Preclinical Multi-Omic Assessment of Pioglitazone in Skeletal Muscles of Mice Implanted with Human HER2/neu Overexpressing Breast Cancer Xenografts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Breast Cancer Patient-Derived Orthotopic Xenograft (BC-PDOX) Mouse Model
2.2. Pioglitazone Preparation and Dosing
2.3. Bulk RNA Isolation and Sequencing
2.4. Bulk-RNAseq Data Analysis
2.5. Quantitative Lipidomics
2.6. Lipidomics Data Analysis
2.7. Untargeted and Widely Targeted Metabolomics
2.8. Metabolomics Data Analysis
2.9. Whole-Animal Indirect Calorimetry and Metabolic Monitoring
2.10. Ex Vivo Muscle Function Testing
2.11. Statistical Analyses
3. Results
3.1. Study Overview and Characterization of BC-PDOX Mouse Model
3.2. Whole-Animal Indirect Calorimetry
3.3. Bulk RNA-Seq of TA Muscles
3.3.1. PPAR Target Genes
3.3.2. Genes Involved in Oxidative Phosphorylation
3.3.3. Mitochondrial Bioenergetic Pathways
3.4. Quantitative Lipidomics in Tibialis Anterior
3.4.1. Ceramides
3.4.2. Other Subclass Abundances
3.5. Untargeted Metabolomics in Tibialis Anterior
3.5.1. Differential Metabolites
3.5.2. Amino Acid Metabolism
3.6. Muscle Fatigue and Isometric Analysis
3.6.1. Muscle Weights
3.6.2. Fatigue Testing
3.6.3. Isometric Contractile Metrics
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Fahad Ullah, M. Breast Cancer: Current Perspectives on the Disease Status. In Breast Cancer Metastasis and Drug Resistance: Challenges and Progress; Ahmad, A., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 51–64. ISBN 978-3-030-20301-6. [Google Scholar]
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html (accessed on 7 October 2024).
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H.; Franzoi, M.A.B.; Temin, S.; Anders, C.K.; Chandarlapaty, S.; Crews, J.R.; Kirshner, J.J.; Krop, I.E.; Lin, N.U.; Morikawa, A.; et al. Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 2612–2635. [Google Scholar] [CrossRef]
- Thong, M.S.Y.; van Noorden, C.J.F.; Steindorf, K.; Arndt, V. Cancer-Related Fatigue: Causes and Current Treatment Options. Curr. Treat. Options Oncol. 2020, 21, 17. [Google Scholar] [CrossRef]
- Kim, S.H.; Son, B.H.; Hwang, S.Y.; Han, W.; Yang, J.-H.; Lee, S.; Yun, Y.H. Fatigue and Depression in Disease-Free Breast Cancer Survivors: Prevalence, Correlates, and Association with Quality of Life. J. Pain Symptom Manag. 2008, 35, 644–655. [Google Scholar] [CrossRef]
- Fox, K.M.; Brooks, J.M.; Gandra, S.R.; Markus, R.; Chiou, C.-F. Estimation of Cachexia among Cancer Patients Based on Four Definitions. J. Oncol. 2009, 2009, 693458. [Google Scholar] [CrossRef]
- Groenvold, M.; Petersen, M.A.; Idler, E.; Bjorner, J.B.; Fayers, P.M.; Mouridsen, H.T. Psychological Distress and Fatigue Predicted Recurrence and Survival in Primary Breast Cancer Patients. Breast Cancer Res. Treat. 2007, 105, 209–219. [Google Scholar] [CrossRef]
- Fan, W.; Evans, R. PPARs and ERRs: Molecular Mediators of Mitochondrial Metabolism. Curr. Opin. Cell Biol. 2015, 33, 49–54. [Google Scholar] [CrossRef]
- Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Hamura, H.; Ikeda, Y.; Watanabe, M.; Magoori, K.; Ioka, R.X.; Tachibana, K.; et al. Activation of Peroxisome Proliferator-Activated Receptor δ Induces Fatty Acid β-Oxidation in Skeletal Muscle and Attenuates Metabolic Syndrome. Proc. Natl. Acad. Sci. USA 2003, 100, 15924–15929. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lee, C.-H.; Tiep, S.; Yu, R.T.; Ham, J.; Kang, H.; Evans, R.M. Peroxisome-Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity. Cell 2003, 113, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, P.A. The Roles of PPARs in Adipocyte Differentiation. Prog. Lipid Res. 2001, 40, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Regulation of Adipocyte Gene Expression and Differentiation by Peroxisome Proliferator Activated Receptor γ. Curr. Opin. Genet. Dev. 1995, 5, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, Y. Role of Peroxisome Proliferator-Activated Receptor-γ in the Glucose-Sensing Apparatus of Liver and β-Cells. Diabetes 2004, 53, S60–S65. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.E.; Rhodes, K.; Rodriguez, D.; Chahal, I.; Stanton, D.A.; Bohlen, J.; Davis, M.E.; Infante, A.M.; Hazard-Jenkins, H.; Klinke, D.J.; et al. Human Breast Cancer Xenograft Model Implicates Peroxisome Proliferator–Activated Receptor Signaling as Driver of Cancer-Induced Muscle Fatigue. Clin. Cancer Res. 2019, 25, 2336–2347. [Google Scholar] [CrossRef]
- Stanton, D.A.; Wilson, H.E.; Chapa, M.G.; Link, J.N.; Lupinacci, K.; Geldenhuys, W.J.; Pistilli, E.E. Rescue of a Peroxisome Proliferator Activated Receptor Gamma Gene Network in Muscle after Growth of Human Breast Tumour Xenografts. JCSM Rapid Commun. 2022, 5, 239–253. [Google Scholar] [CrossRef]
- Wilson, H.E.; Stanton, D.A.; Rellick, S.L.; Geldenhuys, W.J.; Pistilli, E.E. Breast Cancer-Associated Skeletal Muscle Mitochondrial Dysfunction and Lipid Accumulation Is Reversed by PPARG. Am. J. Physiol.-Cell Physiol. 2021, 320, C577–C590. [Google Scholar] [CrossRef]
- Stephens, N.A.; Skipworth, R.J.E.; MacDonald, A.J.; Greig, C.A.; Ross, J.A.; Fearon, K.C.H. Intramyocellular Lipid Droplets Increase with Progression of Cachexia in Cancer Patients. J. Cachexia Sarcopenia Muscle 2011, 2, 111–117. [Google Scholar] [CrossRef]
- Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.; Willson, T.M.; Glass, C.K.; Milburn, M.V. Ligand Binding and Co-Activator Assembly of the Peroxisome Proliferator-Activated Receptor-γ. Nature 1998, 395, 137–143. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, C.; Korenberg, J.R.; Chen, X.N.; Noya, D.; Rao, M.S.; Reddy, J.K. Structural Organization of Mouse Peroxisome Proliferator-Activated Receptor Gamma (mPPAR Gamma) Gene: Alternative Promoter Use and Different Splicing Yield Two mPPAR Gamma Isoforms. Proc. Natl. Acad. Sci. USA 1995, 92, 7921–7925. [Google Scholar] [CrossRef]
