Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Literature Search
2.2. Inclusion Criteria for Literature Selection
2.3. Exclusion Criteria
2.4. Quality Assessment
2.5. Extraction of Data
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Studies
3.2. Prognostic Significance of PTX3 Protein Expression
3.3. Subgroup Analysis
3.4. Publication Bias
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AP-1 | Activator protein-1 |
C/EBPβ | CCAAT/enhancer-binding protein beta |
CRP | C-reactive protein |
EMT | Epithelial-mesenchymal transition |
FGF | Fibroblast growth factor |
HCC | Hepatocellular carcinoma |
HIF-1α | Hypoxia-inducible factor 1 alpha |
HR | Hazard ratio |
IHC | Immunohistochemistry |
IL-6 | Interleukin-6 |
JNK | c-Jun N-terminal kinase |
MMP | Matrix metalloproteinase |
NF-κB | Nuclear factor kappa light chain enhancer of activated B cells |
NOS | Newcastle–Ottawa scale |
NP1 | Neuronal pentraxin 1 |
NP2 | Neuronal pentraxin 2 |
PARP | Poly ADP-ribose polymerase |
PKCζ | Protein kinase C ζ |
PTX | Pentraxin |
SAP | Serum amyloid P |
SNP | Single nucleotide polymorphism |
SPOCD1 | Spen paralogue and orthologue C-terminal domain containing 1 |
STAT3 | Signal transducer and activator of transcription 3 |
TLR | Toll-like receptor |
References
- Lee, G.W.; Lee, T.H.; Vilcek, J. TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins. J. Immunol. 1993, 150, 1804–1812. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hao, Z.; Nan, Y.; Chen, Y. Role of long pentraxin PTX3 in cancer. Clin. Exp. Med. 2023, 23, 4401–4411. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Singh, P.P.; Bottazzi, B.; Garlanda, C.; Mantovani, A. Pattern recognition by pentraxins. Adv. Exp. Med. Biol. 2009, 653, 98–116. [Google Scholar] [CrossRef] [PubMed]
- Deban, L.; Bottazzi, B.; Garlanda, C.; de la Torre, Y.M.; Mantovani, A. Pentraxins: Multifunctional proteins at the interface of innate immunity and inflammation. Biofactors 2009, 35, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Altmeyer, A.; Klampfer, L.; Goodman, A.R.; Vilcek, J. Promoter structure and transcriptional activation of the murine TSG-14 gene encoding a tumor necrosis factor/interleukin-1-inducible pentraxin protein. J. Biol. Chem. 1995, 270, 25584–25590. [Google Scholar] [CrossRef]
- Basile, A.; Sica, A.; d’Aniello, E.; Breviario, F.; Garrido, G.; Castellano, M.; Mantovani, A.; Introna, M. Characterization of the promoter for the human long pentraxin PTX3. Role of NF-kappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J. Biol. Chem. 1997, 272, 8172–8178. [Google Scholar] [CrossRef]
- Garlanda, C.; Bottazzi, B.; Magrini, E.; Inforzato, A.; Mantovani, A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol. Rev. 2018, 98, 623–639. [Google Scholar] [CrossRef]
- Manfredi, A.A.; Rovere-Querini, P.; Bottazzi, B.; Garlanda, C.; Mantovani, A. Pentraxins, humoral innate immunity and tissue injury. Curr. Opin. Immunol. 2008, 20, 538–544. [Google Scholar] [CrossRef]
- Capra, A.P.; Ardizzone, A.; Panto, G.; Paterniti, I.; Campolo, M.; Crupi, L.; Squeri, R.; Esposito, E. The Prognostic Value of Pentraxin-3 in COVID-19 Patients: A Systematic Review and Meta-Analysis of Mortality Incidence. Int. J. Mol. Sci. 2023, 24, 3537. [Google Scholar] [CrossRef]
- Doni, A.; Mantovani, A.; Bottazzi, B.; Russo, R.C. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front. Immunol. 2021, 12, 676702. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Z.; Lei, W.; Shen, M.; Tang, J.; Xu, X.; Yang, Y.; Zhang, H. Pentraxin 3: A promising therapeutic target for cardiovascular diseases. Ageing Res. Rev. 2024, 93, 102163. [Google Scholar] [CrossRef] [PubMed]
- Bonavita, E.; Gentile, S.; Rubino, M.; Maina, V.; Papait, R.; Kunderfranco, P.; Greco, C.; Feruglio, F.; Molgora, M.; Laface, I.; et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 2015, 160, 700–714. [Google Scholar] [CrossRef] [PubMed]
