The Prognostic Impact of Adipophilin Expression on Long-Term Survival Following Liver Resection in Patients with Colorectal Liver Metastases
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Follow-Up
2.3. Histopathological Analysis
2.4. Immunohistochemistry
2.5. Statistical Analyses
3. Results
3.1. Background Characteristics
3.2. Long-Term Survival
3.3. Examination of Prognostic Factors for Long-Term Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Bird, N.C.; Mangnall, D.; Majeed, A.W. Biology of Colorectal Liver Metastases: A Review. J. Surg. Oncol. 2006, 94, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, S.; Lepage, C.; Hatem, C.; Coatmeur, O.; Faivre, J.; Bouvier, A.-M. Epidemiology and Management of Liver Metastases From Colorectal Cancer. Ann. Surg. 2006, 244, 254–259. [Google Scholar] [CrossRef]
- Engstrand, J.; Nilsson, H.; Strömberg, C.; Jonas, E.; Freedman, J. Colorectal Cancer Liver Metastases—A Population-Based Study on Incidence, Management and Survival. BMC Cancer 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Hackl, C.; Neumann, P.; Gerken, M.; Loss, M.; Klinkhammer-Schalke, M.; Schlitt, H.J. Treatment of Colorectal Liver Metastases in Germany: A Ten-Year Population-Based Analysis of 5772 Cases of Primary Colorectal Adenocarcinoma. BMC Cancer 2014, 14, 810. [Google Scholar] [CrossRef]
- House, M.G.; Ito, H.; Gönen, M.; Fong, Y.; Allen, P.J.; DeMatteo, R.P.; Brennan, M.F.; Blumgart, L.H.; Jarnagin, W.R.; D’Angelica, M.I. Survival after Hepatic Resection for Metastatic Colorectal Cancer: Trends in Outcomes for 1,600 Patients during Two Decades at a Single Institution. J. Am. Coll. Surg. 2010, 210, 744. [Google Scholar] [CrossRef]
- Andres, A.; Majno, P.E.; Morel, P.; Rubbia-Brandt, L.; Giostra, E.; Gervaz, P.; Terraz, S.; Allal, A.S.; Roth, A.D.; Mentha, G. Improved Long-Term Outcome of Surgery for Advanced Colorectal Liver Metastases: Reasons and Implications for Management on the Basis of a Severity Score. Ann. Surg. Oncol. 2008, 15, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Fujii, K.; Kagota, S.; Tomioka, A.; Yamaguchi, T.; Ohama, H.; Hamamoto, H.; Ishii, M.; Osumi, W.; Tsuchimoto, Y.; et al. The Management of Recurrence within Six Months after Hepatic Resection for Colorectal Liver Metastasis. Dig. Surg. 2020, 37, 282–291. [Google Scholar] [CrossRef]
- Wong, G.Y.M.; Mol, B.; Bhimani, N.; de Reuver, P.; Diakos, C.; Molloy, M.P.; Hugh, T.J. Recurrence Patterns Predict Survival after Resection of Colorectal Liver Metastases. ANZ J. Surg. 2022, 92, 2149–2156. [Google Scholar] [CrossRef]
- Fong, Y.; Fortner, J.; Sun, R.L.; Brennan, M.F.; Blumgart, L.H. Clinical Score for Predicting Recurrence After Hepatic Resection for Metastatic Colorectal Cancer. Ann. Surg. 1999, 230, 309. [Google Scholar] [CrossRef]
