Effect of Neoadjuvant Therapy on Endoluminal Vacuum-Assisted Closure Therapy (EVAC) for Anastomotic Leakage After Oesophagectomy
Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Study Design and Participants
2.2. Primary and Secondary Outcomes
2.3. Statistical Analysis
2.4. Preoperative Assessment
2.5. Neoadjuvant Treatment
2.6. Surgical Procedure
2.7. Postoperative Management
2.8. Endoluminal-Vacuum-Assisted Therapy (EVAC)
2.9. Ethical Approval
3. Results
3.1. Patients’ Characteristics
3.2. Histopathological Characteristics
3.3. Postoperative Complications
3.4. Anastomotic Leakage and EVAC
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, D.E.; Kuppusamy, M.K.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.; Davies, A.; D’Journo, X.B.; Gisbertz, S.S.; Griffin, S.M.; et al. Benchmarking Complications Associated with Esophagectomy. Ann. Surg. 2019, 269, 291–298. [Google Scholar] [CrossRef]
- Kalata, S.; Singh, B.; Graham, N.; Fan, Z.; Chang, A.C.; Lynch, W.R.; Lagisetty, K.H.; Lin, J.; Yeung, J.; Reddy, R.M.; et al. Epidemiology of Postoperative Complications After Esophagectomy: Implications for Management. Ann. Thorac. Surg. 2023, 116, 1168–1175. [Google Scholar] [CrossRef]
- Toh, Y.; Morita, M.; Yamamoto, M.; Nakashima, Y.; Sugiyama, M.; Uehara, H.; Fujimoto, Y.; Shin, Y.; Shiokawa, K.; Ohnishi, E.; et al. Health-related quality of life after esophagectomy in patients with esophageal cancer. Esophagus 2022, 19, 47–56. [Google Scholar] [CrossRef]
- Tavares, G.; Tustumi, F.; Tristão, L.S.; Bernardo, W.M. Endoscopic vacuum therapy for anastomotic leak in esophagectomy and total gastrectomy: A systematic review and meta-analysis. Dis. Esophagus 2021, 34, doaa132. [Google Scholar] [CrossRef]
- Linden, P.A.; Towe, C.W.; Watson, T.J.; Low, D.E.; Cassivi, S.D.; Grau-Sepulveda, M.; Worrell, S.G.; Perry, Y. Mortality After Esophagectomy: Analysis of Individual Complications and Their Association with Mortality. J. Gastrointest. Surg. 2020, 24, 1948–1954. [Google Scholar] [CrossRef]
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.E.; D’Journo, X.B.; Griffin, S.M.; Hölscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International Consensus on Standardization of Data Collection for Complications Associated With Esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e642. [Google Scholar] [CrossRef]
- Porschen, R.; Fischbach, W.; Gockel, I.; Hollerbach, S.; Hölscher, A.; Jansen, P.L.; Miehlke, S.; Pech, O.; Stahl, M.; Vanhoefer, U.; et al. S3-Leitlinie Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. Z. Gastroenterol. 2023, 61, 701–745. [Google Scholar] [CrossRef]
- Su, Q.; Yin, C.; Liao, W.; Yang, H.; Ouyang, L.; Yang, R.; Ma, G. Anastomotic leakage and postoperative mortality in patients after esophageal cancer resection. J. Int. Med. Res. 2021, 49, 3000605211045540. [Google Scholar] [CrossRef]
- Rausa, E.; Asti, E.; Aiolfi, A.; Bianco, F.; Bonitta, G.; Bonavina, L. Comparison of endoscopic vacuum therapy versus endoscopic stenting for esophageal leaks: Systematic review and meta-analysis. Dis. Esophagus 2018, 31, doy060. [Google Scholar] [CrossRef]
