From Real-World Data to Causally Interpretable Models: A Bayesian Network to Predict Cardiovascular Diseases in Adolescents and Young Adults with Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population-Based Cohort (PBC)
- Female patients aged 18–39 years at first BC diagnosis;
- One primary tumor only;
- Malignant carcinomas only;
- 1-year survivors;
- No metastases at diagnosis;
- No CVD before cancer diagnosis.
2.2. Clinic-Based Cohort (CBC)
2.3. Variables Analyzed
2.4. Model Development and Evaluation
3. Results
3.1. Model Structure and Validity
3.2. Clinical Applications
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ouyang, D.; Baykaner, T.; Jamal, F.; Cheng, P.; Rhee, W.J. Artificial intelligence applications in cardio-oncology: Leveraging high dimensional cardiovascular data. Front. Cardiovasc. Med. 2022, 9, 941148. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.J.; van der Gaag, L.C.; Abu-Hanna, A. Bayesian networks in biomedicine and healthcare. Artif. Intell. Med. 2004, 30, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Scutari, M. Bayesian network models for incomplete and dynamic data. Stat. Neerl. 2020, 74, 397–419. [Google Scholar] [CrossRef]
- Bareinboim, E.; Pearl, J. Causal inference and the data-fusion problem. Proc. Natl. Acad. Sci. USA 2016, 113, 7345–7352. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J. From Bayesian Networks to Causal Networks. In Mathematical Models for Handling Partial Knowledge in Artificial Intelligence; Coletti, G., Dubois, D., Scozzafava, R., Eds.; Springer: New York, NY, USA, 1995; pp. 157–182. [Google Scholar] [CrossRef]
- Barr, R.D.; Ferrari, A.; Ries, L.; Whelan, J.; Bleyer, A.W. Cancer in adolescents and young adults: A narrative review of the current status and a view of the future. JAMA Pediatr. 2016, 170, 495–501. [Google Scholar] [CrossRef]
- Trama, A.; Botta, L.; Stiller, C.; Visser, O.; Cañete-Nieto, A.; Spycher, B.; Bielska-Lasota, M.; Katalinic, A.; Vener, C.; Innos, K.; et al. Survival of European adolescents and young adults diagnosed with cancer in 2010–2014. Eur. J. Cancer 2024, 202, 113558. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.; Freedman, R.; Partridge, A.H. The impact of young age at diagnosis (age <40 years) on prognosis varies by breast cancer subtype: A U.S. SEER database analysis. Breast 2022, 61, 77–83. [Google Scholar] [CrossRef]
- Schaffar, R.; Bouchardy, C.; Chappuis, P.O.; Bodmer, A.; Benhamou, S.; Rapiti, E. A population-based cohort of young women diagnosed with breast cancer in Geneva, Switzerland. PLoS ONE 2019, 14, e0222136. [Google Scholar] [CrossRef]
- Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef]
- Pantazi, D.; Tselepis, A.D. Cardiovascular toxic effects of antitumor agents: Pathogenetic mechanisms. Thromb. Res. 2022, 213 (Suppl. 1), S95–S102. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaard, V.A.; Ta, B.D.; van der Schaaf, A.; Bouma, A.B.; Middag, A.M.H.; Bentema-Joppe, E.J.; Van Dijk, L.V.; Van Dijk-Peters, F.B.J.; Marteijn, L.A.W.; De Bock, G.H.; et al. Validation and Modification of a Prediction Model for Acute Cardiac Events in Patients with Breast Cancer Treated With Radiotherapy Based on Three-Dimensional Dose Distributions to Cardiac Substructures. Erratum in: J. Clin. Oncol. 2017, 35, 3736. [Google Scholar] [CrossRef] [PubMed]
- Thrasher, P.; Singh, M.; Singh, K. Ataxia-Telangiectasia Mutated Kinase: Role in Myocardial Remodeling. J. Rare Dis. Res. Treat. 2017, 2, 32–37. [Google Scholar] [PubMed]
- Moslemi, M.; Vafaei, M.; Khani, P.; Soheili, M.; Nedaeinia, R.; Manian, M.; Moradi, Y.; Sohrabi, E. The prevalence of ataxia telangiectasia mutated (ATM) variants in patients with breast cancer patients: A systematic review and meta-analysis. Cancer Cell Int. 2021, 21, 474. [Google Scholar] [CrossRef]
- Bernasconi, A.; Barigelletti, G.; Tittarelli, A.; Botta, L.; Gatta, G.; Tagliabue, G.; Contiero, P.; Guzzinati, S.; Andreano, A.; Manneschi, G.; et al. Adolescent and Young Adult Cancer Survivors: Design and Characteristics of the First Nationwide Population-Based Cohort in Italy. J. Adolesc. Young Adult Oncol. 2020, 9, 586–593. [Google Scholar] [CrossRef]
- Andreano, A.; Rebora, P.; Valsecchi, M.G.; Russo, A.G. Adherence to guidelines and breast cancer patients survival: A population-based cohort study analyzed with a causal inference approach. Breast Cancer Res. Treat. 2017, 164, 119–131. [Google Scholar] [CrossRef]
- Vallerio, P.; Orenti, A.; Tosi, F.; Maistrello, M.; Palazzini, M.; Cingarlini, S.; Colombo, P.; Bertuzzi, M.; Spina, F.; Amatu, A.; et al. Major adverse cardiovascular events associated with VEGF-targeted anticancer tyrosine kinase inhibitors: A real-life study and proposed algorithm for proactive management. ESMO Open 2022, 7, 100338. [Google Scholar] [CrossRef]
- Italian Association of Medical Oncology [AIOM]. Treatment Guidelines for Breast Cancer in Italy. 2014. Available online: https://www.aiom.it/neoplasie-della-mammella-7/ (accessed on 12 September 2024).