- Hill, C.R.S.; Chagpar, R.B.; Callender, G.G.; Brown, R.E.; Gilbert, J.E.; Martin, R.C.G.; McMasters, K.M.; Scoggins, C.R. Recurrence Following Hepatectomy for Metastatic Colorectal Cancer: Development of a Model That Predicts Patterns of Recurrence and Survival. Ann. Surg. Oncol. 2012, 19, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Heid, H.W.; Moll, R.; Schwetlick, I.; Rackwitz, H.-R.; Keenan, T.W. Adipophilin Is a Specific Marker of Lipid Accumulation in Diverse Cell Types and Diseases. Cell Tissue Res. 1998, 294, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Yoshizawa, A.; Sumiyoshi, S.; Sonobe, M.; Menju, T.; Hirata, M.; Momose, M.; Date, H.; Haga, H. Adipophilin Expression in Lung Adenocarcinoma Is Associated with Apocrine-like Features and Poor Clinical Prognosis: An Immunohistochemical Study of 328 Cases. Histopathology 2017, 70, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Tolkach, Y.; Lüders, C.; Meller, S.; Jung, K.; Stephan, C.; Kristiansen, G. Adipophilin as Prognostic Biomarker in Clear Cell Renal Cell Carcinoma. Oncotarget 2017, 8, 28672–28682. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ishida, M.; Ryota, H.; Yamamoto, T.; Kosaka, H.; Hirooka, S.; Yamaki, S.; Kotsuka, M.; Matsui, Y.; Yanagimoto, H.; et al. Adipophilin Expression Is an Indicator of Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma: An Immunohistochemical Analysis. Pancreatology 2019, 19, 443–448. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Ishida, M.; Yanai, H.; Tsuta, K.; Sekimoto, M.; Sugie, T. Adipophilin Expression Is an Independent Marker for Poor Prognosis of Patients with Triple-Negative Breast Cancer: An Immunohistochemical Study. PLoS ONE 2020, 15, e0242563. [Google Scholar] [CrossRef]
- Fujimoto, M.; Matsuzaki, I.; Nishitsuji, K.; Yamamoto, Y.; Murakami, D.; Yoshikawa, T.; Fukui, A.; Mori, Y.; Nishino, M.; Takahashi, Y.; et al. Adipophilin Expression in Cutaneous Malignant Melanoma Is Associated with High Proliferation and Poor Clinical Prognosis. Lab. Investig. 2020, 100, 727–737. [Google Scholar] [CrossRef]
- Hirai, H.; Tada, Y.; Nakaguro, M.; Kawakita, D.; Sato, Y.; Shimura, T.; Tsukahara, K.; Kano, S.; Ozawa, H.; Okami, K.; et al. The Clinicopathological Significance of the Adipophilin and Fatty Acid Synthase Expression in Salivary Duct Carcinoma. Virchows Arch. 2020, 477, 291–299. [Google Scholar] [CrossRef]
- Gupta, R.A.; Brockman, J.A.; Sarraf, P.; Willson, T.M.; DuBois, R.N. Target Genes of Peroxisome Proliferator-Activated Receptor Gamma in Colorectal Cancer Cells. J. Biol. Chem. 2001, 276, 29681–29687. [Google Scholar] [CrossRef]
- Matsubara, J.; Honda, K.; Ono, M.; Sekine, S.; Tanaka, Y.; Kobayashi, M.; Jung, G.; Sakuma, T.; Nakamori, S.; Sata, N.; et al. Identification of Adipophilin as a Potential Plasma Biomarker for Colorectal Cancer Using Label-Free Quantitative Mass Spectrometry and Protein Microarray. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2195–2203. [Google Scholar] [CrossRef]