- Fajas, L.; Auboeuf, D.; Raspé, E.; Schoonjans, K.; Lefebvre, A.-M.; Saladin, R.; Najib, J.; Laville, M.; Fruchart, J.-C.; Deeb, S.; et al. The Organization, Promoter Analysis, and Expression of the Human PPARγ Gene. J. Biol. Chem. 1997, 272, 18779–18789. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G. Efficacy and Tolerability of Pioglitazone in Patients with Type 2 Diabetes Mellitus. Drugs 2010, 70, 1945–1961. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Son, E.W.; Yao, R. iDEP: An Integrated Web Application for Differential Expression and Pathway Analysis of RNA-Seq Data. BMC Bioinform. 2018, 19, 534. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Luo, W.; Friedman, M.S.; Shedden, K.; Hankenson, K.D.; Woolf, P.J. GAGE: Generally Applicable Gene Set Enrichment for Pathway Analysis. BMC Bioinform. 2009, 10, 161. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R Package for Flexible and Reproducible Analysis of Metabolomics Data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
- Clayton, S.A.; Mizener, A.D.; Rentz, L.E.; Pistilli, E. CLAMS Wrangler: A Python Program for Preprocessing Data Generated by the Comprehensive Laboratory Animal Monitoring System (v1.0.5); Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Mina, A.I.; LeClair, R.A.; LeClair, K.B.; Cohen, D.E.; Lantier, L.; Banks, A.S. CalR: A Web-Based Analysis Tool for Indirect Calorimetry Experiments. Cell Metab. 2018, 28, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.E.; Stanton, D.A.; Montgomery, C.; Infante, A.M.; Taylor, M.; Hazard-Jenkins, H.; Pugacheva, E.N.; Pistilli, E.E. Skeletal Muscle Reprogramming by Breast Cancer Regardless of Treatment History or Tumor Molecular Subtype. NPJ Breast Cancer 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, E.E.; Bogdanovich, S.; Garton, F.; Yang, N.; Gulbin, J.P.; Conner, J.D.; Anderson, B.G.; Quinn, L.S.; North, K.; Ahima, R.S.; et al. Loss of IL-15 Receptor α Alters the Endurance, Fatigability, and Metabolic Characteristics of Mouse Fast Skeletal Muscles. J. Clin. Investig. 2011, 121, 3120–3132. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, E.E.; Alway, S.E.; Hollander, J.M.; Wimsatt, J.H. Aging Alters Contractile Properties and Fiber Morphology in Pigeon Skeletal Muscle. J. Comp. Physiol. B 2014, 184, 1031–1039. [Google Scholar] [CrossRef]
- Brooks, S.V.; Faulkner, J.A. Contractile Properties of Skeletal Muscles from Young, Adult and Aged Mice. J. Physiol. 1988, 404, 71–82. [Google Scholar] [CrossRef]
- Lynch, G.S.; Hinkle, R.T.; Chamberlain, J.S.; Brooks, S.V.; Faulkner, J.A. Force and Power Output of Fast and Slow Skeletal Muscles from Mdx Mice 6-28 Months Old. J. Physiol. 2001, 535, 591–600. [Google Scholar] [CrossRef]
- Kiriaev, L.; Kueh, S.; Morley, J.W.; Houweling, P.J.; Chan, S.; North, K.N.; Head, S.I. Dystrophin-Negative Slow-Twitch Soleus Muscles Are Not Susceptible to Eccentric Contraction Induced Injury over the Lifespan of the Mdx Mouse. Am. J. Physiol.-Cell Physiol. 2021, 321, C704–C720. [Google Scholar] [CrossRef]
- Smith, S.R.; de Jonge, L.; Volaufova, J.; Li, Y.; Xie, H.; Bray, G.A. Effect of Pioglitazone on Body Composition and Energy Expenditure: A Randomized Controlled Trial. Metab. Clin. Exp. 2005, 54, 24–32. [Google Scholar] [CrossRef]
- Lamontagne, J.; Jalbert-Arsenault, É.; Pepin, É.; Peyot, M.-L.; Ruderman, N.B.; Nolan, C.J.; Joly, E.; Madiraju, S.R.M.; Poitout, V.; Prentki, M. Pioglitazone Acutely Reduces Energy Metabolism and Insulin Secretion in Rats. Diabetes 2013, 62, 2122–2129. [Google Scholar] [CrossRef]
