Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies
Simple Summary
Abstract
1. Introduction
2. Review Sections
2.1. General Clinicopathological Characteristics of ILC
2.2. Histological Subtypes of ILC
2.2.1. Pleomorphic and Signet Ring Cell Carcinoma
2.2.2. Tubulolobular Carcinoma
2.2.3. Alveolar and Solid-Papillary ILC
2.2.4. Trabecular and Plexiform ILC
2.2.5. Histiocytoid and Neuroendocrine ILC
2.3. Associated Mutations and Mechanisms of Disease Progression
2.3.1. CDH1 Mutations
2.3.2. FOXA1
2.3.3. PTEN and PIK3CA
2.3.4. FGFR1
2.3.5. APOBEC-Derived Mutations
2.3.6. ESR1, MDM4
2.3.7. Endocrine Resistance-Associated Mutations
2.3.8. Prognostic Value of Genetic Alterations
2.3.9. ILC mRNA Subtypes and Prognosis
2.4. Advances in Treatment and Prospects
2.4.1. Surgical Considerations
2.4.2. Adjuvant Radiation Treatment
2.4.3. Chemotherapy
2.4.4. Endocrine Resistance and HER2 Mutations
2.4.5. HER3-Targeting Therapies and Prospects
2.4.6. Resistance to CDK4/6 Inhibitors
2.4.7. Tyrosine Kinase Inhibitors
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sledge, G.W.; Chagpar, A.; Perou, C. Collective Wisdom: Lobular Carcinoma of the Breast. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Mitsogianni, M.; Trontzas, I.P.; Gomatou, G.; Ioannou, S.; Syrigos, N.K.; Kotteas, E.A. The Changing Treatment of Metastatic Her2-Positive Breast Cancer. Oncol. Lett. 2021, 21, 287. [Google Scholar] [CrossRef] [PubMed]
- Metzger-Filho, O.; Procter, M.; de Azambuja, E.; Leyland-Jones, B.; Gelber, R.D.; Dowsett, M.; Loi, S.; Saini, K.S.; Cameron, D.; Untch, M.; et al. Magnitude of Trastuzumab Benefit in Patients with HER2-Positive, Invasive Lobular Breast Carcinoma: Results from the HERA Trial. J. Clin. Oncol. 2013, 31, 1954–1960. [Google Scholar] [CrossRef]
- Thomas, A.; Reis-Filho, J.S.; Geyer, C.E.; Wen, H.Y. Rare Subtypes of Triple Negative Breast Cancer: Current Understanding and Future Directions. NPJ Breast Cancer 2023, 9, 55. [Google Scholar] [CrossRef]
- Voorwerk, L.; Isaeva, O.I.; Horlings, H.M.; Balduzzi, S.; Chelushkin, M.; Bakker, N.A.M.; Champanhet, E.; Garner, H.; Sikorska, K.; Loo, C.E.; et al. PD-L1 Blockade in Combination with Carboplatin as Immune Induction in Metastatic Lobular Breast Cancer: The GELATO Trial. Nat. Cancer 2023, 4, 535–549. [Google Scholar] [CrossRef] [PubMed]
- McCart Reed, A.E.; Kutasovic, J.R.; Lakhani, S.R.; Simpson, P.T. Invasive Lobular Carcinoma of the Breast: Morphology, Biomarkers and ’omics. Breast Cancer Res. 2015, 17, 12. [Google Scholar] [CrossRef]
- McCart Reed, A.E.; Kalinowski, L.; Simpson, P.T.; Lakhani, S.R. Invasive Lobular Carcinoma of the Breast: The Increasing Importance of This Special Subtype. Breast Cancer Res. 2021, 23, 6. [Google Scholar] [CrossRef]
- Mathew, A.; Rajagopal, P.S.; Villgran, V.; Sandhu, G.S.; Jankowitz, R.C.; Jacob, M.; Rosenzweig, M.; Oesterreich, S.; Brufsky, A. Distinct Pattern of Metastases in Patients with Invasive Lobular Carcinoma of the Breast. Geburtshilfe Frauenheilkd 2017, 77, 660–666. [Google Scholar] [CrossRef]
- Tsagkaraki, I.M.; Kourouniotis, C.D.; Gomatou, G.L.; Syrigos, N.K.; Kotteas, E.A. Orbital Metastases of Invasive Lobular Breast Carcinoma. Breast Dis. 2019, 38, 85–91. [Google Scholar] [CrossRef]
- Yang, C.; Lei, C.; Zhang, Y.; Zhang, J.; Ji, F.; Pan, W.; Zhang, L.; Gao, H.; Yang, M.; Li, J.; et al. Comparison of Overall Survival Between Invasive Lobular Breast Carcinoma and Invasive Ductal Breast Carcinoma: A Propensity Score Matching Study Based on SEER Database. Front. Oncol. 2020, 10, 590643. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Y.; Wang, L.; Liu, H.; Chen, M.; Niu, R. Strong Adverse Effect of Epidermal Growth Factor Receptor 2 Overexpression on Prognosis of Patients with Invasive Lobular Breast Cancer: A Comparative Study with Invasive Ductal Breast Cancer in Chinese Population. Tumour Biol. 2015, 36, 6113–6124. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Hu, C.; Nathanson, K.L.; Weitzel, J.N.; Goldgar, D.E.; Kraft, P.; Gnanaolivu, R.D.; Na, J.; Huang, H.; Boddicker, N.J.; et al. Germline Pathogenic Variants in Cancer Predisposition Genes Among Women with Invasive Lobular Carcinoma of the Breast. J. Clin. Oncol. 2021, 39, 3918–3926. [Google Scholar] [CrossRef]
