Fusing Artificial Intelligence and Machine Learning for Anti-Cancer Drug Discovery
Author Contributions
Funding
Conflicts of Interest
References
- Liang, G.; Fan, W.; Luo, H.; Zhu, X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed. Pharmacother. 2020, 128, 110255. [Google Scholar] [CrossRef]
- You, Y.; Lai, X.; Pan, Y.; Zheng, H.; Vera, J.; Liu, S.; Deng, S.; Zhang, L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct. Target. Ther. 2022, 7, 156. [Google Scholar] [CrossRef]
- Munson, B.P.; Chen, M.; Bogosian, A.; Kreisberg, J.F.; Licon, K.; Abagyan, R.; Kuenzi, B.M.; Ideker, T. De novo generation of multi-target compounds using deep generative chemistry. Nat. Commun. 2024, 15, 3636. [Google Scholar] [CrossRef]
- Gerdes, H.; Casado, P.; Dokal, A.; Hijazi, M.; Akhtar, N.; Osuntola, R.; Rajeeve, V.; Fitzgibbon, J.; Travers, J.; Britton, D.; et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 2021, 12, 1850. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Park, S.; Silva, E.; Singhal, A.; Kelly, M.R.; Licon, K.; Panagiotou, I.; Fogg, C.; Fong, S.; Lee, J.J.Y.; Zhao, X.; et al. A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors. Nat. Cancer 2024, 5, 996–1009. [Google Scholar] [CrossRef]
- Cichońska, A.; Ravikumar, B.; Allaway, R.J.; Wan, F.; Park, S.; Isayev, O.; Li, S.; Mason, M.; Lamb, A.; Tanoli, Z.; et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. Nat. Commun. 2021, 12, 3307. [Google Scholar] [CrossRef]
- Ruiz, C.; Zitnik, M.; Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat. Commun. 2021, 12, 1796. [Google Scholar] [CrossRef]
- di Micco, P.; Antolin, A.A.; Mitsopoulos, C.; Villasclaras-Fernandez, E.; Sanfelice, D.; Dolciami, D.; Ramagiri, P.; Mica, I.L.; Tym, J.E.; Gingrich, P.W.; et al. canSAR: Update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023, 51, D1212–D1219. [Google Scholar] [CrossRef]
- Guo, S.B.; Meng, Y.; Lin, L.; Zhou, Z.Z.; Li, H.L.; Tian, X.P.; Huang, W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer 2024, 23, 223. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60. [Google Scholar] [CrossRef]
- Jumper, J.; Hassabis, D. The Protein Structure Prediction Revolution and Its Implications for Medicine: 2023 Albert Lasker Basic Medical Research Award. Cancer JAMA 2023, 330, 1425–1426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamopoulos, C.; Papavassiliou, K.A.; Papavassiliou, A.G. Fusing Artificial Intelligence and Machine Learning for Anti-Cancer Drug Discovery. Cancers 2024, 16, 3522. https://doi.org/10.3390/cancers16203522
Adamopoulos C, Papavassiliou KA, Papavassiliou AG. Fusing Artificial Intelligence and Machine Learning for Anti-Cancer Drug Discovery. Cancers. 2024; 16(20):3522. https://doi.org/10.3390/cancers16203522
Chicago/Turabian StyleAdamopoulos, Christos, Kostas A. Papavassiliou, and Athanasios G. Papavassiliou. 2024. "Fusing Artificial Intelligence and Machine Learning for Anti-Cancer Drug Discovery" Cancers 16, no. 20: 3522. https://doi.org/10.3390/cancers16203522
APA StyleAdamopoulos, C., Papavassiliou, K. A., & Papavassiliou, A. G. (2024). Fusing Artificial Intelligence and Machine Learning for Anti-Cancer Drug Discovery. Cancers, 16(20), 3522. https://doi.org/10.3390/cancers16203522