- El-Sourani, N.; Miftode, S.; Bockhorn, M.; Arlt, A.; Meinhardt, C. Endoscopic Management of Anastomotic Leakage after Esophageal Surgery: Ten Year Analysis in a Tertiary University Center. Clin. Endosc. 2022, 55, 58–66. [Google Scholar] [CrossRef]
- Zhang, C.C.; Liesenfeld, L.; Klotz, R.; Koschny, R.; Rupp, C.; Schmidt, T.; Diener, M.K.; Müller-Stich, B.P.; Hackert, T.; Sauer, P.; et al. Feasibility, effectiveness, and safety of endoscopic vacuum therapy for intrathoracic anastomotic leakage following transthoracic esophageal resection. BMC Gastroenterol. 2021, 21, 72. [Google Scholar] [CrossRef]
- Aktories, K.; Flockerzi, V.; Förstermann, U.; Hofmann, F.B. Allgemeine und Spezielle Pharmakologie und Toxikologie: Begründet Von W. Forth, D. Henschler, W. Rummel; Urban & Fischer Verlag GmbH & Co. KG: Philadelphia, Germany, 2022. [Google Scholar]
- Seika, P.; Biebl, M.; Raakow, J.; Berndt, N.; Feldbrügge, L.; Maurer, M.M.; Dobrindt, E.; Thuss-Patience, P.; Pratschke, J.; Denecke, C. The Association between Neoadjuvant Radio-Chemotherapy and Prolonged Healing of Anastomotic Leakage after Esophageal Resection Treated with EndoVAC Therapy. J. Clin. Med. 2022, 11, 4773. [Google Scholar] [CrossRef]
- von Bernstorff, W.; Glitsch, A.; Schreiber, A.; Partecke, L.I.; Heidecke, C.D. ETVARD (endoscopic transanal vacuum-assisted rectal drainage) leads to complete but delayed closure of extraperitoneal rectal anastomotic leakage cavities following neoadjuvant radiochemotherapy. Int. J. Colorectal Dis. 2009, 24, 819–825. [Google Scholar] [CrossRef]
- Strobel, R.M.; Wellner, J.E.; Neumann, K.; Otto, S.D.; Eschlboeck, S.M.; Seifarth, C.; Schineis, C.H.W.; Beyer, K.; Kreis, M.E.; Lauscher, J.C. Influence of Neoadjuvant Therapy on Success of Endoscopic Vacuum Therapy in Anastomotic Leakage after Rectal Resection Because of Rectal Cancer. J. Clin. Med. 2024, 13, 3982. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomedicine 2021, 16, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Blum Murphy, M.A.; Elimova, E.; Ajani, J.A. Current concepts and future potential in neoadjuvant chemotherapy for esophageal cancer. Expert. Rev. Gastroenterol. Hepatol. 2016, 10, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 2012, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Klevebro, F.; Friesland, S.; Hedman, M.; Tsai, J.A.; Lindblad, M.; Rouvelas, I.; Lundell, L.; Nilsson, M. Neoadjuvant chemoradiotherapy may increase the risk of severe anastomotic complications after esophagectomy with cervical anastomosis. Langenbecks Arch. Surg. 2016, 401, 323–331. [Google Scholar] [CrossRef]
- Alfaifi, S.; Chu, R.; Hui, X.; Broderick, S.; Hooker, C.; Brock, M.; Bush, E.; Hales, R.; Anderson, L.; Hoff, J.; et al. Trimodality therapy for esophageal cancer: The role of surgical and radiation treatment parameters in the development of anastomotic complications. Thorac. Cancer 2021, 12, 3121–3129. [Google Scholar] [CrossRef]
- Gronnier, C.; Tréchot, B.; Duhamel, A.; Mabrut, J.Y.; Bail, J.P.; Carrere, N.; Lefevre, J.H.; Brigand, C.; Vaillant, J.C.; Adham, M.; et al. Impact of neoadjuvant chemoradiotherapy on postoperative outcomes after esophageal cancer resection: Results of a European multicenter study. Ann. Surg. 2014, 260, 764–770, discussion 770–761. [Google Scholar] [CrossRef]