- Pramod, N.; Nigam, A.; Basree, M.; Mawalkar, R.; Mehra, S.; Shinde, N.; Tozbikian, G.; Williams, N.; Majumder, S.; Ramaswamy, B. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021, 26, e943–e953. [Google Scholar] [CrossRef]
- Bos, M.K.; Smid, M.; Sleijfer, S.; Martens, J.W.M. Apolipoprotein B mRNA-Editing Catalytic Polypeptide-Like-Induced Protein Changes in Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Throughout Disease Progression. JCO Precis. Oncol. 2022, 6, e2100190. [Google Scholar] [CrossRef]
- Ma, C.X.; Luo, J.; Freedman, R.A.; Pluard, T.J.; Nangia, J.R.; Lu, J.; Valdez-Albini, F.; Cobleigh, M.; Jones, J.M.; Lin, N.U.; et al. The Phase II MutHER Study of Neratinib Alone and in Combination with Fulvestrant in HER2-Mutated, Non-Amplified Metastatic Breast Cancer. Clin. Cancer Res. 2022, 28, 1258–1267. [Google Scholar] [CrossRef]
- Van Baelen, K.; Geukens, T.; Maetens, M.; Tjan-Heijnen, V.; Lord, C.J.; Linn, S.; Bidard, F.-C.; Richard, F.; Yang, W.W.; Steele, R.E.; et al. Current and Future Diagnostic and Treatment Strategies for Patients with Invasive Lobular Breast Cancer. Ann. Oncol. 2022, 33, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Gomatou, G.; Trontzas, I.; Ioannou, S.; Drizou, M.; Syrigos, N.; Kotteas, E. Mechanisms of Resistance to Cyclin-Dependent Kinase 4/6 Inhibitors. Mol. Biol. Rep. 2021, 48, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Riedlinger, G.M.; Joshi, S.; Hirshfield, K.M.; Barnard, N.; Ganesan, S. Targetable Alterations in Invasive Pleomorphic Lobular Carcinoma of the Breast. Breast Cancer Res. 2021, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Kelly, E.D.; Abraham, J.; Kruse, M. Invasive Lobular Breast Cancer: A Review of Pathogenesis, Diagnosis, Management, and Future Directions of Early Stage Disease. Semin. Oncol. 2019, 46, 121–132. [Google Scholar] [CrossRef]
- Christgen, M.; Cserni, G.; Floris, G.; Marchio, C.; Djerroudi, L.; Kreipe, H.; Derksen, P.W.B.; Vincent-Salomon, A. Lobular Breast Cancer: Histomorphology and Different Concepts of a Special Spectrum of Tumors. Cancers 2021, 13, 3695. [Google Scholar] [CrossRef]
- Göker, M.; Denys, H.; van de Vijver, K.; Braems, G. Genomic Assays for Lobular Breast Carcinoma. J. Clin. Transl. Res. 2022, 8, 523–531. [Google Scholar] [PubMed]
- Desmedt, C.; Salgado, R.; Fornili, M.; Pruneri, G.; Van den Eynden, G.; Zoppoli, G.; Rothé, F.; Buisseret, L.; Garaud, S.; Willard-Gallo, K.; et al. Immune Infiltration in Invasive Lobular Breast Cancer. J. Natl. Cancer Inst. 2018, 110, 768–776. [Google Scholar] [CrossRef]
- Tille, J.-C.; Vieira, A.F.; Saint-Martin, C.; Djerroudi, L.; Furhmann, L.; Bidard, F.-C.; Kirova, Y.; Tardivon, A.; Reyal, F.; Carton, M.; et al. Tumor-Infiltrating Lymphocytes Are Associated with Poor Prognosis in Invasive Lobular Breast Carcinoma. Mod. Pathol. 2020, 33, 2198–2207. [Google Scholar] [CrossRef]
- Ohashi, R.; Matsubara, M.; Watarai, Y.; Yanagihara, K.; Yamashita, K.; Tsuchiya, S.-I.; Takei, H.; Naito, Z. Pleomorphic Lobular Carcinoma of the Breast: A Comparison of Cytopathological Features with Other Lobular Carcinoma Variants. Cytopathology 2017, 28, 122–130. [Google Scholar] [CrossRef]
- Sinn, H.-P.; Kreipe, H. A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition. Breast Care 2013, 8, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.P.; Lee, S.K.; Kim, S.; Choi, M.-Y.; Bae, S.Y.; Kim, J.; Kim, M.; Kil, W.H.; Cho, E.Y.; Choe, J.-H.; et al. Invasive Pleomorphic Lobular Carcinoma of the Breast: Clinicopathologic Characteristics and Prognosis Compared with Invasive Ductal Carcinoma. J. Breast Cancer 2012, 15, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Al-Baimani, K.; Bazzarelli, A.; Clemons, M.; Robertson, S.J.; Addison, C.; Arnaout, A. Invasive Pleomorphic Lobular Carcinoma of the Breast: Pathologic, Clinical, and Therapeutic Considerations. Clin. Breast Cancer 2015, 15, 421–425. [Google Scholar] [CrossRef]