- Jensen, F.V.; Nielsen, T.D. Causal and Bayesian networks. In Bayesian Networks and Decision Graphs; Springer: New York, NY, USA, 2007. [Google Scholar]
- Zanga, A.; Ozkirimli, E.; Stella, F. A Survey on Causal Discovery: Theory and Practice. Int. J. Approx. Reason. 2022, 151, 101–129. [Google Scholar] [CrossRef]
- Bernasconi, A.; Zanga, A.; Lucas, P.J.; Scutari, M.; Stella, F.A. Towards a Transportable Causal Network Model Based on Observational Healthcare Data. In Proceedings of the 2nd AIxIA Workshop on Artificial Intelligence For Healthcare (HC@AIxIA 2023), Rome, Italy, 8 November 2023, Co-Located with the 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2023), Rome Italy, 6–9 November 2023; CEUR Workshop Proceedings: Aachen, Germany, 2023; Volume 3578, pp. 67–82. [Google Scholar]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef]
- Scutari, M. Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Faries, D.E.; Li, H.; Stamey, J.D.; Imbens, G.W. Addressing unmeasured confounding in comparative observational research. Pharmacoepidemiol. Drug Saf. 2018, 27, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J.; Bareinboim, E. External Validity: From Do-Calculus to Transportability Across Populations. Statist. Sci. 2014, 29, 579–595. [Google Scholar] [CrossRef]
- Pizzamiglio, S.; Ciniselli, C.M.; de Azambuja, E.; Agbor-Tarh, D.; Moreno-Aspitia, A.; Suter, T.M.; Trama, A.M.; De Santis, M.C.; De Cecco, L.; Iorio, M.V.; et al. Circulating microRNAs and therapy-associated cardiac events in HER2-positive breast cancer patients: An exploratory analysis from NeoALTTO. Breast Cancer Res. Treat. 2024, 206, 285–294. [Google Scholar] [CrossRef]
Variable Type | Label in the Model | Description | Format | Values |
---|---|---|---|---|
Selection node | ||||
[cohort] | Cohort identification label | Discrete | Population-based cohort; clinic-based cohort | |
Cancer survival prognostic factors | ||||
[age35] | Patient aged 35 years or older at the date of breast cancer diagnosis | Dichotomous | Yes/No | |
[histology] | Tumor morphology, according to ICD-O-3 1 morphology codes | Discrete | Ductal and lobular neoplasm (ICD-O-3 M = 8500–8504, 8508, 8510, 8513, 8514, 8520–8523, 8530, 8540, 8541, 8543); epithelial neoplasms, NOS (ICD-O-3 M = 8010, 8015); adenocarcinomas (ICD-O-3 M = 8140, 8201, 8211, 8230); neoplasms, NOS (ICD-O-3 M = 8000, 8001, 8005); other histologies (ICD-O-3 M = 8050, 8070, 8575) | |
[grade] | Tumor grading, according to ICD-O-3 codes | Discrete | Grade 1; Grade 2; Grade 3 | |
[vascular] | Tumor spread to the vascular system at the time of diagnosis | Dichotomous | Yes/No | |
[ki67] | Ki67 index higher than 14% | Dichotomous | Yes/No | |
[receptors] | Tumor receptor status | Discrete | Luminal; Luminal A; Luminal B; Luminal HER2; HER 2-enriched; triple-negative | |
[pT] | Tumor size at the time of diagnosis (according to pathological stage) | Discrete | pT1 (<2 cm); pT2 (2–5 cm); pT3 (>5 cm); pt4 (spread to other organs) | |
[pN] | Lymph nodes at the time of diagnosis (according to pathological stage) | Discrete | pN0 (no lymph node involvement); pN+ (lymph node involvement) | |
Cancer prognosis | ||||
[death_in_5y] | Death in the 5 years after cancer diagnosis | Dichotomous | Yes/No | |
Cancer treatments | ||||
[chemo_neo] | Neoadjuvant chemotherapy, i.e., the chemotherapy was administered within 6 months before the main surgical procedure | Dichotomous | Yes/No | |
[radio_neo] | Neoadjuvant radiotherapy, i.e., the radiotherapy was administered within 6 months before the main surgical procedure | Dichotomous | Yes/No | |
[target_neo] | Neoadjuvant target therapy, i.e., the targeted therapy was administered within 6 months before the main surgical procedure | Dichotomous | Yes/No | |
