26 (52.0%) | 30 (28.6%) | 0.005 | 45 (52.9%) | 10 (15.2%) | <0.001 | 25 (65.8%) | 11 (15.3%) | <0.001 | |
IV | 24 (48.0%) | 75 (71.4%) | 42 (47.1%) | 56 (84.8%) | 13 (34.2%) | 61 (84.7%) | |||||
Curative surgery | 29 (58.0%) | 22 (21.0%) | <0.001 | 42 (48.3%) | 11 (16.7%) | <0.001 | 26 (68.4%) | 11 (15.3%) | <0.001 | ||
Histopathological Parameters | |||||||||||
T3/4 | 29 (58.0%) | 90 (85.7%) | <0.001 | 57 (65.5%) | 59 (89.4%) | <0.001 | 19 (50.0%) | 67 (93.1%) | <0.001 | ||
N1 | 40 (60.0%) | 103 (98.1%) | <0.001 | 70 (80.5%) | 61 (92.4%) | 0.037 | 23 (60.5%) | 69 (95.8%) | <0.001 | ||
R1/2 | 6 (12.0%) | 36 (34.3%) | 0.004 | 16 (18.4%) | 24 (36.4%) | 0.021 | 3 (7.9%) | 29 (40.3%) | <0.001 | ||
Grading | G1 | 29 (58.0%) | 60 (57.1%) | 0.920 | 48 (55.2%) | 39 (59.1%) | 0.628 | 24 (63.2%) | 38 (52.8%) | 0.297 | |
G2 | 21 (42.0% | 45 (42.9%) | 39 (44.8%) | 27 (40.9%) | 14 (36.8%) | 34 (47.2%) | |||||
Ki67 (%) 1 | 2 (1–17) | 2 (1–20) | 0.380 | 2 (1–18) | 2 (1–20) | 0.481 | 2 (1–17) | 2 (1–20) | 0.297 | ||
L1 2 | - | - | - | 44 (50.6%) | 54 (81.8%) | <0.001 | 8 (21.1%) | 62 (86.1%) | <0.001 | ||
V1 3 | 8 (16.0%) | 54 (51.4%) | <0.001 | - | - | - | 2 (5.3%) | 49 (68.1%) | <0.001 | ||
Pn1 4 | 9 (18.0%) | 62 (59.0%) | <0.001 | 22 (25.3%) | 49 (74.2%) | <0.001 | - | - | - | ||
Follow-up | |||||||||||
Disease progression | 21 (42.0%) | 63 (60.0%) | 0.014 | 36 (41.4%) | 44 (66.7%) | 0.003 | 11 (28.9%) | 47 (65.3%) | <0.001 | ||
NET-related death | 8 (16.0%) | 21 (20.0%) | 0.425 | 13 (14.9%) | 14 (21.2%) | 0.116 | 2 (5.3%) | 14 (19.4%) | 0.062 |
n = 53 | ||
Sex ratio | Female:Male | 30:23 |
Age (years) 1 | 61 (27–80) | |
UICC | I | 8 (15.1%) |
II | 8 (15.1%) | |
III | 31 (58.5%) | |
IV | 5 (11.3%) | |
Distant metastases | 6 (11.3%) | |
Histopathological Parameters | ||
T stage | T1 | 11 (20.8%) |
T2 | 18 (34.0%) | |
T3 | 23 (43.4%) | |
T4 | 1 (1.9%) | |
N stage | N0 | 18 (34%) |
N1 | 35 (66.0%) | |
Resection margins | R0 | 50 (94.3%) |
R1 | 2 (3.8%) | |
R2 | 0 | |
Rx | 1 (1.9%) | |
Grading | G1 | 33 (62.3%) |
G2 | 20 (37.7%) | |
Lymphatic invasion 2 | L0 | 29 (56.9%) |
L1 | 22 (43.1%) | |
Microvascular invasion | V0 | 42 (79.2%) |
V1 | 11 (20.8%) | |
Perineural invasion 3 | Pn0 | 26 (70.3%) |
Pn1 | 11 (29.7%) | |
Follow-up | ||
Disease recurrence | 8 (15.1%) | |
NET-related death | 4 (7.5%) |
L0 n = 29 | L1 n = 22 | p-Value | V0 n = 42 | V1 n = 11 | p-Value | Pn0 n = 26 | Pn1 n = 11 | p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|
Sex ratio | 14:15 | 15:7 | 0.155 | 23:19 | 7:4 | 0.597 | 14:12 | 6:5 | 0.969 | |
Age (years) 1 | 59 (27–78) | 63 (41–80) | 0.614 | 60 (27–78) | 63 (49–80) | 0.345 | 59 (27–78) | 63 (30–80) | 0.566 | |
Distant metastases | 4 (13.8%) | 2 (9.1%) | 0.688 | 1 (2.4%) | 5 (45.5%) | <0.001 | 2 (7.7%) | 3 (27.3%) | 0.144 | |
UICC stage | I–III | 25 (86.2%) | 20 (90.9%) | 0.606 | 41 (97.6%) | 6 (54.5%) | <0.001 | 24 (92.3%) | 8 (72.7%) | 0.144 |
IV | 4 (13.8%) | 2 (9.1%) | 1 (2.4%) | 5 (45.5%) | 2 (7.7%) | 3 (27.3%) | ||||
Histopathological Parameters | ||||||||||
T3/4 | 10 (34.5%) | 14 (63.6%) | 0.039 | 17 (40.5%) | 7 (63.6%) | 0.170 | 9 (34.6%) | 7 (63.6%) | 0.103 | |
N1 | 13 (44.8%) | 20 (90.9%) | <0.001 | 27 (64.3%) | 8 (72.7%) | 0.599 | 12 (46.2%) | 10 (90.9%) | 0.011 | |
R1/2 | 1 (3.4%) | 1 (4.5%) | 0.842 | 1 (2.4%) | 1 (9.1%) | 0.299 | 0 (0%) | 1 (9.1%) | 0.119 | |