- Iacopetta, B. Are There Two Sides to Colorectal Cancer? Int. J. Cancer 2002, 101, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Baran, B.; Mert Ozupek, N.; Yerli Tetik, N.; Acar, E.; Bekcioglu, O.; Baskin, Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018, 11, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Kaibori, M.; Iwamoto, S.; Ishizaki, M.; Matsui, K.; Saito, T.; Yoshioka, K.; Hamada, Y.; Kwon, A.H. Timing of Resection for Synchronous Liver Metastases from Colorectal Cancer. Dig. Dis. Sci. 2010, 55, 3262–3270. [Google Scholar] [CrossRef]
- Siriwardena, A.K.; Serrablo, A.; Fretland, Å.A.; Wigmore, S.J.; Ramia-Angel, J.M.; Malik, H.Z.; Stättner, S.; Søreide, K.; Zmora, O.; Meijerink, M.; et al. Multisocietal European Consensus on the Terminology, Diagnosis, and Management of Patients with Synchronous Colorectal Cancer and Liver Metastases: An E-AHPBA Consensus in Partnership with ESSO, ESCP, ESGAR, and CIRSE. Br. J. Surg. 2023, 110, 1161–1170. [Google Scholar] [CrossRef]
- Adam, R.; de Gramont, A.; Figueras, J.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; Sobrero, A.; et al. Managing Synchronous Liver Metastases from Colorectal Cancer: A Multidisciplinary International Consensus. Cancer Treat. Rev. 2015, 41, 729–741. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo Classification of Surgical Complications: Five-Year Experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Viganò, L.; Capussotti, L.; Lapointe, R.; Barroso, E.; Hubert, C.; Giuliante, F.; Ijzermans, J.N.M.; Mirza, D.F.; Elias, D.; Adam, R. Early Recurrence after Liver Resection for Colorectal Metastases: Risk Factors, Prognosis, and Treatment. A LiverMetSurvey-Based Study of 6,025 Patients. Ann. Surg. Oncol. 2014, 21, 1276–1286. [Google Scholar] [CrossRef]
- Hellingman, T.; de Swart, M.E.; Heymans, M.W.; Jansma, E.P.; van der Vliet, H.J.; Kazemier, G. Repeat Hepatectomy Justified in Patients with Early Recurrence of Colorectal Cancer Liver Metastases: A Systematic Review and Meta-Analysis. Cancer Epidemiol. 2021, 74, 101977. [Google Scholar] [CrossRef]
- Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: The 3d English Edition [Secondary Publication]. J. Anus Rectum Colon 2019, 3, 175–195. [CrossRef]
- Tustumi, F. Choosing the Most Appropriate Cut-Point for Continuous Variables. Rev. Col. Bras. Cir. 2022, 49, e20223346. [Google Scholar] [CrossRef] [PubMed]
- Bickel, P.E.; Tansey, J.T.; Welte, M.A. PAT Proteins, an Ancient Family of Lipid Droplet Proteins That Regulate Cellular Lipid Stores. Biochim. Biophys. Acta 2009, 1791, 419–440. [Google Scholar] [CrossRef]