- Matarazzo, S.; Melocchi, L.; Rezzola, S.; Grillo, E.; Maccarinelli, F.; Giacomini, A.; Turati, M.; Taranto, S.; Zammataro, L.; Cerasuolo, M.; et al. Long Pentraxin-3 Follows and Modulates Bladder Cancer Progression. Cancers 2019, 11, 1277. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, M.; Meca, A.D.; Turcu-Stiolica, A.; Oancea, C.N.; Kostici, R.; Surlin, M.V.; Florescu, C. Insights into the Relationship between Pentraxin-3 and Cancer. Int. J. Mol. Sci. 2022, 23, 15302. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Hiraiwa, S.; Miyaoka, M.; Tomita, S.; Ikoma, H.; Ito, A.; Kondo, Y.; Itoh, J.; Roncador, G.; et al. High PTX3 expression is associated with a poor prognosis in diffuse large B-cell lymphoma. Cancer Sci. 2022, 113, 334–348. [Google Scholar] [CrossRef]
- Chang, X.; Li, D.; Liu, C.; Zhang, Z.; Wang, T. Pentraxin 3 is a diagnostic and prognostic marker for ovarian epithelial cancer patients based on comprehensive bioinformatics and experiments. Cancer Cell Int. 2021, 21, 193. [Google Scholar] [CrossRef]
- Han, Q.; Deng, H.; Fan, X.; Wang, X.; Zhang, X.; Zhang, K.; Li, N.; Lv, Y.; Liu, Z. Increased Serum Pentraxin 3 Levels are Associated with Poor Prognosis of Hepatitis B Virus-Related Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2021, 8, 1367–1373. [Google Scholar] [CrossRef]
- Kondo, S.; Ueno, H.; Hosoi, H.; Hashimoto, J.; Morizane, C.; Koizumi, F.; Tamura, K.; Okusaka, T. Clinical impact of pentraxin family expression on prognosis of pancreatic carcinoma. Br. J. Cancer 2013, 109, 739–746. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Y.; Guo, L. Increased serum pentraxin-3 level predicts poor prognosis in patients with colorectal cancer after curative surgery, a cohort study. Medicine 2018, 97, e11780. [Google Scholar] [CrossRef]
- Liu, C.; Yao, Y.; Wang, W. Pentraxin-3 as a prognostic marker in patients with small-cell lung cancer. Med. Oncol. 2014, 31, 207. [Google Scholar] [CrossRef]
- Song, T.; Wang, C.; Guo, C.; Liu, Q.; Zheng, X. Pentraxin 3 overexpression accelerated tumor metastasis and indicated poor prognosis in hepatocellular carcinoma via driving epithelial-mesenchymal transition. J. Cancer 2018, 9, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Veletic, I.; Manshouri, T.; Newberry, K.J.; Garnett, J.; Verstovsek, S.; Estrov, Z. Pentraxin-3 plasma levels correlate with tumour burden and overall survival in patients with primary myelofibrosis. Br. J. Haematol. 2019, 185, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Zhao, Y.; Liu, T.; Wang, Z.; Zhang, N.; Dai, Z.; Wu, W.; Cao, H.; Feng, S.; et al. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci. Ther. 2022, 28, 1748–1766. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhou, X.; Yang, Y.; Wang, L.; Wu, Z. Pan-Cancer Analysis of Pentraxin 3: A Potential Biomarker of COVID-19. Cancers 2022, 14, 4438. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Irvine, A.F.; Waise, S.; Green, E.W.; Stuart, B. A non-linear optimisation method to extract summary statistics from Kaplan-Meier survival plots using the published P value. BMC Med. Res. Methodol. 2020, 20, 269. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Balduzzi, S.; Rucker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Cao, X. Extracellular pattern recognition molecules in health and diseases. Cell Mol. Immunol. 2015, 12, 255–257. [Google Scholar] [CrossRef]
- Delliere, S.; Chauvin, C.; Wong, S.S.W.; Gressler, M.; Possetti, V.; Parente, R.; Fontaine, T.; Kruger, T.; Kniemeyer, O.; Bayry, J.; et al. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat. Commun. 2024, 15, 6966. [Google Scholar] [CrossRef]
- Diniz, S.N.; Nomizo, R.; Cisalpino, P.S.; Teixeira, M.M.; Brown, G.D.; Mantovani, A.; Gordon, S.; Reis, L.F.; Dias, A.A. PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages. J. Leukoc. Biol. 2004, 75, 649–656. [Google Scholar] [CrossRef]
- Shin, H.; Jeon, J.; Lee, J.H.; Jin, S.; Ha, U.H. Pseudomonas aeruginosa GroEL Stimulates Production of PTX3 by Activating the NF-kappaB Pathway and Simultaneously Downregulating MicroRNA-9. Infect. Immun. 2017, 85, e00935-16. [Google Scholar] [CrossRef] [PubMed]