- Takada, S.; Hirabayashi, K.; Kinugawa, S.; Yokota, T.; Matsushima, S.; Suga, T.; Kadoguchi, T.; Fukushima, A.; Homma, T.; Mizushima, W.; et al. Pioglitazone Ameliorates the Lowered Exercise Capacity and Impaired Mitochondrial Function of the Skeletal Muscle in Type 2 Diabetic Mice. Eur. J. Pharmacol. 2014, 740, 690–696. [Google Scholar] [CrossRef]
- Yokota, T.; Kinugawa, S.; Hirabayashi, K.; Suga, T.; Takada, S.; Omokawa, M.; Kadoguchi, T.; Takahashi, M.; Fukushima, A.; Matsushima, S.; et al. Pioglitazone Improves Whole-Body Aerobic Capacity and Skeletal Muscle Energy Metabolism in Patients with Metabolic Syndrome. J. Diabetes Investig. 2017, 8, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, T.V.; Monroy, A.; Kamath, S.; Sotero, R.; Cas, M.D.; Daniele, G.; Chavez, A.O.; Abdul-Ghani, M.; Hribal, M.L.; Sesti, G.; et al. Pioglitazone Corrects Dysregulation of Skeletal Muscle Mitochondrial Proteins Involved in ATP Synthesis in Type 2 Diabetes. Metabolism 2021, 114, 154416. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-Y.; Wang, D.; Kim, A.K.; Lau, E.; Lin, A.J.; Liem, D.A.; Zhang, J.; Zong, N.C.; Lam, M.P.Y.; Ping, P. Metabolic Labeling Reveals Proteome Dynamics of Mouse Mitochondria. Mol. Cell. Proteom. 2012, 11, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Morigny, P.; Zuber, J.; Haid, M.; Kaltenecker, D.; Riols, F.; Lima, J.D.C.; Simoes, E.; Otoch, J.P.; Schmidt, S.F.; Herzig, S.; et al. High Levels of Modified Ceramides Are a Defining Feature of Murine and Human Cancer Cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 1459–1475. [Google Scholar] [CrossRef] [PubMed]
- Straczkowski, M.; Kowalska, I.; Nikolajuk, A.; Dzienis-Straczkowska, S.; Kinalska, I.; Baranowski, M.; Zendzian-Piotrowska, M.; Brzezinska, Z.; Gorski, J. Relationship between Insulin Sensitivity and Sphingomyelin Signaling Pathway in Human Skeletal Muscle. Diabetes 2004, 53, 1215–1221. [Google Scholar] [CrossRef]
- Zendzian-Piotrowska, M.; Baranowski, M.; Zabielski, P.; Górski, J. Effects of Pioglitazone and High-Fat Diet on Ceramide Metabolism in Rat Skeletal Muscles. J. Physiol. Pharmacol. 2006, 57 (Suppl. 10), 101–114. [Google Scholar]
- Chavez, J.A.; Summers, S.A. Characterizing the Effects of Saturated Fatty Acids on Insulin Signaling and Ceramide and Diacylglycerol Accumulation in 3T3-L1 Adipocytes and C2C12 Myotubes. Arch. Biochem. Biophys. 2003, 419, 101–109. [Google Scholar] [CrossRef]
- Wood, P.A.; Amendt, B.A.; Rhead, W.J.; Millington, D.S.; Inoue, F.; Armstrong, D. Short-Chain Acyl-Coenzyme A Dehydrogenase Deficiency in Mice. Pediatr. Res. 1989, 25, 38–43. [Google Scholar] [CrossRef]
- Burke, R.E.; Levine, D.N.; Salcman, M.; Tsairis, P. Motor Units in Cat Soleus Muscle: Physiological, Histochemical and Morphological Characteristics. J. Physiol. 1974, 238, 503–514. [Google Scholar] [CrossRef]
- van Someren, K.A. Chapter 5—The Physiology of Anaerobic Endurance Training. In The Physiology of Training; Whyte, G., Spurway, N., MacLaren, D., Cracknell, J., Eds.; Churchill Livingstone: Edinburgh, UK, 2006; pp. 85–115. ISBN 978-0-443-10117-5. [Google Scholar]