- Kimmel, A.R.; Brasaemle, D.L.; McAndrews-Hill, M.; Sztalryd, C.; Londos, C. Adoption of PERILIPIN as a Unifying Nomenclature for the Mammalian PAT-Family of Intracellular Lipid Storage Droplet Proteins. J. Lipid Res. 2010, 51, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Eizuka, M.; Nakamura, S.; Endo, M.; Yanai, S.; Akasaka, R.; Toya, Y.; Fujita, Y.; Uesugi, N.; Ishida, K.; et al. Association between White Opaque Substance under Magnifying Colonoscopy and Lipid Droplets in Colorectal Epithelial Neoplasms. World J. Gastroenterol. 2017, 23, 8367–8375. [Google Scholar] [CrossRef]
- Mao, R.; Zhao, J.-J.; Bi, X.-Y.; Zhang, Y.-F.; Li, Z.-Y.; Zhou, J.-G.; Wu, X.-L.; Xiao, C.; Zhao, H.; Cai, J.-Q. A Postoperative Scoring System for Post-Hepatectomy Early Recurrence of Colorectal Liver Metastases. Oncotarget 2017, 8, 102531–102539. [Google Scholar] [CrossRef]
- Roberts, K.J.; White, A.; Cockbain, A.; Hodson, J.; Hidalgo, E.; Toogood, G.J.; Lodge, J.P.A. Performance of Prognostic Scores in Predicting Long-Term Outcome Following Resection of Colorectal Liver Metastases. Br. J. Surg. 2014, 101, 856–866. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Q.; Tan, S.-Y.; Jiang, Y.-H. Association between Carcinoembryonic Antigen, Carbohydrate Antigen 19-9 and Body Mass Index in Colorectal Cancer Patients. Mol. Clin. Oncol. 2013, 1, 879–886. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.-W.; Wang, K.; Xing, B.-C. The Primary Tumor Location Impacts Survival Outcome of Colorectal Liver Metastases after Hepatic Resection: A Systematic Review and Meta-Analysis. Eur. J. Surg. Oncol. 2019, 45, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, H.; Yoshida, S.; Tohyama, Y.; Yanagisawa, S.; Misawa, T.; Yanaga, K. Serum Carcinoembryonic Antigen Levels Before the First Curative Hepatectomy for Metastatic Colorectal Cancer Is a Predictor of Recurrence. Anticancer. Res. 2018, 38, 5351–5355. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ono, Y.; Kitano, Y.; Oba, A.; Sato, T.; Ito, H.; Mise, Y.; Shinozaki, E.; Inoue, Y.; Yamaguchi, K.; et al. Prognostic Impact of Tumor Markers (CEA and CA19-9) on Patients with Resectable Colorectal Liver Metastases Stratified by Tumor Number and Size: Potentially Valuable Biologic Markers for Preoperative Treatment. Ann. Surg. Oncol. 2023, 30, 7338–7347. [Google Scholar] [CrossRef]
- Pakiet, A.; Kobiela, J.; Stepnowski, P.; Sledzinski, T.; Mika, A. Changes in Lipids Composition and Metabolism in Colorectal Cancer: A Review. Lipids Health Dis. 2019, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.R.; Schulze, A. Lipid Metabolism in Cancer. FEBS J. 2012, 279, 2610–2623. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.; Sillars-Hardebol, A.H.; Postma, C.; Mongera, S.; Terhaar Sive Droste, J.; Obulkasim, A.; van de Wiel, M.; van Criekinge, W.; Ylstra, B.; Fijneman, R.J.A.; et al. Colorectal Adenoma to Carcinoma Progression Is Accompanied by Changes in Gene Expression Associated with Ageing, Chromosomal Instability, and Fatty Acid Metabolism. Cell. Oncol. 2012, 35, 53–63. [Google Scholar] [CrossRef]