- Asgari, F.; Supino, D.; Parente, R.; Polentarutti, N.; Stravalaci, M.; Porte, R.; Pasqualini, F.; Barbagallo, M.; Perucchini, C.; Recordati, C.; et al. The Long Pentraxin PTX3 Controls Klebsiella Pneumoniae Severe Infection. Front. Immunol. 2021, 12, 666198. [Google Scholar] [CrossRef]
- Bottazzi, B.; Santini, L.; Savino, S.; Giuliani, M.M.; Duenas Diez, A.I.; Mancuso, G.; Beninati, C.; Sironi, M.; Valentino, S.; Deban, L.; et al. Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant. PLoS ONE 2015, 10, e0120807. [Google Scholar] [CrossRef]
- Jaillon, S.; Peri, G.; Delneste, Y.; Fremaux, I.; Doni, A.; Moalli, F.; Garlanda, C.; Romani, L.; Gascan, H.; Bellocchio, S.; et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J. Exp. Med. 2007, 204, 793–804. [Google Scholar] [CrossRef]
- Reading, P.C.; Bozza, S.; Gilbertson, B.; Tate, M.; Moretti, S.; Job, E.R.; Crouch, E.C.; Brooks, A.G.; Brown, L.E.; Bottazzi, B.; et al. Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. J. Immunol. 2008, 180, 3391–3398. [Google Scholar] [CrossRef]
- Camaioni, A.; Klinger, F.G.; Campagnolo, L.; Salustri, A. The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front. Immunol. 2018, 9, 2808. [Google Scholar] [CrossRef] [PubMed]
- Garlanda, C.; Hirsch, E.; Bozza, S.; Salustri, A.; De Acetis, M.; Nota, R.; Maccagno, A.; Riva, F.; Bottazzi, B.; Peri, G.; et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002, 420, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Garred, P. Pentraxins in Complement Activation and Regulation. Front. Immunol. 2018, 9, 3046. [Google Scholar] [CrossRef] [PubMed]
- Jeannin, P.; Bottazzi, B.; Sironi, M.; Doni, A.; Rusnati, M.; Presta, M.; Maina, V.; Magistrelli, G.; Haeuw, J.F.; Hoeffel, G.; et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 2005, 22, 551–560. [Google Scholar] [CrossRef]
- Deban, L.; Jarva, H.; Lehtinen, M.J.; Bottazzi, B.; Bastone, A.; Doni, A.; Jokiranta, T.S.; Mantovani, A.; Meri, S. Binding of the long pentraxin PTX3 to factor H: Interacting domains and function in the regulation of complement activation. J. Immunol. 2008, 181, 8433–8440. [Google Scholar] [CrossRef]
- Deban, L.; Russo, R.C.; Sironi, M.; Moalli, F.; Scanziani, M.; Zambelli, V.; Cuccovillo, I.; Bastone, A.; Gobbi, M.; Valentino, S.; et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 2010, 11, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; et al. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation. Biochim. Biophys. Acta 2016, 1862, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Henry, W.; Cuiffo, B.G.; Collmann, A.Y.; Marangoni, E.; Benhamo, V.; Bhasin, M.K.; Fan, C.; Fuhrmann, L.; Baldwin, A.S.; et al. Pentraxin-3 is a PI3K signaling target that promotes stem cell-like traits in basal-like breast cancers. Sci. Signal 2017, 10, eaah4674. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Zhang, N.; Zhang, H.; Dai, Z.; Zhang, M.; Feng, S.; Cheng, Q. Pentraxin 3 Promotes Glioblastoma Progression by Negative Regulating Cells Autophagy. Front. Cell Dev. Biol. 2020, 8, 795. [Google Scholar] [CrossRef]
- Chan, S.H.; Tsai, J.P.; Shen, C.J.; Liao, Y.H.; Chen, B.K. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 2017, 8, 41364–41378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, X.Y.; Qin, Y.Y.; Yan, X.L.; Chen, H.M.; Huang, Q.D.; Chen, J.K.; Zheng, J.M. SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. Am. J. Cancer Res. 2018, 8, 624–635. [Google Scholar]
- Ying, T.H.; Lee, C.H.; Chiou, H.L.; Yang, S.F.; Lin, C.L.; Hung, C.H.; Tsai, J.P.; Hsieh, Y.H. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells. Sci. Rep. 2016, 6, 29385. [Google Scholar] [CrossRef]
- Chang, W.C.; Wu, S.L.; Huang, W.C.; Hsu, J.Y.; Chan, S.H.; Wang, J.M.; Tsai, J.P.; Chen, B.K. PTX3 gene activation in EGF-induced head and neck cancer cell metastasis. Oncotarget 2015, 6, 7741–7757. [Google Scholar] [CrossRef]
- Choi, B.; Lee, E.J.; Park, Y.S.; Kim, S.M.; Kim, E.Y.; Song, Y.; Kang, S.W.; Rhu, M.H.; Chang, E.J. Pentraxin-3 Silencing Suppresses Gastric Cancer-related Inflammation by Inhibiting Chemotactic Migration of Macrophages. Anticancer. Res. 2015, 35, 2663–2668. [Google Scholar]