- Haque, W.; Arms, A.; Verma, V.; Hatch, S.; Brian Butler, E.; Teh, B.S. Outcomes of Pleomorphic Lobular Carcinoma versus Invasive Lobular Carcinoma. Breast 2019, 43, 67–73. [Google Scholar] [CrossRef]
- Narendra, S.; Jenkins, S.M.; Khoor, A.; Nassar, A. Clinical Outcome in Pleomorphic Lobular Carcinoma: A Case-Control Study with Comparison to Classic Invasive Lobular Carcinoma. Ann. Diagn. Pathol. 2015, 19, 64–69. [Google Scholar] [CrossRef]
- Wheeler, D.T.; Tai, L.H.; Bratthauer, G.L.; Waldner, D.L.; Tavassoli, F.A. Tubulolobular Carcinoma of the Breast: An Analysis of 27 Cases of a Tumor with a Hybrid Morphology and Immunoprofile. Am. J. Surg. Pathol. 2004, 28, 1587–1593. [Google Scholar] [CrossRef]
- Kuroda, H.; Tamaru, J.-I.; Takeuchi, I.; Ohnisi, K.; Sakamoto, G.; Adachi, A.; Kaneko, K.; Itoyama, S. Expression of E-Cadherin, Alpha-Catenin, and Beta-Catenin in Tubulolobular Carcinoma of the Breast. Virchows Arch. 2006, 448, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Esposito, N.N.; Chivukula, M.; Dabbs, D.J. The Ductal Phenotypic Expression of the E-Cadherin/Catenin Complex in Tubulolobular Carcinoma of the Breast: An Immunohistochemical and Clinicopathologic Study. Mod. Pathol. 2007, 20, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Azzopardi, J.G. Invasive Lobular Carcinoma of the Breast: Incidence and Variants. Histopathology 1979, 3, 467–488. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, H.F.; Rai, H.; Lovrics, P.; Vasudev, P.; Kolawole, H.F.; Rai, H.; Lovrics, P.; Vasudev, P. The Alveolar Variant of Lobular Carcinoma and Its Mimickers: A Case Series. Cureus 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Christgen, M.; Bartels, S.; van Luttikhuizen, J.L.; Schieck, M.; Pertschy, S.; Kundu, S.; Lehmann, U.; Sander, B.; Pelz, E.; Länger, F.; et al. Subclonal Analysis in a Lobular Breast Cancer with Classical and Solid Growth Pattern Mimicking a Solid-Papillary Carcinoma. J. Pathol. Clin. Res. 2017, 3, 191–202. [Google Scholar] [CrossRef]
- Kasashima, S.; Kawashima, A.; Zen, Y.; Ozaki, S.; Kobayashi, M.; Tsujibata, A.; Minato, H. Expression of Aberrant Mucins in Lobular Carcinoma with Histiocytoid Feature of the Breast. Virchows Arch. 2007, 450, 397–403. [Google Scholar] [CrossRef]
- Gupta, D.; Croitoru, C.M.; Ayala, A.G.; Sahin, A.A.; Middleton, L.P. E-Cadherin Immunohistochemical Analysis of Histiocytoid Carcinoma of the Breast. Ann. Diagn. Pathol. 2002, 6, 141–147. [Google Scholar] [CrossRef]
- Yu, J.; Dabbs, D.J.; Shuai, Y.; Niemeier, L.A.; Bhargava, R. Classical-Type Invasive Lobular Carcinoma with HER2 Overexpression: Clinical, Histologic, and Hormone Receptor Characteristics. Am. J. Clin. Pathol. 2011, 136, 88–97. [Google Scholar] [CrossRef]
- Tan, P.H.; Harada, O.; Thike, A.A.; Tse, G.M.-K. Histiocytoid Breast Carcinoma: An Enigmatic Lobular Entity. J. Clin. Pathol. 2011, 64, 654–659. [Google Scholar] [CrossRef]
- Reis-Filho, J.S.; Simpson, P.T.; Turner, N.C.; Lambros, M.B.; Jones, C.; Mackay, A.; Grigoriadis, A.; Sarrio, D.; Savage, K.; Dexter, T.; et al. FGFR1 Emerges as a Potential Therapeutic Target for Lobular Breast Carcinomas. Clin. Cancer Res. 2006, 12, 6652–6662. [Google Scholar] [CrossRef]
- Malorni, L.; Piazza, S.; Ciani, Y.; Guarducci, C.; Bonechi, M.; Biagioni, C.; Hart, C.D.; Verardo, R.; Di Leo, A.; Migliaccio, I. A Gene Expression Signature of Retinoblastoma Loss-of-Function Is a Predictive Biomarker of Resistance to Palbociclib in Breast Cancer Cell Lines and Is Prognostic in Patients with ER Positive Early Breast Cancer. Oncotarget 2016, 7, 68012–68022. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ward, B.M.; Yu, J.; Matthew-Onabanjo, A.N.; Janusis, J.; Hsieh, C.-C.; Tomaszewicz, K.; Hutchinson, L.; Zhu, L.J.; Kandil, D.; et al. IRS2 Mutations Linked to Invasion in Pleomorphic Invasive Lobular Carcinoma. JCI Insight 2018, 3, e97398. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Razavi, P.; Li, Q.; Toy, W.; Liu, B.; Ping, C.; Hsieh, W.; Sanchez-Vega, F.; Brown, D.N.; Da Cruz Paula, A.F.; et al. Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell 2018, 34, 893–905.e8. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Basudan, A.; Sikora, M.J.; Bahreini, A.; Tasdemir, N.; Levine, K.M.; Jankowitz, R.C.; McAuliffe, P.F.; Dabbs, D.; Haupt, S.; et al. Frequent Amplifications of ESR1, ERBB2 and MDM4 in Primary Invasive Lobular Breast Carcinoma. Cancer Lett. 2019, 461, 21–30. [Google Scholar] [CrossRef]