Grading | G1 | 18 (62.1%) | 14 (63.6%) | 0.909 | 27 (64.3%) | 6 (54.5%) | 0.553 | 16 (61.5%) | 8 (72.7%) | 0.515 |
G2 | 11 (37.9%) | 8 (36.4%) | 15 (35.7%) | 5 (45.5%) | 10 (38.5%) | 3 (27.3%) | ||||
Ki67 (%) 1 | 2 (1–10) | 2 (1–12) | 0.697 | 2 (1–12) | 2 (1–6) | 0.372 | 2 (1–10) | 2 (1–12) | 0.832 | |
L1 2 | - | - | - | 15 (35.7%) | 7 (63.6%) | 0.101 | 3 (11.5%) | 7 (63.6%) | <0.001 | |
V1 | 3 (10.3%) | 7 (31.8%) | 0.056 | - | - | - | 1 (3.8%) | 6 (54.5%) | <0.001 | |
Pn1 3 | 3 (10.3%) | 7 (31.8%) | <0.001 | 5 (11.9%) | 6 (54.5%) | 0.002 | - | - | - | |
Follow-up | ||||||||||
Disease recurrence | 1 (3.4%) | 7 (31.8%) | 0.015 | 3 (7.1%) | 5 (45.5%) | 0.006 | 0 (0.0%) | 4 (36.4%) | 0.005 | |
NET-related death | 1 (3.4%) | 3 (13.6%) | 0.118 | 2 (4.8%) | 2 (18.2%) | 0.253 | 1 (3.8%) | 1 (9.1%) | 0.761 |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95%-CI) | p Value | HR (95%-CI) | p Value | |
T3/4 | 5.591 (2.573–12.150) | <0.001 | 2.584 (1.095–6.101) | 0.030 |
N1 | 3.404 (1.480–7.830) | 0.004 | 1.598 (0.605–4.224) | 0.344 |
L1 | 1.197 (1.196–3.236) | 0.008 | 0.867 (0.440–1.707) | 0.679 |
V1 | 1.968 (1.265–3.063) | 0.003 | 1.055 (0.596–1.867) | 0.854 |
Pn1 | 3.106 (1.607–6.002) | <0.001 | 1.281 (0.519–3.163) | 0.591 |
Distant metastasis (M1) | 4.847 (2.728–8.611) | <0.001 | 3.022 (1.576–5.793) | <0.001 |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95%-CI) | p Value | HR (95%-CI) | p Value | |
T3/4 | 10.762 (1.319–87.803) | 0.027 | 4.129 (0.421–40.456) | 0.223 |
N1 | 1.924 (0.377–9.818) | 0.431 | ||
L1 | 12.250 (1.502–99.924) | 0.019 | 4.820 (0.473–49.112) | 0.184 |
V1 | 0.479 (2.225–40.380) | 0.002 | 7.716 (1.579–37.700 | 0.012 |
Pn1 | 350,371.244 (0.0–7.912 × 10157) | 0.943 | ||
Distant metastasis (M1) | 1.489 (0.182–12.183) | 0.711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butz, F.; Dukaczewska, A.; Kunze, C.A.; Krömer, J.M.; Reinhard, L.; Jann, H.; Fehrenbach, U.; Müller-Debus, C.F.; Skachko, T.; Pratschke, J.; et al. Influence of Lymphatic, Microvascular and Perineural Invasion on Oncological Outcome in Patients with Neuroendocrine Tumors of the Small Intestine. Cancers 2024, 16, 305. https://doi.org/10.3390/cancers16020305
Butz F, Dukaczewska A, Kunze CA, Krömer JM, Reinhard L, Jann H, Fehrenbach U, Müller-Debus CF, Skachko T, Pratschke J, et al. Influence of Lymphatic, Microvascular and Perineural Invasion on Oncological Outcome in Patients with Neuroendocrine Tumors of the Small Intestine. Cancers. 2024; 16(2):305. https://doi.org/10.3390/cancers16020305
Chicago/Turabian StyleButz, Frederike, Agata Dukaczewska, Catarina Alisa Kunze, Janina Maren Krömer, Lisa Reinhard, Henning Jann, Uli Fehrenbach, Charlotte Friederieke Müller-Debus, Tatiana Skachko, Johann Pratschke, and et al. 2024. "Influence of Lymphatic, Microvascular and Perineural Invasion on Oncological Outcome in Patients with Neuroendocrine Tumors of the Small Intestine" Cancers 16, no. 2: 305. https://doi.org/10.3390/cancers16020305
APA StyleButz, F., Dukaczewska, A., Kunze, C. A., Krömer, J. M., Reinhard, L., Jann, H., Fehrenbach, U., Müller-Debus, C. F., Skachko, T., Pratschke, J., Goretzki, P. E., Mogl, M. T., & Dobrindt, E. M. (2024). Influence of Lymphatic, Microvascular and Perineural Invasion on Oncological Outcome in Patients with Neuroendocrine Tumors of the Small Intestine. Cancers, 16(2), 305. https://doi.org/10.3390/cancers16020305