- Choi, B.; Lee, E.J.; Shin, M.K.; Park, Y.S.; Ryu, M.H.; Kim, S.M.; Kim, E.Y.; Lee, H.K.; Chang, E.J. Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget 2016, 7, 55506–55517. [Google Scholar] [CrossRef]
- Choi, B.; Lee, E.J.; Song, D.H.; Yoon, S.C.; Chung, Y.H.; Jang, Y.; Kim, S.M.; Song, Y.; Kang, S.W.; Yoon, S.Y.; et al. Elevated Pentraxin 3 in bone metastatic breast cancer is correlated with osteolytic function. Oncotarget 2014, 5, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Cormio, L.; Netti, G.S.; Infante, B.; Selvaggio, O.; Fino, G.D.; Ranieri, E.; Bruno, F.; Prattichizzo, C.; Sanguedolce, F.; et al. Pentraxin 3: A novel biomarker for predicting progression from prostatic inflammation to prostate cancer. Cancer Res. 2014, 74, 4230–4238. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.N.; Ko, C.P.; Yang, S.F.; Cheng, C.W.; Chen, P.N.; Chang, C.Y.; Lin, C.L.; Yang, T.F.; Hsieh, Y.H.; Chen, K.C. Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J. Neurooncol. 2016, 129, 201–209. [Google Scholar] [CrossRef]
- Leali, D.; Alessi, P.; Coltrini, D.; Ronca, R.; Corsini, M.; Nardo, G.; Indraccolo, S.; Presta, M. Long pentraxin-3 inhibits FGF8b-dependent angiogenesis and growth of steroid hormone-regulated tumors. Mol. Cancer Ther. 2011, 10, 1600–1610. [Google Scholar] [CrossRef]
- Margheri, F.; Serrati, S.; Lapucci, A.; Anastasia, C.; Giusti, B.; Pucci, M.; Torre, E.; Bianchini, F.; Calorini, L.; Albini, A.; et al. Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in mice. Neoplasia 2009, 11, 1106–1115. [Google Scholar] [CrossRef]
- Ronca, R.; Alessi, P.; Coltrini, D.; Di Salle, E.; Giacomini, A.; Leali, D.; Corsini, M.; Belleri, M.; Tobia, C.; Garlanda, C.; et al. Long pentraxin-3 as an epithelial-stromal fibroblast growth factor-targeting inhibitor in prostate cancer. J. Pathol. 2013, 230, 228–238. [Google Scholar] [CrossRef]
- Ronca, R.; Di Salle, E.; Giacomini, A.; Leali, D.; Alessi, P.; Coltrini, D.; Ravelli, C.; Matarazzo, S.; Ribatti, D.; Vermi, W.; et al. Long pentraxin-3 inhibits epithelial-mesenchymal transition in melanoma cells. Mol. Cancer Ther. 2013, 12, 2760–2771. [Google Scholar] [CrossRef]
- Ronca, R.; Giacomini, A.; Di Salle, E.; Coltrini, D.; Pagano, K.; Ragona, L.; Matarazzo, S.; Rezzola, S.; Maiolo, D.; Torrella, R.; et al. Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell 2015, 28, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Netti, G.S.; Cormio, L.; Castellano, G.; Infante, B.; Pontrelli, P.; Divella, C.; Selvaggio, O.; Spadaccino, F.; Ranieri, E.; et al. Modulation of complement activation by pentraxin-3 in prostate cancer. Sci. Rep. 2020, 10, 18400. [Google Scholar] [CrossRef]
- Ahmadi-Beni, R.; Shahbazi, S.; Khoshnevisan, A. An integrative bioinformatics investigation and experimental validation of critically involved genes in high-grade gliomas. Diagn. Pathol. 2022, 17, 73. [Google Scholar] [CrossRef]
- Cabiati, M.; Gaggini, M.; De Simone, P.; Del Ry, S. Data mining of key genes expression in hepatocellular carcinoma: Novel potential biomarkers of diagnosis prognosis or progression. Clin. Exp. Metastasis 2022, 39, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Chu, L.; Kang, Y. Angiogenic Factor-Based Signature Predicts Prognosis and Immunotherapy Response in Non-Small-Cell Lung Cancer. Front. Genet. 2022, 13, 894024. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, W.K.; Wang, Z.W.; Su, W.H.; Xu, K.; Jia, H.; Chen, J. Identification of Novel Biomarkers for Predicting Prognosis and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma Based on ceRNA Network and Immune Infiltration Analysis. Biomed. Res. Int. 2021, 2021, 4532438. [Google Scholar] [CrossRef]
- Hou, Y.; Qiu, W.; Ling, Y.; Qi, X.; Liu, J.; Yang, H.; Chu, L. The role of tumor-associated macrophages in glioma cohort: Through both traditional RNA sequencing and single cell RNA sequencing. Front. Oncol. 2023, 13, 1249448. [Google Scholar] [CrossRef]