- Grote, I.; Bartels, S.; Christgen, H.; Radner, M.; Gronewold, M.; Kandt, L.; Raap, M.; Lehmann, U.; Gluz, O.; Graeser, M.; et al. ERBB2 Mutation Is Associated with Sustained Tumor Cell Proliferation after Short-Term Preoperative Endocrine Therapy in Early Lobular Breast Cancer. Mod. Pathol. 2022, 35, 1804–1811. [Google Scholar] [CrossRef]
- Ribnikar, D.; Horvat, V.J.; Ratosa, I.; Veitch, Z.W.; Grcar Kuzmanov, B.; Novakovic, S.; Langerholc, E.; Amir, E.; Seruga, B. Association between PIK3CA Activating Mutations and Outcomes in Early-Stage Invasive Lobular Breast Carcinoma Treated with Adjuvant Systemic Therapy. Radiol. Oncol. 2023, 57, 220–228. [Google Scholar] [CrossRef]
- Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2015, 163, 506–519. [Google Scholar] [CrossRef]
- Christgen, M.; Kandt, L.D.; Antonopoulos, W.; Bartels, S.; Van Bockstal, M.R.; Bredt, M.; Brito, M.J.; Christgen, H.; Colpaert, C.; Cserni, B.; et al. Inter-Observer Agreement for the Histological Diagnosis of Invasive Lobular Breast Carcinoma. J. Pathol. Clin. Res. 2022, 8, 191–205. [Google Scholar] [CrossRef]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of Breast and Ovarian Cancers among BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef]
- Tutt, A.; Robson, M.; Garber, J.E.; Domchek, S.M.; Audeh, M.W.; Weitzel, J.N.; Friedlander, M.; Arun, B.; Loman, N.; Schmutzler, R.K.; et al. Oral Poly(ADP-Ribose) Polymerase Inhibitor Olaparib in Patients with BRCA1 or BRCA2 Mutations and Advanced Breast Cancer: A Proof-of-Concept Trial. Lancet 2010, 376, 235–244. [Google Scholar] [CrossRef]
- van de Ven, R.A.H.; de Groot, J.S.; Park, D.; van Domselaar, R.; de Jong, D.; Szuhai, K.; van der Wall, E.; Rueda, O.M.; Ali, H.R.; Caldas, C.; et al. P120-Catenin Prevents Multinucleation through Control of MKLP1-Dependent RhoA Activity during Cytokinesis. Nat. Commun. 2016, 7, 13874. [Google Scholar] [CrossRef]
- Prokhortchouk, A.; Hendrich, B.; Jørgensen, H.; Ruzov, A.; Wilm, M.; Georgiev, G.; Bird, A.; Prokhortchouk, E. The P120 Catenin Partner Kaiso Is a DNA Methylation-Dependent Transcriptional Repressor. Genes. Dev. 2001, 15, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Domagala, P.; Jakubowska, A.; Jaworska-Bieniek, K.; Kaczmarek, K.; Durda, K.; Kurlapska, A.; Cybulski, C.; Lubinski, J. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers. PLoS ONE 2015, 10, e0130393. [Google Scholar] [CrossRef]
- Sijnesael, T.; Richard, F.; Rätze, M.A.; Koorman, T.; Bassey-Archibong, B.; Rohof, C.; Daniel, J.; Desmedt, C.; Derksen, P.W. Canonical Kaiso Target Genes Define a Functional Signature That Associates with Breast Cancer Survival and the Invasive Lobular Carcinoma Histological Type. J. Pathol. 2023, 261, 477–489. [Google Scholar] [CrossRef]
- Carroll, J.S.; Liu, X.S.; Brodsky, A.S.; Li, W.; Meyer, C.A.; Szary, A.J.; Eeckhoute, J.; Shao, W.; Hestermann, E.V.; Geistlinger, T.R.; et al. Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell 2005, 122, 33–43. [Google Scholar] [CrossRef]
- Hurtado, A.; Holmes, K.A.; Ross-Innes, C.S.; Schmidt, D.; Carroll, J.S. FOXA1 Is a Key Determinant of Estrogen Receptor Function and Endocrine Response. Nat. Genet. 2011, 43, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, V.; Stark, R.; Menon, S.; Carroll, J.S. GATA3 Acts Upstream of FOXA1 in Mediating ESR1 Binding by Shaping Enhancer Accessibility. Genome Res. 2013, 23, 12–22. [Google Scholar] [CrossRef]
