Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma—A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Inclusion Criteria
2.2. Tumor Sample Collection
2.3. Blood Sample Collection
2.4. KRAS Mutation Analysis
2.4.1. Cell Lines
2.4.2. Cell Culture
2.4.3. DNA Extraction
2.4.4. Polymerase Chain Reaction (PCR)
2.4.5. ARMS–HRMA
2.5. Variables and Endpoints
2.6. Follow-Up and Treatment
2.7. Statistical Analysis
3. Results
3.1. Population Baseline Characteristics
3.2. Performance of ARMS–HRMA Technique Compared to SS
3.2.1. Tumor Samples
3.2.2. Liquid Biopsies (Plasma Samples)
3.3. Prognostic Value of KRAS Mutations Detected by ARMS–HRMA
3.3.1. Tumor Samples
3.3.2. Plasma Samples
3.4. Uni and Multivariate Analysis
4. Discussion
4.1. Summary of Main Findings
4.2. Interpretation of Results
4.3. Comparison with the Existing Literature
4.4. Strengths and Limitations
4.5. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourshams, A.; Sepanlou, S.G.; Ikuta, K.S.; Bisignano, C.; Safiri, S.; Roshandel, G.; Sharif, M.; Khatibian, M.; Fitzmaurice, C.; Nixon, M.; et al. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 934–947. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Kanno, A.; Masamune, A.; Hanada, K.; Kikuyama, M.; Kitano, M. Advances in Early Detection of Pancreatic Cancer. Diagnostics 2019, 9, 18. [Google Scholar] [CrossRef]
- Ghaneh, P.; Palmer, D.; Cicconi, S.; Jackson, R.; Halloran, C.M.; Rawcliffe, C.; Sripadam, R.; Mukherjee, S.; Soonawalla, Z.; Wadsley, J.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): A four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef]
- Khomiak, A.; Brunner, M.; Kordes, M.; Lindblad, S.; Miksch, R.C.; Öhlund, D.; Regel, I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers 2020, 12, 3234. [Google Scholar] [CrossRef]
- Giri, B.; Sethi, V.; Dudeja, V.; Banerjee, S.; Livingstone, A.; Saluja, A. Genetics of pancreatic cyst-cancer progression: Standing on the shoulders of giants. Curr. Opin. Gastroenterol. 2017, 33, 404–410. [Google Scholar] [CrossRef]
- Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 153–168. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, K.; Yan, C.; Huang, Q.; Gong, Y.; Cheng, H.; Jin, K.; Liu, C.; Ni, Q.; Yu, X.; et al. Critical role of KRAS mutation in pancreatic ductal adenocarcinoma. Transl. Cancer Res. 2018, 7, 1728–1736. [Google Scholar] [CrossRef]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- Liberko, M.; Kolostova, K.; Szabo, A.; Gurlich, R.; Oliverius, M.; Soumarova, R. Circulating Tumor Cells, Circulating Tumor DNA and Other Blood-based Prognostic Scores in Pancreatic Ductal Adenocarcinoma–Mini-Review. Vivo 2021, 5, 31–39. [Google Scholar] [CrossRef]
- Bournet, B.; Muscari, F.; Buscail, C.; Assenat, E.; Barthet, M.; Hammel, P.; Selves, J.; Guimbaud, R.; Cordelier, P.; Buscail, L. KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma. Clin. Transl. Gastroenterol. 2016, 7, e157. [Google Scholar] [CrossRef]
- Guo, S.; Shi, X.; Shen, J.; Gao, S.; Wang, H.; Shen, S.; Pan, Y.; Li, B.; Xu, X.; Shao, Z.; et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br. J. Cancer 2020, 122, 857–867. [Google Scholar] [CrossRef]
- Till, J.E.; McDaniel, L.; Chang, C.; Long, Q.; Pfeiffer, S.M.; Lyman, J.P.; Padrón, L.J.; Maurer, D.M.; Yu, J.X.; Spencer, C.N.; et al. Circulating KRAS G12D but not G12V is associated with survival in metastatic pancreatic ductal adenocarcinoma. Nat. Commun. 2024, 15, 5763. [Google Scholar] [CrossRef]