- Kaushal, P.; Zhu, J.; Wan, Z.; Chen, H.; Ye, J.; Luo, C. Prognosis and Immune Landscapes in Glioblastoma Based on Gene-Signature Related to Reactive-Oxygen-Species. Neuromolecular Med. 2023, 25, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, R.; Ning, Z.; Fu, N.; Xie, M. Identification of a Four-Gene Signature for Determining the Prognosis of Papillary Thyroid Carcinoma by Integrated Bioinformatics Analysis. Int. J. Gen. Med. 2022, 15, 1147–1160. [Google Scholar] [CrossRef]
- Petterson, S.A.; Sorensen, M.D.; Kristensen, B.W. Expression Profiling of Primary and Recurrent Glioblastomas Reveals a Reduced Level of Pentraxin 3 in Recurrent Glioblastomas. J. Neuropathol. Exp. Neurol. 2020, 79, 975–985. [Google Scholar] [CrossRef]
- Rathore, M.; Girard, C.; Ohanna, M.; Tichet, M.; Ben Jouira, R.; Garcia, E.; Larbret, F.; Gesson, M.; Audebert, S.; Lacour, J.P.; et al. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappaB signaling pathway. Oncogene 2019, 38, 5873–5889. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, H.; Song, K.; Fu, P.; Shen, J.; Xu, M.; Xu, H. Construction of an immune-related gene signature for the prognosis and diagnosis of glioblastoma multiforme. Front. Oncol. 2022, 12, 938679. [Google Scholar] [CrossRef]
- Zhou, H.; He, Y.; Li, L.; Wu, C.; Hu, G. Identification novel prognostic signatures for Head and Neck Squamous Cell Carcinoma based on ceRNA network construction and immune infiltration analysis. Int. J. Med. Sci. 2021, 18, 1297–1311. [Google Scholar] [CrossRef]
- Weng, W.C.; Hsieh, Y.H.; Lin, C.Y.; Liu, Y.F.; Su, S.C.; Wang, S.S.; Yang, S.F. Functional variants of the pentraxin 3 gene are associated with the metastasis and progression of prostate cancer. J. Cell. Mol. Med. 2024, 28, e70041. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, N.S.; Bracke, K.R.; Maes, T.; Van Pottelberge, G.R.; Garlanda, C.; Mantovani, A.; Joos, G.F.; Brusselle, G.G. Cigarette smoke induces PTX3 expression in pulmonary veins of mice in an IL-1 dependent manner. Respir. Res. 2010, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Conles, O.; Guitart, M.; Chacon, M.R.; Maymo-Masip, E.; Moreno-Navarrete, J.M.; Montori-Grau, M.; Naf, S.; Fernandez-Real, J.M.; Vendrell, J.; Gomez-Foix, A.M. Plasma PTX3 protein levels inversely correlate with insulin secretion and obesity, whereas visceral adipose tissue PTX3 gene expression is increased in obesity. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1254–E1261. [Google Scholar] [CrossRef]
- Locatelli, M.; Ferrero, S.; Martinelli Boneschi, F.; Boiocchi, L.; Zavanone, M.; Maria Gaini, S.; Bello, L.; Valentino, S.; Barbati, E.; Nebuloni, M.; et al. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J. Neuroimmunol. 2013, 260, 99–106. [Google Scholar] [CrossRef]
- Liu, M.; Deng, W.; Tang, L.; Liu, M.; Bao, H.; Guo, C.; Zhang, C.; Lu, J.; Wang, H.; Lu, Z.; et al. Menin directs regionalized decidual transformation through epigenetically setting PTX3 to balance FGF and BMP signaling. Nat. Commun. 2022, 13, 1006. [Google Scholar] [CrossRef]
- Rubino, M.; Kunderfranco, P.; Basso, G.; Greco, C.M.; Pasqualini, F.; Serio, S.; Roncalli, M.; Laghi, L.; Mantovani, A.; Papait, R.; et al. Epigenetic regulation of the extrinsic oncosuppressor PTX3 gene in inflammation and cancer. Oncoimmunology 2017, 6, e1333215. [Google Scholar] [CrossRef]
- Cui, N.; Chen, Z.; Yu, Z.; Lv, X.; Hu, Z. PTX3 mediates PI3K/AKT/mTOR signaling to downregulate apoptosis and autophagy to attenuate myocardial injury in sepsis. PeerJ 2024, 12, e17263. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, A.; Turati, M.; Grillo, E.; Rezzola, S.; Ghedini, G.C.; Schuind, A.C.; Foglio, E.; Maccarinelli, F.; Faletti, J.; Filiberti, S.; et al. The PTX3/TLR4 autocrine loop as a novel therapeutic target in triple negative breast cancer. Exp. Hematol. Oncol. 2023, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.W.; Tsai, J.P.; Lin, S.H.; Lee, C.H.; Hsieh, Y.H.; Chang, H.R. Pentraxin 3 Activates JNK Signaling and Regulates the Epithelial-To-Mesenchymal Transition in Renal Fibrosis. Cell Physiol. Biochem. 2016, 40, 1029–1038. [Google Scholar] [CrossRef]