- Desmedt, C.; Zoppoli, G.; Gundem, G.; Pruneri, G.; Larsimont, D.; Fornili, M.; Fumagalli, D.; Brown, D.; Rothé, F.; Vincent, D.; et al. Genomic Characterization of Primary Invasive Lobular Breast Cancer. J. Clin. Oncol. 2016, 34, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The Genomic and Transcriptomic Architecture of 2,000 Breast Tumours Reveals Novel Subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Makower, D.; Qin, J.; Lin, J.; Xue, X.; Sparano, J.A. The 21-Gene Recurrence Score in Early Non-Ductal Breast Cancer: A National Cancer Database Analysis. NPJ Breast Cancer 2022, 8, 4. [Google Scholar] [CrossRef]
- Christgen, M.; Bartels, S.; Radner, M.; Raap, M.; Rieger, L.; Christgen, H.; Gluz, O.; Nitz, U.; Harbeck, N.; Lehmann, U.; et al. ERBB2 Mutation Frequency in Lobular Breast Cancer with Pleomorphic Histology or High-Risk Characteristics by Molecular Expression Profiling. Genes Chromosomes Cancer 2019, 58, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Deniziaut, G.; Tille, J.C.; Bidard, F.-C.; Vacher, S.; Schnitzler, A.; Chemlali, W.; Trémoulet, L.; Fuhrmann, L.; Cottu, P.; Rouzier, R.; et al. ERBB2 Mutations Associated with Solid Variant of High-Grade Invasive Lobular Breast Carcinomas. Oncotarget 2016, 7, 73337–73346. [Google Scholar] [CrossRef] [PubMed]
- Ping, Z.; Siegal, G.P.; Harada, S.; Eltoum, I.-E.; Youssef, M.; Shen, T.; He, J.; Huang, Y.; Chen, D.; Li, Y.; et al. ERBB2 Mutation Is Associated with a Worse Prognosis in Patients with CDH1 Altered Invasive Lobular Cancer of the Breast. Oncotarget 2016, 7, 80655–80663. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.X.; Bose, R.; Gao, F.; Freedman, R.A.; Telli, M.L.; Kimmick, G.; Winer, E.; Naughton, M.; Goetz, M.P.; Russell, C.; et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 5687–5695. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Sheehan, C.E.; Boguniewicz, A.B.; Otto, G.; Downing, S.R.; Sun, J.; He, J.; Curran, J.A.; Ali, S.; et al. Relapsed Classic E-Cadherin (CDH1)-Mutated Invasive Lobular Breast Cancer Shows a High Frequency of HER2 (ERBB2) Gene Mutations. Clin. Cancer Res. 2013, 19, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Rosa, J.M.; Caniego-Casas, T.; Leskela, S.; Cristobal, E.; González-Martínez, S.; Moreno-Moreno, E.; López-Miranda, E.; Holgado, E.; Pérez-Mies, B.; Garrido, P.; et al. High Frequency of ERBB2 Activating Mutations in Invasive Lobular Breast Carcinoma with Pleomorphic Features. Cancers 2019, 11, 74. [Google Scholar] [CrossRef]
- Lien, H.-C.; Chen, Y.-L.; Juang, Y.-L.; Jeng, Y.-M. Frequent Alterations of HER2 through Mutation, Amplification, or Overexpression in Pleomorphic Lobular Carcinoma of the Breast. Breast Cancer Res. Treat. 2015, 150, 447–455. [Google Scholar] [CrossRef]
- Bose, R.; Kavuri, S.M.; Searleman, A.C.; Shen, W.; Shen, D.; Koboldt, D.C.; Monsey, J.; Goel, N.; Aronson, A.B.; Li, S.; et al. Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer. Cancer Discov. 2013, 3, 224–237. [Google Scholar] [CrossRef]
- Le Gal, M.; Ollivier, L.; Asselain, B.; Meunier, M.; Laurent, M.; Vielh, P.; Neuenschwander, S. Mammographic Features of 455 Invasive Lobular Carcinomas. Radiology 1992, 185, 705–708. [Google Scholar] [CrossRef]
- André, F.; Bachelot, T.; Campone, M.; Dalenc, F.; Perez-Garcia, J.M.; Hurvitz, S.A.; Turner, N.; Rugo, H.; Smith, J.W.; Deudon, S.; et al. Targeting FGFR with Dovitinib (TKI258): Preclinical and Clinical Data in Breast Cancer. Clin. Cancer Res. 2013, 19, 3693–3702. [Google Scholar] [CrossRef]
- Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016, 22, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Jackson, C.R.; Link, A.; Markey, M.P.; Colligan, B.M.; Douglass, L.E.; Pemberton, J.O.; Deddens, J.A.; Graff, J.R.; Carter, J.H. Int7G24A Variant of Transforming Growth Factor-Beta Receptor Type I Is Associated with Invasive Breast Cancer. Clin. Cancer Res. 2006, 12, 392–397. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Network. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Desmedt, C.; Pingitore, J.; Rothé, F.; Marchio, C.; Clatot, F.; Rouas, G.; Richard, F.; Bertucci, F.; Mariani, O.; Galant, C.; et al. ESR1 Mutations in Metastatic Lobular Breast Cancer Patients. NPJ Breast Cancer 2019, 5, 9. [Google Scholar] [CrossRef]