- Masaki, S.; Hashimoto, Y.; Kunisho, S.; Kimoto, A.; Kitadai, Y. Fatty Change of the Liver Microenvironment Influences the Metastatic Potential of Colorectal Cancer. Int. J. Exp. Pathol. 2020, 101, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Jin, N.; Pawlik, T.; Cloyd, J.M. Neoadjuvant Chemotherapy for Colorectal Liver Metastases: A Contemporary Review of the Literature. World J. Gastrointest. Oncol. 2021, 13, 1043–1061. [Google Scholar] [CrossRef]
- Takeda, K.; Kikuchi, Y.; Sawada, Y.; Kumamoto, T.; Watanabe, J.; Kuniski, C.; Misumi, T.; Endo, I. Efficacy of Adjuvant Chemotherapy Following Curative Resection of Colorectal Cancer Liver Metastases. Anticancer Res. 2022, 42, 5497–5505. [Google Scholar] [CrossRef]
Variable | Overall (N = 102) | ADP-Negative (n = 51) | ADP-Positive (n = 51) | p Value | ||||
---|---|---|---|---|---|---|---|---|
Age, years | 70 | (62–75) | 69 | (61–75) | 70 | (64–77) | 0.457 | |
Gender | 0.047 | |||||||
Male | 46 | (45.1%) | 28 | (54.9%) | 18 | (35.3%) | ||
Female | 56 | (54.9%) | 23 | (45.1%) | 33 | (64.7%) | ||
BMI, kg/m2 | 22.4 | (20.1–24.7) | 22.8 | (20.2–24.5) | 22.2 | (19.3–24.8) | 0.741 | |
CEA, ng/mL | 11.0 | (4.4–33.3) | 9.4 | (4.8–24.9) | 14.4 | (3.9–47.1) | 0.261 | |
CA19-9, U/mL | 20.8 | (9.0–61.6) | 17.7 | (8.3–47.5) | 28.3 | (9.2–75.2) | 0.271 | |
Albumin, mg/dL | 4.1 | (3.7–4.4) | 4.1 | (3.8–4.4) | 4.1 | (3.5–4.4) | 0.180 | |
Prothrombin time, % | 98.7 | (89.0–108.9) | 102.8 | (90.4–109.7) | 95.8 | (85.8–105.7) | 0.033 | |
Total bilirubin, mg/dL | 0.6 | (0.5–0.7) | 0.6 | (0.5–0.8) | 0.5 | (0.5–0.7) | 0.409 | |
Neoadjuvant chemotherapy | 1.000 | |||||||
Present | 18 | (17.6%) | 9 | (17.6%) | 9 | (17.6%) | ||
Absent | 84 | (82.4%) | 42 | (82.4%) | 42 | (82.4%) | ||
Tumor size > 5 cm | ||||||||
Yes | 18 | (17.6%) | 9 | (17.6%) | 9 | (17.6%) | 1.000 | |
No | 84 | (82.4%) | 42 | (82.4%) | 42 | (82.4%) | ||
Number of tumors | 0.835 | |||||||
Solitary | 67 | (65.7%) | 33 | (64.7%) | 34 | (66.7%) | ||
Multiple | 35 | (34.3%) | 18 | (35.3%) | 17 | (33.3%) | ||
Location of colorectal tumor | 0.837 | |||||||
Right side | 37 | (36.3%) | 19 | (37.3%) | 18 | (35.3%) | ||
Left side | 65 | (63.7%) | 32 | (62.7%) | 33 | (64.7%) | ||
Type of liver metastases | 1.000 | |||||||
Synchronous | 34 | (33.3%) | 17 | (33.3%) | 17 | (33.3%) | ||
Metachronous | 68 | (66.7%) | 34 | (66.7%) | 34 | (66.7%) | ||
H—category of colorectal liver metastasis | 0.250 | |||||||
H1 | 85 | (83.4%) | 40 | (78.4%) | 45 | (88.3%) | ||
H2 | 14 | (13.7%) | 10 | (19.6%) | 4 | (7.8%) | ||
H3 | 3 | (2.9%) | 1 | (2.0%) | 2 | (3.9%) |
Variable | Overall (N = 102) | ADP-Negative (n = 51) | ADP-Positive (n = 51) | p | ||||
---|---|---|---|---|---|---|---|---|
Laparoscopic hepatectomy | 1.000 | |||||||
Yes | 24 | (23.5%) | 12 | (23.5%) | 12 | (23.5%) | ||
No | 78 | (76.5%) | 39 | (76.5%) | 39 | (76.5%) | ||
Surgical procedure | 0.678 | |||||||
Partial hepatectomy | 38 | (37.2%) | 16 | (31.4%) | 22 | (43.2%) | ||