- Ako, S.; Nouso, K.; Kinugasa, H.; Dohi, C.; Matushita, H.; Mizukawa, S.; Muro, S.; Akimoto, Y.; Uchida, D.; Tomoda, T.; et al. Utility of serum DNA as a marker for KRAS mutations in pancreatic cancer tissue. Pancreatology 2017, 17, 285–290. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, C.; Jiang, J.; Luo, G.; Lu, Y.; Jin, K.; Guo, M.; Zhang, Z.; Xu, J.; Liu, L.; et al. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int. J. Cancer 2017, 140, 2344–2350. [Google Scholar] [CrossRef]
- Safi, S.A.; Haeberle, L.; Goering, W.; Keitel, V.; Fluegen, G.; Stoecklein, N.; Rehders, A.; Knoefel, W.T.; Esposito, I. Genetic Alterations Predict Long-Term Survival in Ductal Adenocarcinoma of the Pancreatic Head. Cancers 2022, 14, 850. [Google Scholar] [CrossRef]
- Reddy, A.V.; Hill, C.S.; Sehgal, S.; Ding, D.; Hacker-Prietz, A.; He, J.; Zheng, L.; Herman, J.M.; Meyer, J.; Narang, A.K. Impact of somatic mutations on clinical and pathologic outcomes in borderline resectable and locally advanced pancreatic cancer treated with neoadjuvant chemotherapy and stereotactic body radiotherapy followed by surgical resection. Radiat. Oncol. J. 2021, 39, 304–314. [Google Scholar] [CrossRef]
- Hadano, N.; Murakami, Y.; Uemura, K.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Sueda, T.; Hiyama, E. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br. J. Cancer 2016, 115, 59–65. [Google Scholar] [CrossRef]
- Pietrasz, D.; Pécuchet, N.; Garlan, F.; Didelot, A.; Dubreuil, O.; Doat, S.; Imbert-Bismut, F.; Karoui, M.; Vaillant, J.C.; Taly, V.; et al. Plasma Circulating Tumor DNA in Pancreatic Cancer Patients Is a Prognostic Marker. Clin. Cancer Res. 2017, 23, 116–123. [Google Scholar] [CrossRef]
- Watanabe, F.; Suzuki, K.; Tamaki, S.; Abe, I.; Endo, Y.; Takayama, Y.; Ishikawa, H.; Kakizawa, N.; Saito, M.; Futsuhara, K.; et al. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS ONE 2019, 14, e0227366. [Google Scholar] [CrossRef]
- Earl, J.; Barreto, E.; Castillo, M.; Fuentes, R.; Rodríguez-Garrote, M.; Ferreiro, R.; Reguera, P.; Muñoz, G.; Garcia-Seisdedos, D.; López, J.V.; et al. Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival. Cancers 2021, 13, 1612. [Google Scholar] [CrossRef]
- Strickler, J.H.; Satake, H.; George, T.J.; Yaeger, R.; Hollebecque, A.; Garrido-Laguna, I.; Schuler, M.; Burns, T.F.; Coveler, A.L.; Falchook, G.S.; et al. Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer. N. Engl. J. Med. 2023, 388, 33–43. [Google Scholar] [CrossRef]
- Stickler, S.; Rath, B.; Hamilton, G. Targeting KRAS in pancreatic cancer. Oncol. Res. 2024, 2, 799–805. [Google Scholar] [CrossRef]
- Wei, D.; Wang, L.; Zuo, X.; Maitra, A.; Bresalier, R.S. A Small Molecule with Big Impact: MRTX1133 Targets the KRASG12D Mutation in Pancreatic Cancer. Clin. Cancer Res. 2024, 30, 655–662. [Google Scholar] [CrossRef]
- Nusrat, F.; Khanna, A.; Jain, A.; Jiang, W.; Lavu, H.; Yeo, C.J.; Bowne, W.; Nevler, A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2024, 13, 2103. [Google Scholar] [CrossRef]