- Fribbens, C.; O’Leary, B.; Kilburn, L.; Hrebien, S.; Garcia-Murillas, I.; Beaney, M.; Cristofanilli, M.; Andre, F.; Loi, S.; Loibl, S.; et al. Plasma ESR1 Mutations and the Treatment of Estrogen Receptor-Positive Advanced Breast Cancer. J. Clin. Oncol. 2016, 34, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Toy, W.; Shen, Y.; Won, H.; Green, B.; Sakr, R.A.; Will, M.; Li, Z.; Gala, K.; Fanning, S.; King, T.A.; et al. ESR1 Ligand-Binding Domain Mutations in Hormone-Resistant Breast Cancer. Nat. Genet. 2013, 45, 1439–1445. [Google Scholar] [CrossRef]
- Fumagalli, D.; Wilson, T.R.; Salgado, R.; Lu, X.; Yu, J.; O’Brien, C.; Walter, K.; Huw, L.Y.; Criscitiello, C.; Laios, I.; et al. Somatic Mutation, Copy Number and Transcriptomic Profiles of Primary and Matched Metastatic Estrogen Receptor-Positive Breast Cancers. Ann. Oncol. 2016, 27, 1860–1866. [Google Scholar] [CrossRef]
- Grellety, T.; Soubeyran, I.; Robert, J.; Bonnefoi, H.; Italiano, A. A Clinical Case of Invasive Lobular Breast Carcinoma with ERBB2 and CDH1 Mutations Presenting a Dramatic Response to Anti-HER2-Directed Therapy. Ann. Oncol. 2016, 27, 199–200. [Google Scholar] [CrossRef]
- Stires, H.; Heckler, M.M.; Fu, X.; Li, Z.; Grasso, C.S.; Quist, M.J.; Lewis, J.A.; Klimach, U.; Zwart, A.; Mahajan, A.; et al. Integrated Molecular Analysis of Tamoxifen-Resistant Invasive Lobular Breast Cancer Cells Identifies MAPK and GRM/mGluR Signaling as Therapeutic Vulnerabilities. Mol. Cell Endocrinol. 2018, 471, 105–117. [Google Scholar] [CrossRef]
- Du, T.; Sikora, M.J.; Levine, K.M.; Tasdemir, N.; Riggins, R.B.; Wendell, S.G.; Van Houten, B.; Oesterreich, S. Key Regulators of Lipid Metabolism Drive Endocrine Resistance in Invasive Lobular Breast Cancer. Breast Cancer Res. 2018, 20, 106. [Google Scholar] [CrossRef]
- Sikora, M.J.; Jacobsen, B.M.; Levine, K.; Chen, J.; Davidson, N.E.; Lee, A.V.; Alexander, C.M.; Oesterreich, S. WNT4 Mediates Estrogen Receptor Signaling and Endocrine Resistance in Invasive Lobular Carcinoma Cell Lines. Breast Cancer Res. 2016, 18, 92. [Google Scholar] [CrossRef]
- Glont, S.-E.; Chernukhin, I.; Carroll, J.S. Comprehensive Genomic Analysis Reveals That the Pioneering Function of FOXA1 Is Independent of Hormonal Signaling. Cell Rep. 2019, 26, 2558–2565.e3. [Google Scholar] [CrossRef] [PubMed]
- Ross-Innes, C.S.; Stark, R.; Teschendorff, A.E.; Holmes, K.A.; Ali, H.R.; Dunning, M.J.; Brown, G.D.; Gojis, O.; Ellis, I.O.; Green, A.R.; et al. Differential Oestrogen Receptor Binding Is Associated with Clinical Outcome in Breast Cancer. Nature 2012, 481, 389–393. [Google Scholar] [CrossRef]
- Ciriello, G.; Sinha, R.; Hoadley, K.A.; Jacobsen, A.S.; Reva, B.; Perou, C.M.; Sander, C.; Schultz, N. The Molecular Diversity of Luminal A Breast Tumors. Breast Cancer Res. Treat. 2013, 141, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Truin, W.; Vugts, G.; Roumen, R.M.H.; Maaskant-Braat, A.J.G.; Nieuwenhuijzen, G.a.P.; van der Heiden-van der Loo, M.; Tjan-Heijnen, V.C.G.; Voogd, A.C. Differences in Response and Surgical Management with Neoadjuvant Chemotherapy in Invasive Lobular Versus Ductal Breast Cancer. Ann. Surg. Oncol. 2016, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Cocquyt, V.F.; Blondeel, P.N.; Depypere, H.T.; Praet, M.M.; Schelfhout, V.R.; Silva, O.E.; Hurley, J.; Serreyn, R.F.; Daems, K.K.; Van Belle, S.J.P. Different Responses to Preoperative Chemotherapy for Invasive Lobular and Invasive Ductal Breast Carcinoma. Eur. J. Surg. Oncol. (EJSO) 2003, 29, 361–367. [Google Scholar] [CrossRef]
- Mills, M.N.; Russo, N.W.; Fahey, M.; Nanda, R.H.; Raiker, S.; Jastrzebski, J.; Stout, L.L.; Wilson, J.P.; Altoos, T.A.; Allen, K.G.; et al. Increased Risk for Ipsilateral Breast Tumor Recurrence in Invasive Lobular Carcinoma after Accelerated Partial Breast Irradiation Brachytherapy. Oncologist 2021, 26, e1931–e1938. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Davey, M.G.; Barkley, L.R.; Kerin, M.J. Differences in Sensitivity to Neoadjuvant Chemotherapy among Invasive Lobular and Ductal Carcinoma of the Breast and Implications on Surgery-A Systematic Review and Meta-Analysis. Breast 2022, 61, 1–10. [Google Scholar] [CrossRef]