- Kampo, S.; Ahmmed, B.; Zhou, T.; Owusu, L.; Anabah, T.W.; Doudou, N.R.; Kuugbee, E.D.; Cui, Y.; Lu, Z.; Yan, Q.; et al. Scorpion Venom Analgesic Peptide, BmK AGAP Inhibits Stemness, and Epithelial-Mesenchymal Transition by Down-Regulating PTX3 in Breast Cancer. Front. Oncol. 2019, 9, 21. [Google Scholar] [CrossRef]
- Li, A.; Zhao, F.; Yang, T.; Zhao, Y.; Liu, H.; Yang, S.; Zhu, X. PTX3/TWIST1 Feedback Loop Modulates Lipopolysaccharide-Induced Inflammation via PI3K/Akt Signaling Pathway. J. Interferon Cytokine Res. 2022, 42, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Chai, R.; Yu, X.; Yu, Z. PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway. Inflammation 2022, 45, 2339–2351. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, Q.; Ju, Z.; Guan, S.; He, B. Pentraxin 3 promotes cardiac differentiation of mouse embryonic stem cells through JNK signaling pathway. Cell Biol. Int. 2018, 42, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhou, X.Z.; Li, N.; Guo, Y.C.; Chen, T.P. Pentraxin 3 promotes the osteoblastic differentiation of MC3T3-E1 cells through the PI3K/Akt signaling pathway. Biosci. Rep. 2020, 40, BSR20201165. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhang, H.; Liang, Y.; Li, X.; Wen, Z.; Xia, C.; Lan, X.; Yang, Y.; Xiong, Y.; Huang, J.; et al. Pentraxin 3 plays a key role in tubular cell senescence and renal fibrosis through inducing beta-catenin signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166807. [Google Scholar] [CrossRef]
- Rozovski, U.; Veletic, I.; Harris, D.M.; Li, P.; Liu, Z.; Jain, P.; Manshouri, T.; Ferrajoli, A.; Burger, J.A.; Bose, P.; et al. STAT3 Activates the Pentraxin 3 Gene in Chronic Lymphocytic Leukemia Cells. J. Immunol. 2022, 208, 2847–2855. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Yang, R. PTX3 promotes IVIG resistance-induced endothelial injury in Kawasaki disease by regulating the NF-kappaB pathway. Open Life Sci. 2023, 18, 20220735. [Google Scholar] [CrossRef]
- Baruah, P.; Dumitriu, I.E.; Peri, G.; Russo, V.; Mantovani, A.; Manfredi, A.A.; Rovere-Querini, P. The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J. Leukoc. Biol. 2006, 80, 87–95. [Google Scholar] [CrossRef]
- Baruah, P.; Propato, A.; Dumitriu, I.E.; Rovere-Querini, P.; Russo, V.; Fontana, R.; Accapezzato, D.; Peri, G.; Mantovani, A.; Barnaba, V.; et al. The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood 2006, 107, 151–158. [Google Scholar] [CrossRef]
- Chen, F.W.; Wu, Y.L.; Cheng, C.C.; Hsiao, Y.W.; Chi, J.Y.; Hung, L.Y.; Chang, C.P.; Lai, M.D.; Wang, J.M. Inactivation of pentraxin 3 suppresses M2-like macrophage activity and immunosuppression in colon cancer. J. Biomed. Sci. 2024, 31, 10. [Google Scholar] [CrossRef]
- Chivot, J.; Ferrand, N.; Fert, A.; Van Dreden, P.; Morichon, R.; Sabbah, M. PARP Inhibitor Inhibits the Vasculogenic Mimicry through a NF-kappaB-PTX3 Axis Signaling in Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 16171. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, Y.; Wang, J.; Xu, Y.; Hong, Y.; Zhang, L.; Luo, Q.; Zhen, Z.; Lu, S.; Huang, J.; et al. The dual HDAC and PI3K inhibitor, CUDC-907, inhibits tumor growth and stem-like properties by suppressing PTX3 in neuroblastoma. Int. J. Oncol. 2024, 64, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, T.Y.; Niu, X.C. Increased Plasma Levels of Pentraxin 3 Are Associated with Poor Prognosis of Colorectal Carcinoma Patients. Tohoku J. Exp. Med. 2016, 240, 39–46. [Google Scholar] [CrossRef]
- Tafani, M.; Di Vito, M.; Frati, A.; Pellegrini, L.; De Santis, E.; Sette, G.; Eramo, A.; Sale, P.; Mari, E.; Santoro, A.; et al. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J. Neuroinflammation 2011, 8, 32. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, L.; Wang, D.; Li, Y.; Li, S.; Yuan, J.; Huang, S.; Xu, Z.; Jia, B.; Li, Z.; et al. Upregulation of the ZNF148/PTX3 axis promotes malignant transformation of dendritic cells in glioma stem-like cells microenvironment. CNS Neurosci. Ther. 2023, 29, 2690–2704. [Google Scholar] [CrossRef]