- Vande Walle, C.; Ceelen, W.P.; Boterberg, T.; Vande Putte, D.; Van Nieuwenhove, Y.; Varin, O.; Pattyn, P. Anastomotic complications after Ivor Lewis esophagectomy in patients treated with neoadjuvant chemoradiation are related to radiation dose to the gastric fundus. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e513–e519. [Google Scholar] [CrossRef]
- Koëter, M.; Kathiravetpillai, N.; Gooszen, J.A.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; van der Sangen, M.J.; Luyer, M.D.; Nieuwenhuijzen, G.A.; Hulshof, M.C. Influence of the Extent and Dose of Radiation on Complications After Neoadjuvant Chemoradiation and Subsequent Esophagectomy With Gastric Tube Reconstruction With a Cervical Anastomosis. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 813–821. [Google Scholar] [CrossRef]
- Goense, L.; van Rossum, P.S.N.; Ruurda, J.P.; van Vulpen, M.; Mook, S.; Meijer, G.J.; van Hillegersberg, R. Radiation to the Gastric Fundus Increases the Risk of Anastomotic Leakage After Esophagectomy. Ann. Thorac. Surg. 2016, 102, 1798–1804. [Google Scholar] [CrossRef]
- Sabra, M.J.; Smotherman, C.; Kraemer, D.F.; Nussbaum, M.S.; Tepas, J.J.R.; Awad, Z.T. The effects of neoadjuvant therapy on morbidity and mortality of esophagectomy for esophageal cancer: American college of surgeons national surgical quality improvement program (ACS-NSQIP) 2005–2012. J. Surg. Oncol. 2017, 115, 296–300. [Google Scholar] [CrossRef]
- Virgilio, E.; Ceci, D.; Cavallini, M. Surgical Endoscopic Vacuum-assisted Closure Therapy (EVAC) in Treating Anastomotic Leakages After Major Resective Surgery of Esophageal and Gastric Cancer. Anticancer Res. 2018, 38, 5581–5587. [Google Scholar] [CrossRef] [PubMed]
- Ubels, S.; Verstegen, M.H.P.; Klarenbeek, B.R.; Bouwense, S.; van Berge Henegouwen, M.I.; Daams, F.; van Det, M.J.; Griffiths, E.A.; Haveman, J.W.; Heisterkamp, J.; et al. Treatment of anastomotic leak after oesophagectomy for oesophageal cancer: Large, collaborative, observational TENTACLE cohort study. Br. J. Surg. 2023, 110, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.H.P.; Bouwense, S.A.W.; van Workum, F.; Ten Broek, R.; Siersema, P.D.; Rovers, M.; Rosman, C. Management of intrathoracic and cervical anastomotic leakage after esophagectomy for esophageal cancer: A systematic review. World J. Emerg. Surg. 2019, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Mandarino, F.V.; Barchi, A.; D’Amico, F.; Fanti, L.; Azzolini, F.; Viale, E.; Esposito, D.; Rosati, R.; Fiorino, G.; Bemelman, W.A.; et al. Endoscopic Vacuum Therapy (EVT) versus Self-Expandable Metal Stent (SEMS) for Anastomotic Leaks after Upper Gastrointestinal Surgery: Systematic Review and Meta-Analysis. Life 2023, 13, 287. [Google Scholar] [CrossRef]
- Hagens, E.R.C.; Reijntjes, M.A.; Anderegg, M.C.J.; Eshuis, W.J.; van Berge Henegouwen, M.I.; Gisbertz, S.S. Risk Factors and Consequences of Anastomotic Leakage After Esophagectomy for Cancer. Ann. Thorac. Surg. 2021, 112, 255–263. [Google Scholar] [CrossRef]
Total (n = 29) | NT (n = 10) | CT/RCT (n = 19) | p-Value (95% CI *) | Effect Size | |||
---|---|---|---|---|---|---|---|
Cohen’s d | Phi | ||||||