- Möbus, V.; Lück, H.-J.; Ladda, E.; Klare, P.; Schmidt, M.; Schneeweiss, A.; Grischke, E.-M.; Wachsmann, G.; Forstbauer, H.; Untch, M.; et al. Phase III Randomised Trial Comparing Intense Dose-Dense Chemotherapy to Tailored Dose-Dense Chemotherapy in High-Risk Early Breast Cancer (GAIN-2). Eur. J. Cancer 2021, 156, 138–148. [Google Scholar] [CrossRef]
- de Gregorio, A.; Janni, W.; Friedl, T.W.P.; Nitz, U.; Rack, B.; Schneeweiss, A.; Kates, R.; Fehm, T.; Kreipe, H.; Christgen, M.; et al. The Impact of Anthracyclines in Intermediate and High-Risk HER2-Negative Early Breast Cancer-a Pooled Analysis of the Randomised Clinical Trials PlanB and SUCCESS C. Br. J. Cancer 2022, 126, 1715–1724. [Google Scholar] [CrossRef]
- Trapani, D.; Gandini, S.; Corti, C.; Crimini, E.; Bellerba, F.; Minchella, I.; Criscitiello, C.; Tarantino, P.; Curigliano, G. Benefit of Adjuvant Chemotherapy in Patients with Lobular Breast Cancer: A Systematic Review of the Literature and Metanalysis. Cancer Treat. Rev. 2021, 97, 102205. [Google Scholar] [CrossRef] [PubMed]
- de Nonneville, A.; Jauffret, C.; Gonçalves, A.; Classe, J.-M.; Cohen, M.; Reyal, F.; Mazouni, C.; Chauvet, M.-P.; Chopin, N.; Colombo, P.-E.; et al. Adjuvant Chemotherapy in Lobular Carcinoma of the Breast: A Clinicopathological Score Identifies High-Risk Patient with Survival Benefit. Breast Cancer Res. Treat. 2019, 175, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Garcia, J.; Cortés, J.; Metzger Filho, O. Efficacy of Single-Agent Chemotherapy for Patients with Advanced Invasive Lobular Carcinoma: A Pooled Analysis from Three Clinical Trials. Oncologist 2019, 24, 1041–1047. [Google Scholar] [CrossRef]
- Gao, J.J.; Cheng, J.; Prowell, T.M.; Bloomquist, E.; Tang, S.; Wedam, S.B.; Royce, M.; Krol, D.; Osgood, C.; Ison, G.; et al. Overall Survival in Patients with Hormone Receptor-Positive, HER2-Negative, Advanced or Metastatic Breast Cancer Treated with a Cyclin-Dependent Kinase 4/6 Inhibitor plus Fulvestrant: A US Food and Drug Administration Pooled Analysis. Lancet Oncol. 2021, 22, 1573–1581. [Google Scholar] [CrossRef]
- Mouabbi, J.A.; Raghavendra, A.S.; Bassett, R.L.; Hassan, A.; Tripathy, D.; Layman, R.M. Histology-Based Survival Outcomes in Hormone Receptor-Positive Metastatic Breast Cancer Treated with Targeted Therapies. npj Breast Cancer 2022, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Sammons, S.; Raskina, K.; Danziger, N.; Alder, L.; Schrock, A.B.; Venstrom, J.M.; Knutson, K.L.; Thompson, E.A.; McGregor, K.; Sokol, E.; et al. APOBEC Mutational Signatures in Hormone Receptor-Positive Human Epidermal Growth Factor Receptor 2-Negative Breast Cancers Are Associated with Poor Outcomes on CDK4/6 Inhibitors and Endocrine Therapy. JCO Precis. Oncol. 2022, 6, e2200149. [Google Scholar] [CrossRef]
- Olukoya, A.O.; Stires, H.; Bahnassy, S.; Persaud, S.; Guerra, Y.; Ranjit, S.; Ma, S.; Cruz, M.I.; Benitez, C.; Rozeboom, A.M.; et al. Riluzole Suppresses Growth and Enhances Response to Endocrine Therapy in ER+ Breast Cancer. J. Endocr. Soc. 2023, 7, bvad117. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Tolaney, S.M.; Arteaga, C.; Cortes, J.; Sohn, J.; Marmé, F.; Hong, Q.; Delaney, R.J.; Hafeez, A.; et al. TROPiCS-02: A Phase III Study Investigating Sacituzumab Govitecan in the Treatment of HR+/HER2- Metastatic Breast Cancer. Future Oncol. 2020, 16, 705–715. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortés, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Gómez Pardo, P.; et al. Overall Survival with Sacituzumab Govitecan in Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer (TROPiCS-02): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet 2023, 402, 1423–1433. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Jhaveri, K.; Eli, L.D.; Wildiers, H.; Hurvitz, S.A.; Guerrero-Zotano, A.; Unni, N.; Brufsky, A.; Park, H.; Waisman, J.; Yang, E.S.; et al. Neratinib + Fulvestrant + Trastuzumab for HR-Positive, HER2-Negative, HER2-Mutant Metastatic Breast Cancer: Outcomes and Biomarker Analysis from the SUMMIT Trial. Ann. Oncol. 