- Annese, T.; Ronca, R.; Tamma, R.; Giacomini, A.; Ruggieri, S.; Grillo, E.; Presta, M.; Ribatti, D. PTX3 Modulates Neovascularization and Immune Inflammatory Infiltrate in a Murine Model of Fibrosarcoma. Int. J. Mol. Sci. 2019, 20, 4599. [Google Scholar] [CrossRef]
- Lee, J.; Hong, B.S.; Ryu, H.S.; Lee, H.B.; Lee, M.; Park, I.A.; Kim, J.; Han, W.; Noh, D.Y.; Moon, H.G. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS ONE 2017, 12, e0174126. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Ruan, G.; Wei, L.; Zhang, H.; Shi, J.; Lin, S.; Liu, C.; Liu, X.; Zheng, X.; Chen, Y.; et al. Obesity-associated metabolic inflammation promotes triple-negative breast cancer progression through the interleukin-6/STAT3/pentraxin 3/matrix metalloproteinase 7 axis. Int. Immunopharmacol. 2024, 136, 112332. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; Scherer, D.; Muir, K.; Schildkraut, J.; Boffetta, P.; Spitz, M.R.; Le Marchand, L.; Chan, A.T.; Goode, E.L.; Ulrich, C.M.; et al. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1729–1751. [Google Scholar] [CrossRef]
- Papila, K.B.; Sozer, V.; Cigdem, K.P.; Durmus, S.; Kurtulus, D.; Papila, C.; Gelisgen, R.; Uzun, H. Circulating nuclear factor-kappa B mediates cancer-associated inflammation in human breast and colon cancer. J. Med. Biochem. 2021, 40, 150–159. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, S.Y.; Moon, A. C-Reactive Protein Signaling Pathways in Tumor Progression. Biomol. Ther. 2023, 31, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Shrotriya, S.; Walsh, D.; Bennani-Baiti, N.; Thomas, S.; Lorton, C. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PLoS ONE 2015, 10, e0143080. [Google Scholar] [CrossRef]
- Lippitz, B.E.; Harris, R.A. Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis. Oncoimmunology 2016, 5, e1093722. [Google Scholar] [CrossRef] [PubMed]
- Al Obeed, O.A.; Alkhayal, K.A.; Al Sheikh, A.; Zubaidi, A.M.; Vaali-Mohammed, M.A.; Boushey, R.; McKerrow, J.H.; Abdulla, M.H. Increased expression of tumor necrosis factor-alpha is associated with advanced colorectal cancer stages. World J. Gastroenterol. 2014, 20, 18390–18396. [Google Scholar] [CrossRef] [PubMed]
- Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Segui, B. The TNF Paradox in Cancer Progression and Immunotherapy. Front. Immunol. 2019, 10, 1818. [Google Scholar] [CrossRef]
- Ichikawa, K.; Watanabe, S.; Miura, S.; Ohtsubo, A.; Shoji, S.; Nozaki, K.; Tanaka, T.; Saida, Y.; Kondo, R.; Hokari, S.; et al. Prognostic significance of procalcitonin in small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 43–52. [Google Scholar] [CrossRef]
- Patout, M.; Salaun, M.; Brunel, V.; Bota, S.; Cauliez, B.; Thiberville, L. Diagnostic and prognostic value of serum procalcitonin concentrations in primary lung cancers. Clin. Biochem. 2014, 47, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, G.; Carvello, M.; Pesce, S.; Erreni, M.; Marchesi, F.; Todoric, J.; Sacchi, M.; Montorsi, M.; Allavena, P.; Spinelli, A. Circulating Inflammatory Mediators as Potential Prognostic Markers of Human Colorectal Cancer. PLoS ONE 2016, 11, e0148186. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Zou, H.; Dai, Z.; Feng, S.; Zhang, M.; Xiao, G.; Liu, Z.; Cheng, Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front. Immunol. 2020, 11, 1757. [Google Scholar] [CrossRef]
- Infante, M.; Allavena, P.; Garlanda, C.; Nebuloni, M.; Morenghi, E.; Rahal, D.; Roncalli, M.; Cavuto, S.; Pesce, S.; Monari, M.; et al. Prognostic and diagnostic potential of local and circulating levels of pentraxin 3 in lung cancer patients. Int. J. Cancer 2016, 138, 983–991. [Google Scholar] [CrossRef]
- Kozlowski, M.; Michalczyk, K.; Witczak, G.; Kwiatkowski, S.; Mirecka, A.; Nowak, K.; Pius-Sadowska, E.; Machalinski, B.; Cymbaluk-Ploska, A. Evaluation of Paraoxonase-1 and Pentraxin-3 in the Diagnosis and Prognosis of Endometrial Cancer. Antioxidants 2022, 11, 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Xu, Z.M.; Dai, H.Y.; Jiang, C.Q.; Liu, T.T.; Huang, L.Y.; Kang, H.Y.; Liu, X. An Analysis for the Association of Highly Expressed PTX3 with Poor Prognosis and Malignant Behavior of Endometrial Cancer Cells. J. Biol. Regul. Homeost. Agents 2023, 37, 433–440. [Google Scholar] [CrossRef]