Sex, n (%) | 0.5 a (−0.189–0.379) | - | −0.131 | ||||
Male | 25 (86.2) | 8 (80) | 17 (89.5) | ||||
Female | 4 (13.8) | 2 (20) | 2 (10.5) | ||||
Age at resection, mean (SD) | 64.6 (±13.3) | 71.3 (±9.8) | 61.1 (±13.7) | 0.046 b (0.198–20.296) | 0.772 | - | |
BMI ** in kg/m2, mean (SD) | 25.3 (±4.8) | 26 (±4.4) | 25 (±5.1) | 0.603 b (−2.897–4.897) | 0.208 | - | |
Operation type, n (%) | 0.054 a (−0.006–0.764) | - | −0.362 | ||||
Open | 13 (44.8) | 2 (20) | 11 (57.9) | ||||
Laparoscopic | 16 (55.2) | 8 (80) | 8 (42.1) | ||||
Operation time in minutes, mean (SD) | 265.5 (±82.8) | 249.1 (±74.7) | 274.1 (±87.4) | 0.449 b (−91.849–41.838) | 0.302 | - | |
ASA *** Score, n (%) | 0.583 a (−0.340–0.593) | - | 0.243 | ||||
1 | 0 (0) | 0 (0) | 0 (0) | ||||
2 | 15 (51.7) | 4 (40) | 11 (57.9) | ||||
3 | 13 (44.8) | 6 (60) | 7 (36.8) | ||||
4 | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
5 | 0 (0) | 0 (0) | 0 (0) | ||||
6 | 0 (0) | 0 (0) | 0 (0) | ||||
Length of hospital stay in days, mean (SD) | 64.5 (±37.9) | 59.5 (±36.9) | 67.1 (±39.1) | 0.618 b (−38.303–23.198) | 0.199 | - | |
Length of combined stay at ICU **** and IMC † in days, mean (SD) | 40.5 (±40.1) | 33.1 (±35.9) | 44.4 (±42.5) | 0.482 b (−43.675–21.138) | 0.281 | - | |
Blood transfusions during hospital stay, mean (SD) | 1.7 (±4.9) | 1.9 (±3.7) | 1.5 (±5.5) | 0.850 b (−3.630–4.378) | 0.075 | - |
Total (n = 29) | NT (n = 10) | CT/RCT (n = 19) | p-Value | Effect Size | ||
---|---|---|---|---|---|---|
Phi | ||||||
Comorbidities, n (%) | ||||||
Cardiovascular | 22 (75.9) | 9 (90) | 13 (68.4) | 0.197 a | −0.240 | |
Arterial hypertension | 19 (65.5) | 9 (90) | 10 (52.6) | 0.044 a | −0.374 | |
Coronary heart disease | 4 (13.8) | 3 (30) | 1 (5.3) | 0.066 a | −0.341 | |
Heart failure (decreased EF) | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | 0.137 | |
Cardiac arrhythmia | 4 (13.8) | 1 (10) | 3 (15.8) | 0.667 a | 0.080 | |
Pulmonary | 3 (10.3) | 0 (0) | 3 (15.8) | 0.184 a | 0.246 | |
COPD | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | 0.137 | |
Bronchial asthma | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | 0.137 | |
Renal | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | 0.137 | |
Diabetes | 5 (17.2) | 1 (10) | 4 (21.1) | 0.454 a | 0.139 | |
Obesity (BMI ≥ 30) | 5 (17.2) | 1 (10) | 4 (21.1) | 0.454 a | 0.139 | |
Hyperlipidaemia | 2 (6.9) | 2 (20) | 0 (0) | 0.043 a | −0.375 | |
Alcohol abuse | 2 (6.9) | 0 (0) | 2 (10.5) | 0.288 a | 0.197 | |
Nicotine abuse | 7 (24.1) | 2 (20) | 5 (26.3) | 0.706 a | 0.070 |
Total (n = 29) | NT (n = 10) | CT/RCT (n = 19) | p-Value | Effect Size | |||
---|---|---|---|---|---|---|---|
Phi | |||||||
Aetiology, n (%) | 0.161 a | −0.260 | |||||
Adenocarcinoma | 28 (96.6) | 9 (90) | 19 (100) | ||||
Squamous cell carcinoma | 1 (3.4) | 1 (10) | 0 (0) | ||||
Preoperative staging, n (%) | |||||||
Tumour size (cT) | T1 | 2 (6.9) | 1 (10) | 1 (5.3) | 0.204 a | 0.331 | |
T2 | 9 (31) | 5 (50) | 4 (21.1) | ||||
T3 | 18 (62.1) | 4 (40) | 14 (73.7) | ||||
T4 | 0 (0) | 0 (0) | 0 (0) | ||||
Nodular involvement (cN) | N0 | 10 (34.5) | 5 (50) | 5 (26.3) | 0.564 a | 0.320 | |
N1 | 5 (17.2) | 2 (20) | 3 (15.8) | ||||
N2 | 2 (6.9) | 0 (0) | 2 (10.5) | ||||