2023, 34, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Kiavue, N.; Cabel, L.; Melaabi, S.; Bataillon, G.; Callens, C.; Lerebours, F.; Pierga, J.-Y.; Bidard, F.-C. ERBB3 Mutations in Cancer: Biological Aspects, Prevalence and Therapeutics. Oncogene 2020, 39, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Bidard, F.-C.; Ng, C.K.Y.; Cottu, P.; Piscuoglio, S.; Escalup, L.; Sakr, R.A.; Reyal, F.; Mariani, P.; Lim, R.; Wang, L.; et al. Response to Dual HER2 Blockade in a Patient with HER3-Mutant Metastatic Breast Cancer. Ann. Oncol. 2015, 26, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Jansen, V.M.; Bhola, N.E.; Bauer, J.A.; Formisano, L.; Lee, K.-M.; Hutchinson, K.E.; Witkiewicz, A.K.; Moore, P.D.; Estrada, M.V.; Sánchez, V.; et al. Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Res. 2017, 77, 2488–2499. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.; Chen, C.H.; Wang, J.; Salam, A.B.; Dobrolecki, L.E.; Lewis, A.; Sallas, C.; Yates, C.C.; Gutierrez, C.; Karanam, B.; et al. Poziotinib Inhibits HER2-Mutant-Driven Therapeutic Resistance and Multiorgan Metastasis in Breast Cancer. Cancer Res. 2022, 82, 2928–2939. [Google Scholar] [CrossRef]
- Tian, H.; Qu, M.; Zhang, G.; Yuan, L.; Shi, Q.; Wang, Y.; Yang, Y.; Zhang, Y.; Qi, X. Dramatic Response to Pyrotinib and T-DM1 in HER2-Negative Metastatic Breast Cancer with 2 Activating HER2 Mutations. Oncologist 2023, 28, e534–e541. [Google Scholar] [CrossRef]
Study/Publication Year | Population (N) | ER, PR Status | HER2 Expression | Mutations and Frequency | Outcome |
---|---|---|---|---|---|
Reis-Filho et al. (2006) [40] | 13 | +/46%+ | − | FGFR1 amplification (8p12-p11.2 region) (46.1%) | MDA-MB-134 cell survival in classic ILC |
Malorni et al. (2016) [41] | 757 | +/+ | − | RB1 (32.8%) | CDK4/6i resistance |
Zhu et al. (2018) [42] | 16 | −/− | + | HER3 (somatic) (24%) IRS2 (29%) | PILC variant; poor prognosis PILC variant-increased invasion and glucose uptake; poor prognosis; high metastatic potential; reduced DFS, OS |
Li et al. (2018) [43] | 348 | +/data not available | − | FAT1 loss of function (100%) TP53 (65%) | CDK4/6i resistance |
Cao et al. (2019) [44] | 70 | +/data not available | − | ESR1: CN gain (14%) amplification (10%) | High risk of recurrence |
Yadav et al. (2021) [12] | 64,609 | 95%+/80%+ | 92% − | CDH1 (germline) (0.77%) BRCA2 (germline) (3.28%) CHEK2 (2.35%) ATM (1.7%) PALB2 (0.77%) | High risk for ILC Moderate risk for ILC |
Bos et al. (2022) [14] | 747 | +/data not available | − | APOBEC-driven: CDH1 (16%) NOCR1 (10%) TP53 (10%) MAP3KI (11%) | Tumor growth; metastasis; endocrine resistance |
Grote et al. (2022) [45] | 622 | +/87%+ | HER2mut enriched | HER2 (7.8%) | Endocrine resistance |
Ma et al. (2022) [15] | 381 | >87%+/>40%+ | −/non-amplified | HER2 L755 (7.32%) | Endocrine resistance; low CBR |
Ribnikar et al. (2023) [46] | 365 | >90%+/>90%+ | >90%− | PIK3CA (somatic) (45%) | Favorable prognosis; increased DFS, OS; benefit with AΙs and extended endocrine therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontogiannis, A.; Karaviti, E.; Karaviti, D.; Lanitis, S.; Gomatou, G.; Syrigos, N.K.; Kotteas, E. Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers 2024, 16, 3826. https://doi.org/10.3390/cancers16223826
Kontogiannis A, Karaviti E, Karaviti D, Lanitis S, Gomatou G, Syrigos NK, Kotteas E. Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers. 2024; 16(22):3826. https://doi.org/10.3390/cancers16223826
Chicago/Turabian StyleKontogiannis, Athanasios, Eleftheria Karaviti, Dimitra Karaviti, Sophocles Lanitis, Georgia Gomatou, Nikolaos K. Syrigos, and Elias Kotteas. 2024. "Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies" Cancers 16, no. 22: 3826. https://doi.org/10.3390/cancers16223826
APA StyleKontogiannis, A., Karaviti, E., Karaviti, D., Lanitis, S., Gomatou, G., Syrigos, N. K., & Kotteas, E. (2024). Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers, 16(22), 3826. https://doi.org/10.3390/cancers16223826