[hormon_neo] | Neoadjuvant hormone therapy, i.e., hormone therapy was administered within 6 months before the main surgical procedure | Dichotomous | Yes/No | |
[surgery] | Surgery type | Discrete | Conservative; radical (i.e., mastectomy) | |
[chemo_adju] | Adjuvant chemotherapy, i.e., the chemotherapy was administered within 1 year after the main surgical procedure | Dichotomous | Yes/No | |
[radio_adju] | Adjuvant radiotherapy, i.e., the radiotherapy was administered within 1 year after the main surgical procedure | Dichotomous | Yes/No | |
[target_adju] | Adjuvant target therapy, i.e., the target therapy was administered within 1 year after the main surgical procedure | Dichotomous | Yes/No | |
[hormons_adiu] | Adjuvant hormone therapy, i.e., the hormone therapy was administered within 1 year after the main surgical procedure | Dichotomous | Yes/No | |
Other cardiovascular risk factors | ||||
[dyslipidemia] | Diagnosis of dyslipidemia | Discrete | Pre (diagnosis of dyslipidemia within 1 year before the cancer diagnosis date); Post (diagnosis of dyslipidemia within 5 years after the cancer diagnosis date); No (no diagnosis of dyslipidemia) | |
[hypertension] | Diagnosis of hypertension | Discrete | Pre (diagnosis of hypertension within 1 year before the cancer diagnosis date); Post (diagnosis of hypertension within 5 years after the cancer diagnosis date); No (no diagnosis of hypertension) | |
[t2db] | Diagnosis of type 2 diabetes | Discrete | Pre (diagnosis of type 2 diabetes within 1 year before the cancer diagnosis date); Post (diagnosis of type 2 diabetes within 5 years after the cancer diagnosis date); No (no diagnosis of type 2 diabetes) | |
Target variables | ||||
[cardiotoxicity] | The patient showed any sign of cardiotoxicity (i.e., conduction disorders and arrhythmias or heart failure due to chemo-/radiotherapy) within 5 years after the cancer diagnosis | Dichotomous | Yes/No | |
[ischemic_heart_disease] | Diagnosis of ischemic heart disease within 5 years after the cancer diagnosis | Dichotomous | Yes/No | |
[cvds] | Diagnosis of any cardiovascular disease within 5 years after the cancer diagnosis | Dichotomous | Yes/No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernasconi, A.; Zanga, A.; Lucas, P.J.F.; Scutari, M.; Di Cosimo, S.; De Santis, M.C.; La Rocca, E.; Baili, P.; Cavallo, I.; Verderio, P.; et al. From Real-World Data to Causally Interpretable Models: A Bayesian Network to Predict Cardiovascular Diseases in Adolescents and Young Adults with Breast Cancer. Cancers 2024, 16, 3643. https://doi.org/10.3390/cancers16213643
Bernasconi A, Zanga A, Lucas PJF, Scutari M, Di Cosimo S, De Santis MC, La Rocca E, Baili P, Cavallo I, Verderio P, et al. From Real-World Data to Causally Interpretable Models: A Bayesian Network to Predict Cardiovascular Diseases in Adolescents and Young Adults with Breast Cancer. Cancers. 2024; 16(21):3643. https://doi.org/10.3390/cancers16213643
Chicago/Turabian StyleBernasconi, Alice, Alessio Zanga, Peter J. F. Lucas, Marco Scutari, Serena Di Cosimo, Maria Carmen De Santis, Eliana La Rocca, Paolo Baili, Ilaria Cavallo, Paolo Verderio, and et al. 2024. "From Real-World Data to Causally Interpretable Models: A Bayesian Network to Predict Cardiovascular Diseases in Adolescents and Young Adults with Breast Cancer" Cancers 16, no. 21: 3643. https://doi.org/10.3390/cancers16213643
APA StyleBernasconi, A., Zanga, A., Lucas, P. J. F., Scutari, M., Di Cosimo, S., De Santis, M. C., La Rocca, E., Baili, P., Cavallo, I., Verderio, P., Ciniselli, C. M., Pizzamiglio, S., Blanda, A., Perego, P., Vallerio, P., Stella, F., Trama, A., & The Ada Working Group. (2024). From Real-World Data to Causally Interpretable Models: A Bayesian Network to Predict Cardiovascular Diseases in Adolescents and Young Adults with Breast Cancer. Cancers, 16(21), 3643. https://doi.org/10.3390/cancers16213643