- Sivapalan, L.; Kocher, H.M.; Ross-Adams, H.; Chelala, C. Molecular profiling of ctDNA in pancreatic cancer: Opportunities and challenges for clinical application. Pancreatology 2021, 21, 363–378. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Costa, B.; Morão, B.; Faias, S.; Veigas, B.; Pereira, L.P.; Albuquerque, A.; Maio, R.; Cravo, M.; Fernandes, A.R.; et al. Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples. Anal. Bioanal. Chem. 2023, 415, 2849–2863. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, S.H.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar]
- Luo, J. KRAS mutation in pancreatic cancer. Semin. Oncol. 2021, 48, 10–18. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Erik Larsson, E. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal 2013, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Kruger, S.; Heinemann, V.; Ross, C.; Diehl, F.; Nagel, D.; Ormanns, S.; Liebmann, S.; Prinz-Bravin, I.; Westphalen, C.B.; Haas, M.; et al. Repeated mutKRAS ctDNA measurements represent a novel and promising tool for early response prediction and therapy monitoring in advanced pancreatic cancer. Ann. Oncol. 2018, 29, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Lipton, L.; Cohen, J.; Tie, J.; Javed, A.A.; Li, L.; Goldstein, D.; Burge, M.; Cooray, P.; Nagrial, A.; et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann. Oncol. 2019, 30, 1472–1478. [Google Scholar] [CrossRef]
- Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C.; Stephen, B.M.; Huang, J.; Semaan, A.; Guerrero, P.A.; et al. Circulating Nucleic Acids Are Associated with Outcomes of Patients with Pancreatic Cancer. Gastroenterology 2019, 156, 108–118.e4. [Google Scholar] [CrossRef]
- Patel, H.; Okamura, R.; Fanta, P.; Patel, C.; Lanman, R.B.; Raymond, V.M.; Kato, S.; Kurzrock, S. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J. Hematol. Oncol. 2019, 12, 130. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Woo, S.M.; Kim, M.K.; Han, S.; Park, S.; Lee, W.J.; Lee, D.E.; Choi, S.; Choi, W.; Yoon, K.A.; et al. Application of plasma circulating KRAS mutations as a predictive biomarker for targeted treatment of pancreatic cancer. Cancer Sci. 2024, 115, 1283–1295. [Google Scholar] [CrossRef]
- Kirchweger, P.; Kupferthaler, A.; Burghofer, J.; Webersinke, G.; Jukic, E.; Schwendinger, S.; Weitzendorfer, M.; Petzer, A.; Függer, R.; Rumpold, H.; et al. Circulating tumor DNA correlates with tumor burden and predicts outcome in pancreatic cancer irrespective of tumor stage. Eur. J. Surg. Oncol. 2022, 48, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Grunvald, M.W.; Jacobson, R.A.; Kuzel, T.M.; Pappas, S.G.; Masood, A. Current Status of Circulating Tumor DNA Liquid Biopsy in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 7651. [Google Scholar] [CrossRef]
- Fang, Z.; Meng, Q.; Zhang, B.; Shi, S.; Liu, J.; Liang, C.; Hua, J.; Yu, X.; Xu, J.; Wang, W. Prognostic value of circulating tumor DNA in pancreatic cancer: A systematic review and meta-analysis. Aging 2021, 13, 2031–2048. [Google Scholar] [CrossRef]
- Qi, Z.H.; Xu, H.X.; Zhang, S.R.; Xu, J.Z.; Li, S.; Gao, H.L.; Jin, W.; Wang, W.Q.; Wu, C.T.; Ni, Q.X.; et al. The Significance of Liquid Biopsy in Pancreatic Cancer. J. Cancer 2018, 9, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Jahanzaib, R.; Liao, Y.; Yao, F.; Li, J.; Teng, X.; Chen, K.; Cheng, W. Prognostic value of KRAS subtype in patients with PDAC undergoing radical resection. Front. Oncol. 2022, 12, 1074538. [Google Scholar] [CrossRef]