N3 | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
+ | 11 (37.9) | 3 (30) | 8 (42.1) | ||||
Metastatic spread (cM) | M0 | 26 (89.7) | 10 (100) | 16 (84.2) | 0.415 a | 0.246 | |
M1 | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
Mx | 2 (6.9) | 0 (0) | 2 (10.5) | ||||
Postoperative staging, n (%) | |||||||
Tumour size (cT) | T0 | 6 (20.7) | 1 (10) | 5 (26.3) | 0.307 a | 0.407 | |
T1 | 7 (24.1) | 4 (40) | 3 (15.8) | ||||
T2 | 3 (10.3) | 2 (20) | 1 (5.3) | ||||
T3 | 12 (41.4) | 3 (30) | 9 (47.4) | ||||
T4 | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
Nodular involvement (cN) | N0 | 16 (55.2) | 7 (70) | 9 (47.4) | 0.346 a | 0.338 | |
N1 | 5 (17.2) | 2 (20) | 3 (15.8) | ||||
N2 | 3 (10.3) | 1 (10) | 2 (10.5) | ||||
N3 | 5 (17.2) | 0 (0) | 5 (26.3) | ||||
Metastatic spread (cM) | M0 | 27 (93.1) | 10 (100) | 17 (89.5) | 0.288 a | 0.197 | |
M1 | 2 (6.9) | 0 (0) | 2 (10.5) | ||||
Differentiation (G) | G1 | 1 (3.4) | 1 (10) | 0 (0) | 0.549 a | 0.266 | |
G2 | 9 (31) | 4 (40) | 5 (26.3) | ||||
G3 | 7 (24.1) | 3 (30) | 4 (21.1) | ||||
G4 | 0 (0) | 0 (0) | 0 (0) | ||||
Missing | 12 (41.4) | 2 (20) | 10 (52.6) | ||||
Lymphatic invasion (L) | L0 | 17 (58.6) | 8 (80) | 9 (47.4) | 0.216 a | 0.243 | |
L1 | 9 (31) | 2 (20) | 7 (36.8) | ||||
Missing | 3 (10.3) | 0 (0) | 3 (15.8) | ||||
Vascular invasion (V) | V0 | 26 (89.7) | 10 (100) | 16 (84.2) | - | - | |
V1 | 0 (0) | 0 (0) | 0 (0) | ||||
Missing | 3 (10.3) | 0 (0) | 3 (15.8) | ||||
Perineural invasion (Pn) | Pn0 | 29 (100) | 10 (100) | 19 (100) | - | - | |
Pn1 | 0 (0) | 0 (0) | 0 (0) | ||||
Resection margins (R) | R0 | 28 (96.6) | 10 (100) | 18 (94.7) | 0.460 a | 0.137 | |
R1 | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
R2 | 0 (0) | 0 (0) | 0 (0) |
Total (n = 29) | NT (n = 10) | CT/RCT (n = 19) | p-Value (95% CI *) | Effect Size | ||||
---|---|---|---|---|---|---|---|---|
Cohen’s d | Phi | |||||||
30-day mortality, n (%) | 2 (6.9) | 1 (10) | 1 (5.3) | 0.632 a | - | −0.089 | ||
90-day mortality, n (%) | 5 (17.2) | 1 (10) | 4 (21.1) | 0.454 a | - | 0.139 | ||
CRP in mg/dL 3rd postoperative day, mean (SD) | 21.2 (±8.9) | 22.6 (±9.5) | 20.5 (±8.7) | 0.568 b (−5.362–9.567) | 0.237 | - | ||
CRP in mg/dL 5th postoperative day, mean (SD) | 22.3 (±9.9) | 22.9 (±6.4) | 22.0 (±11.6) | 0.839 b (−7.314–8.939) | 0.082 | - | ||
CRP in mg/dL 8th postoperative day, mean (SD) | 20.2 (±10.2) | 23.0 (±10.6) | 18.8 (±9.9) | 0.292 b (−3.865–12.368) | 0.419 | - | ||
Total, n (%) | 19 (65.5) | 7 (70) | 12 (63.2) | 0.713 a | - | −0.068 | ||
Conduit necrosis | 0 (0) | 0 (0) | 0 (0) | - | - | - | ||
Pneumonia | 16 (55.2) | 5 (50) | 11 (57.9) | 0.684 a | - | 0.075 | ||
ARDS | 13 (44.8) | 6 (60) | 7 (36.8) | 0.233 a | - | −0.221 | ||
Clavien–Dindo classification, n (%) | 0.813 a | - | 0.358 | |||||
I | 0 (0) | 0 (0) | 0 (0) | |||||
II | 0 (0) | 0 (0) | 0 (0) | |||||
IIa | 1 (3.4) | 0 (0) | 1 (5.3) | |||||
III | 1 (3.4) | 0 (0) | 1 (5.3) | |||||
IIIa | 14 (48.3) | 5 (50) | 9 (47.4) | |||||
IIIb | 6 (20.7) | 2 (20) | 4 (21.1) | |||||
IV | 1 (3.4) | 1 (10) | 0 (0) | |||||
IVa | 1 (3.4) | 0 (0) | 1 (5.3) | |||||
IVb | 3 (10.3) | 1 (10) | 2 (10.5) | |||||
V | 2 (6.9) | 1 (10) | 1 (5.3) |