- Baker, J.S.; McCormick, M.C.; Robergs, R.A. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J. Nutr. Metab. 2010, 2010, 905612. [Google Scholar] [CrossRef]
- Bohlen, J.; McLaughlin, S.L.; Hazard-Jenkins, H.; Infante, A.M.; Montgomery, C.; Davis, M.; Pistilli, E.E. Dysregulation of Metabolic-associated Pathways in Muscle of Breast Cancer Patients: Preclinical Evaluation of Interleukin-15 Targeting Fatigue. J. Cachexia Sarcopenia Muscle 2018, 9, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, G.C.; Nichols, C.; Guo, G.; Croston, T.L.; Thapa, D.; Hollander, J.M.; Pistilli, E.E. IL-15Rα Deficiency in Skeletal Muscle Alters Respiratory Function and the Proteome of Mitochondrial Subpopulations Independent of Changes to the Mitochondrial Genome. Mitochondrion 2015, 25, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Conlon, K.; Watson, D.C.; Waldmann, T.A.; Valentin, A.; Bergamaschi, C.; Felber, B.K.; Peer, C.J.; Figg, W.D.; Potter, E.L.; Roederer, M.; et al. Phase I Study of Single Agent NIZ985, a Recombinant Heterodimeric IL-15 Agonist, in Adult Patients with Metastatic or Unresectable Solid Tumors. J. Immunother. Cancer 2021, 9, e003388. [Google Scholar] [CrossRef] [PubMed]
- Leidner, R.; Conlon, K.; McNeel, D.G.; Wang-Gillam, A.; Gupta, S.; Wesolowski, R.; Chaudhari, M.; Hassounah, N.; Lee, J.B.; Lee, L.H.; et al. First-in-Human Phase I/Ib Study of NIZ985, a Recombinant Heterodimer of IL-15 and IL-15Rα, as a Single Agent and in Combination with Spartalizumab in Patients with Advanced and Metastatic Solid Tumors. J. Immunother. Cancer 2023, 11, e007725. [Google Scholar] [CrossRef]
- Lee, M.A.; Tan, L.; Yang, H.; Im, Y.-G.; Im, Y.J. Structures of PPARγ Complexed with Lobeglitazone and Pioglitazone Reveal Key Determinants for the Recognition of Antidiabetic Drugs. Sci. Rep. 2017, 7, 16837. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clayton, S.A.; Mizener, A.D.; Whetsell, M.A.; Rentz, L.E.; Meadows, E.M.; Geldenhuys, W.J.; Pistilli, E.E. Preclinical Multi-Omic Assessment of Pioglitazone in Skeletal Muscles of Mice Implanted with Human HER2/neu Overexpressing Breast Cancer Xenografts. Cancers 2024, 16, 3640. https://doi.org/10.3390/cancers16213640
Clayton SA, Mizener AD, Whetsell MA, Rentz LE, Meadows EM, Geldenhuys WJ, Pistilli EE. Preclinical Multi-Omic Assessment of Pioglitazone in Skeletal Muscles of Mice Implanted with Human HER2/neu Overexpressing Breast Cancer Xenografts. Cancers. 2024; 16(21):3640. https://doi.org/10.3390/cancers16213640
Chicago/Turabian StyleClayton, Stuart A., Alan D. Mizener, Marcella A. Whetsell, Lauren E. Rentz, Ethan M. Meadows, Werner J. Geldenhuys, and Emidio E. Pistilli. 2024. "Preclinical Multi-Omic Assessment of Pioglitazone in Skeletal Muscles of Mice Implanted with Human HER2/neu Overexpressing Breast Cancer Xenografts" Cancers 16, no. 21: 3640. https://doi.org/10.3390/cancers16213640
APA StyleClayton, S. A., Mizener, A. D., Whetsell, M. A., Rentz, L. E., Meadows, E. M., Geldenhuys, W. J., & Pistilli, E. E. (2024). Preclinical Multi-Omic Assessment of Pioglitazone in Skeletal Muscles of Mice Implanted with Human HER2/neu Overexpressing Breast Cancer Xenografts. Cancers, 16(21), 3640. https://doi.org/10.3390/cancers16213640