- Hendifar, A.E.; Blais, E.M.; Ng, C.; Thach, D.; Gong, J.; Sohal, D.; Chung, V.; Sahai, V.; Fountzillas, C.; Mikhail, S.; et al. Comprehensive analysis of KRAS variants in patients (pts) with pancreatic cancer (PDAC): Clinical/molecular correlations and real-world outcomes across standard therapies. J. Clin. Oncol. 2020, 38, 4641. [Google Scholar] [CrossRef]
- Ogura, T.; Yamao, K.; Hara, K.; Mizuno, N.; Hijioka, S.; Imaoka, H.; Sawaki, A.; Niwa, Y.; Tajika, M.; Kondo, S.; et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J. Gastroenterol. 2013, 48, 640–646. [Google Scholar] [CrossRef]
- Kawesha, A.; Ghaneh, P.; Andrén-Sandberg, Å.; Ögraed, D.; Skar, R.; Dawiskiba, S.; Evans, J.D.; Campbell, F.; Lemoine, N.; Neoptolemos, J.P. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16INK4A, p21WAF-1, cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int. J. Cancer. 2000, 89, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Bratlie, S.O.; Andersson, B.; Angelsen, J.H.; Biörserud, C.; Björnsson, B.; Bringeland, E.A.; Elander, N.; Garresori, H.; Grønbech, J.E.; et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.P.; Psarelli, E.E.; Jackson, R.; Ghaneh, P.; Halloran, C.M.; Palmer, D.H.; Campbell, F.; Valle, J.W.; Faluyi, O.; O’Reilly, D.A.; et al. Patterns of Recurrence After Resection of Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2019, 154, 1038. [Google Scholar] [CrossRef]
- Matsumoto, I.; Murakami, Y.; Shinzeki, M.; Asari, S.; Goto, T.; Tani, M.; Motoi, F.; Uemura, K.; Sho, M.; Satoi, S.; et al. Proposed preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after surgical resection: A multi-center retrospective study. Pancreatology 2015, 15, 674–680. [Google Scholar] [CrossRef]
- O’Sullivan, É.; Keogh, A.; Henderson, B.; Finn, S.P.; Gray, S.G.; Gately, K. Treatment Strategies for KRAS-Mutated Non-Small-Cell Lung Cancer. Cancers 2023, 15, 1635. [Google Scholar] [CrossRef]
- Negri, F.; Bottarelli, L.; de’Angelis, G.L.; Gnetti, L. KRAS: A Druggable Target in Colon Cancer Patients. Int. J. Mol. Sci. 2022, 23, 4120. [Google Scholar] [CrossRef]
Total n = 88 | KRAS-WT n = 20 | KRAS-Mutated n = 68 | p-Value | |
---|---|---|---|---|
Age at diagnosis (y), median (IQR) | 70 (63–75) | 71 (67–75) | 70 (63–76) | 0.870 |
Gender, n (%) | ||||
Male | 50 (57) | 16 (80) | 34 (50) | 0.021 |
Female | 38 (43) | 4 (20) | 34 (50) | |
ECOG-PS at diagnosis *, n (%) | ||||
0 or 1 | 75 (93) | 15 (94) | 60 (92) | 1.000 |
(2 | 6 (7) | 1 (6) | 5 (8) | |
Clinical Stage **, n (%) | ||||
Resectable | 49 (57) | 8 (44) | 41 (60) | 0.321 |
Borderline resectable | 10 (12) | 4 (22) | 6 (9) | |
Locally advanced | 2 (2) | 0 | 2 (3) | |
Metastatic | 25 (29) | 6 (33) | 19 (28) | |
Simplified TNM ***, n (%) | ||||
I | 19 (22) | 6 (30) | 13 (20) | 0.767 |
II | 22 (26) | 4 (20) | 18 (28) | |
III | 15 (18) | 3 (15) | 12 (19) | |
IV | 29 (34) | 7 (35) | 22 (34) | |
Treatment, n (%) | ||||
Surgery (chemotherapy) | 54 (61) | 12 (60) | 42 (62) | 1.000 |
Palliative/BSC | 34 (39) | 8 (40) | 26 (38) | |
KRAS mutations ****, n (%) | ||||
WT | 20 (23) | 20 (100) | 0 | ---- |
G12V | 22 (25) | 0 | 22 (32) | |
G12D | 32 (36) | 0 | 32 (47) | |
G12R | 10 (11) | 0 | 10 (15) | |
G12C | 1 (1) | 0 | 1 (1) | |
G12V/G12D | 2 (2) | 0 | 2 (3) | |