Total (n = 29) | NT (n = 10) | CT/RCT (n = 19) | p-Value (95% CI *) | Effect Size | |||
---|---|---|---|---|---|---|---|
Cohen’s d | Phi | ||||||
Diagnosis of AL **, n (%) | 0.215 a | - | 0.326 | ||||
Gastroscopy | 14 (48.3) | 3 (30) | 11 (57.9) | ||||
CT | 1 (3.4) | 0 (0) | 1 (5.3) | ||||
CT + gastroscopy | 14 (48.3) | 7 (70) | 7 (36.8) | ||||
Days to diagnosis, mean (SD) | 11.5 (±7.6) | 12.6 (±9.8) | 10.9 (±6.5) | 0.589 b (−4.544–7.849) | 0.216 | - | |
Initial defect size of AL in mm, mean (SD) | 17.2 (±22.4) | 16.3 (±10.7) | 17.5 (±26.1) | 0.896 b (−21.11–18.557) | 0.057 | - | |
Localisation of AL from the row of teeth in cm, mean (SD) | 27.8 (±13.5) | 29.0 (±3.2) | 27.1 (±3.8) | 0.198 b (−1.038–4.775) | 0.509 | - | |
ECCG *** leak classification, n (%) | 0.118 a | - | 0.290 | ||||
I | 0 (0) | 0 (0) | 0 (0) | ||||
II | 25 (86.2) | 10 (100) | 15 (78.9) | ||||
IIIa | 4 (13.8) | 0 (0) | 4 (21.1) | ||||
IIIb | 0 (0) | 0 (0) | 0 (0) | ||||
Successful defect closure, n (%) | 24 (82.8) | 9 (90) | 15 (78.9) | 0.454 a | - | −0.139 | |
Successful primary EVAC †, n (%) | 19 (65.5) | 8 (80) | 11 (57.9) | 0.234 a | - | −0.221 | |
Length of EVAC in days, mean (SD) | 24 (±17.0) | 23.8 (±12.2) | 24.11 (±19.4) | 0.964 b (−14.211–13.601) | 0.018 | - | |
Number of sponges needed, mean (SD) | 6.4 (±4.0) | 6.6 (±3.34) | 6.3 (±4.4) | 0.835 b (−2.943–3.617) | 0.085 | - | |
EVAC failure | 10 (34.5) | 5 (50) | 5 (26.3) | ||||
Change to stent, n (%) | 6 (20.7) | 1 (10) | 5 (26.3) | 0.303 a | - | 0.191 | |
Number of stents, mean (SD) | 0.3 (±0.8) | 0.3 (±0.9) | 0.4 (±0.8) | 0.834 b (−0.732–0.595) | 0.086 | - | |
Usage of clips, n (%) | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | - | 0.137 | |
Number of clips needed, mean (SD) | 0.03 (±0.2) | 0 (±0) | 0.05 (±0.2) | 0.478 b (−0.203–0.098) | 0.269 | - | |
Surgical revision, n (%) | 1 (3.4) | 0 (0) | 1 (5.3) | 0.460 a | - | 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahrenkrog, C.; Miftode, S.; Al-Mawsheki, A.; Alfarawan, F.; Wilters, S.; Bockhorn, M.; El-Sourani, N. Effect of Neoadjuvant Therapy on Endoluminal Vacuum-Assisted Closure Therapy (EVAC) for Anastomotic Leakage After Oesophagectomy. Cancers 2024, 16, 3597. https://doi.org/10.3390/cancers16213597
Fahrenkrog C, Miftode S, Al-Mawsheki A, Alfarawan F, Wilters S, Bockhorn M, El-Sourani N. Effect of Neoadjuvant Therapy on Endoluminal Vacuum-Assisted Closure Therapy (EVAC) for Anastomotic Leakage After Oesophagectomy. Cancers. 2024; 16(21):3597. https://doi.org/10.3390/cancers16213597
Chicago/Turabian StyleFahrenkrog, Catharina, Sorin Miftode, Ahmed Al-Mawsheki, Fadl Alfarawan, Stella Wilters, Maximilian Bockhorn, and Nader El-Sourani. 2024. "Effect of Neoadjuvant Therapy on Endoluminal Vacuum-Assisted Closure Therapy (EVAC) for Anastomotic Leakage After Oesophagectomy" Cancers 16, no. 21: 3597. https://doi.org/10.3390/cancers16213597
APA StyleFahrenkrog, C., Miftode, S., Al-Mawsheki, A., Alfarawan, F., Wilters, S., Bockhorn, M., & El-Sourani, N. (2024). Effect of Neoadjuvant Therapy on Endoluminal Vacuum-Assisted Closure Therapy (EVAC) for Anastomotic Leakage After Oesophagectomy. Cancers, 16(21), 3597. https://doi.org/10.3390/cancers16213597