- Weidemuller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021, 21, e2000034. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gharib, T.G.; Huang, C.C.; Taylor, J.M.; Misek, D.E.; Kardia, S.L.; Giordano, T.J.; Iannettoni, M.D.; Orringer, M.B.; Hanash, S.M.; et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell Proteom. 2002, 1, 304–313. [Google Scholar] [CrossRef]
- Mlinaric, A.; Horvat, M.; Supak Smolcic, V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Med. 2017, 27, 030201. [Google Scholar] [CrossRef]
- Borenstein, M. How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals. Integr. Med. Res. 2023, 12, 101014. [Google Scholar] [CrossRef]
Studies | Country | Malignancy | Sample Size | Sample Type | Method | NOS |
---|---|---|---|---|---|---|
Carreras 2022 [15] | Japan | Diffuse large B cell lymphoma | 148 | Tumor tissue | IHC | 8 |
Chang 2021 [16] | China | Ovarian cancer | 168 | Tumor tissue | IHC | 7 |
Han 2021 [17] | China | Hepatocellular carcinoma | 107 | Serum | Immunoassay | 7 |
Kondo 2013 [18] | Japan | Pancreatic cancer | 78 | Plasma | Immunoassay | 8 |
Liu 2014 [20] | China | Small cell lung cancer | 125 | Tumor tissue | IHC | 8 |
Liu 2018 [19] | China | Colorectal cancer | 263 | Plasma | Immunoassay | 8 |
Song 2018 [21] | China | Hepatocellular carcinoma | 158 | Tumor tissue | IHC | 8 |
Veletic 2018 [22] | U.S. | Primary myelofibrosis | 140 | Plasma | Immunoassay | 7 |
Zhang 2022 [23] | China | Glioblastoma | 28 | Tumor tissue | IHC | 7 |
Protumoral Effects | ||
---|---|---|
Tumor Type | Experiment Type | Mechanism |
Hepatocellular carcinoma | Clinical and cell line study | Enhances proliferation, migration, invasion, and EMT [21] |
Pancreatic cancer | Clinical and cell line study | Enhances migration [18] |
Head and neck squamous cell carcinoma | Cell line and animal study | Enhances migration and invasion [49] |
Enhances metastasis [46] | ||
Stomach cancer | Clinical and cell line study | Enhances migration [50] |
Clinical and cell line study | Enhances bone metastasis [51] | |
Breast cancer | Cell line study | Enhances bone metastasis [52] |
Cell line study | Promotes stemness and EMT [44] | |
Cervical cancer | Cell line and animal study | Enhances tumorigenesis and metastasis [48] |
High-grade glioma | Cell line study | Promotes cell proliferation and invasion [54] |
Glioma | Cell line study | Promotes cell proliferation and metastasis [47] |
Glioblastoma | Cell line study | Modulates autophagy [45] |
Prostate cancer | Clinical study | Recruitment of complement cascade [60] |
Antitumoral effects | ||
Bladder cancer | Cell line study | Inhibition of FGF-driven proliferation and stemness [13] |
Breast cancer | Cell line and animal study | Inhibition of DHT- and FGF8b-driven proliferation [55] |
Cell line and animal study | Inhibition of FGF2-driven proliferation and angiogenesis [56] | |
Melanoma | Cell line and animal study | Inhibition of FGF-driven proliferation and EMT [58,59] |
Prostate cancer | Cell line and animal study | Inhibition of FGF-driven proliferation and angiogenesis [57,59] |
Lung cancer | Cell line and animal study | Inhibition of FGF-driven proliferation and angiogenesis [59] |
Sarcomas | Cell line and animal study | Regulation of tumor-promoting inflammation [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Kang, J.; Han, K.-M.; Kim, H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3754. https://doi.org/10.3390/cancers16223754
Jung H, Kang J, Han K-M, Kim H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(22):3754. https://doi.org/10.3390/cancers16223754
Chicago/Turabian StyleJung, Hera, Jeongwan Kang, Kang-Min Han, and Hyunchul Kim. 2024. "Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis" Cancers 16, no. 22: 3754. https://doi.org/10.3390/cancers16223754
APA StyleJung, H., Kang, J., Han, K.-M., & Kim, H. (2024). Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers, 16(22), 3754. https://doi.org/10.3390/cancers16223754