G12D/G12C | 1 (1) | 0 | 1 (1) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | CI 95% | p-Value | HR | CI 95% | p-Value | |
Age at diagnosis (y) | 1.034 | 1.002–1.066 | 0.035 | 1.020 | 0.987–1.054 | 0.247 |
Gender | ||||||
Female | - | - | - | - | - | - |
Male | 1.167 | 0.731–1.861 | 0.517 | - | - | - |
ECOG-PS at diagnosis | ||||||
0 or 1 | - | - | - | - | - | - |
≥2 | 2.872 | 1.204–6.849 | 0.017 | 2.885 | 0.871–5.547 | 0.096 |
Clinical Stage | ||||||
Non metastatic | - | - | - | - | - | - |
Metastatic | 1.970 | 1.187–3.270 | 0.009 | 1.632 | 0.724–3.682 | 0.238 |
Treatment | ||||||
Surgery ± chemotherapy | 0.505 | 0.311–0.820 | 0.006 | 0.685 | 0.307–1.529 | 0.355 |
Palliative/BSC | - | - | - | - | - | - |
KRAS mutations in plasma | ||||||
No | - | - | - | - | - | - |
Yes | 0.898 | 0.490–1.644 | 0.727 | - | - | - |
Tumor KRAS status | ||||||
WT, G12V, G12R | - | - | - | - | - | - |
G12D, G12C, G12D/G12V, G12D/G12C | 1.584 | 0.992–2.527 | 0.054 | 1.792 | 1.061–3.028 | 0.029 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | CI 95% | p-Value | HR | CI 95% | p-Value | |
Age at diagnosis (y) | 1.043 | 1.011–1.077 | 0.009 | 1.020 | 0.987–1.054 | 0.247 |
Gender | ||||||
Female | - | - | - | - | - | - |
Male | 1.308 | 0.808–2.120 | 0.275 | - | - | - |
ECOG-PS at diagnosis | ||||||
0 or 1 | - | - | - | - | - | - |
≥2 | 4.021 | 1.648–9.812 | 0.002 | 2.198 | 1.112–7.487 | 0.029 |
Clinical Stage | ||||||
Non metastatic | - | - | - | - | - | - |
Metastatic | 2.204 | 1.130–3.709 | 0.003 | 1.689 | 0.707–4.038 | 0.238 |
Treatment | ||||||
Surgery ± chemotherapy | 0.434 | 0.264–0.714 | 0.001 | 0.550 | 0.234–1.290 | 0.169 |
Palliative/BSC | - | - | - | - | - | - |
KRAS mutations in plasma | ||||||
No | - | - | - | - | - | - |
Yes | 0.949 | 0.517–1.742 | 0.866 | - | - | - |
Tumor KRAS status | ||||||
WT, G12V, G12R | - | - | - | - | - | - |
G12D, G12C, G12D/G12V, G12D/G12C | 1.516 | 0.941–2.444 | 0.087 | 1.757 | 1.013–3.049 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, A.C.; Morão, B.; Luz, A.; Dourado, R.; Oliveira, B.; Guedes, A.; Moreira-Barbosa, C.; Fidalgo, C.; Mascarenhas-Lemos, L.; Costa-Santos, M.P.; et al. Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma—A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers 2024, 16, 3544. https://doi.org/10.3390/cancers16203544
Bravo AC, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos MP, et al. Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma—A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers. 2024; 16(20):3544. https://doi.org/10.3390/cancers16203544
Chicago/Turabian StyleBravo, Ana Catarina, Bárbara Morão, André Luz, Rúben Dourado, Beatriz Oliveira, Ana Guedes, Catarina Moreira-Barbosa, Catarina Fidalgo, Luís Mascarenhas-Lemos, Maria Pia Costa-Santos, and et al. 2024. "Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma—A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples" Cancers 16, no. 20: 3544. https://doi.org/10.3390/cancers16203544
APA StyleBravo, A. C., Morão, B., Luz, A., Dourado, R., Oliveira, B., Guedes, A., Moreira-Barbosa, C., Fidalgo, C., Mascarenhas-Lemos, L., Costa-Santos, M. P., Maio, R., Paulino, J., Viana Baptista, P., Fernandes, A. R., & Cravo, M. (2024). Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma—A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers, 16(20), 3544. https://doi.org/10.3390/cancers16203544