Partial hepatectomy (two sites or more) | 11 | (10.8%) | 7 | (13.7%) | 4 | (7.8%) | ||
Sectionectomy | 28 | (27.5%) | 15 | (29.4%) | 13 | (25.5%) | ||
Bisectionectomy | 22 | (21.6%) | 12 | (23.5%) | 10 | (19.6%) | ||
Trisectionectomy | 3 | (2.9%) | 1 | (2.0%) | 2 | (3.9%) | ||
Blood transfusion | 0.214 | |||||||
Yes | 66 | (64.7%) | 36 | (70.6%) | 30 | (58.8%) | ||
No | 36 | (35.3%) | 15 | (29.4%) | 21 | (41.2%) | ||
Blood loss, mL | 495 | (202–993) | 475 | (192–1016) | 501 | (233–813) | 0.965 | |
Operation time, mins | 295 | (242–405) | 311 | (246–459) | 270 | (239–366) | 0.123 | |
Resection status | 0.436 | |||||||
R0 | 95 | (93.1%) | 46 | (90.2%) | 49 | (96.1%) | ||
R1 | 7 | (6.9%) | 5 | (9.8%) | 2 | (3.9%) | ||
Histological tumor differentiation | 0.005 | |||||||
Well-differentiated type | 15 | (14.7%) | 12 | (23.5%) | 3 | (5.9%) | ||
Moderately differentiated type | 72 | (70.6%) | 29 | (56.9%) | 43 | (84.3%) | ||
Poorly differentiated type | 3 | (2.9%) | 1 | (2.0%) | 2 | (3.9%) | ||
Mucinous carcinoma | 12 | (11.8%) | 9 | (17.6%) | 3 | (5.9%) | ||
Hospital stay, days | 12 | (9–16) | 11 | (9–15) | 12 | (9–16) | 0.554 | |
Clavien—Dindo classification, ≥IIIa | 0.138 | |||||||
Yes | 13 | (12.7%) | 4 | (7.8%) | 9 | (17.6%) | ||
No | 89 | (87.3%) | 47 | (92.2%) | 42 | (82.4%) | ||
Adjuvant chemotherapy | 0.692 | |||||||
Present | 48 | (47.1%) | 23 | (45.1%) | 25 | (49.0%) | ||
Absent | 54 | (52.9%) | 28 | (54.9%) | 26 | (51.0%) | ||
Recurrence | 0.005 | |||||||
Yes | 56 | (54.9%) | 21 | (41.2%) | 35 | (68.6%) | ||
No | 46 | (45.1%) | 30 | (58.8%) | 16 | (31.4%) | ||
Early recurrence | <0.001 | |||||||
Yes | 28 | (27.5%) | 6 | (11.8%) | 22 | (43.1%) | ||
No | 74 | (72.5%) | 45 | (88.2%) | 29 | (56.9%) | ||
Pattern of recurrence | 0.010 | |||||||
No recurrence | 46 | (45.1%) | 30 | (58.8%) | 16 | (31.4%) | ||
Intrahepatic only | 17 | (16.7%) | 6 | (11.8%) | 11 | (21.6%) | ||
Extrahepatic only | 16 | (15.7%) | 9 | (17.6%) | 7 | (13.7%) | ||
Both intrahepatic and extrahepatic | 23 | (22.5%) | 6 | (11.8%) | 17 | (33.3%) | ||
Intrahepatic recurrence | 0.001 | |||||||
Yes | 40 | (39.2%) | 12 | (23.5%) | 28 | (54.9%) | ||
No | 62 | (60.8%) | 39 | (76.5%) | 23 | (45.1%) | ||
Extrahepatic recurrence | 0.067 | |||||||
Yes | 39 | (38.2%) | 15 | (29.4%) | 24 | (47.1%) | ||
No | 63 | (61.8%) | 36 | (70.6%) | 27 | (52.9%) | ||
Observation period, months | 51.4 | (22.1–84.2) | 70.7 | (29.9–95.0) | 29.4 | (16.0–62.9) | <0.001 |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Adipophilin (positive versus negative) | 2.32 | 1.38–3.90 | 0.001 | 2.46 | 1.39–4.36 | 0.002 |
Age (≥75 versus <75 years) | 1.14 | 0.66–1.98 | 0.646 | 0.64 | 0.34–1.20 | 0.163 |
Gender (female versus male) | 1.42 | 0.85–2.38 | 0.178 | 1.36 | 0.77–2.39 | 0.294 |
Body mass index (≥25 versus <25 kg/m2) | 1.72 | 0.97–3.05 | 0.065 | 2.11 | 1.12–3.99 | 0.021 |
CEA (≥11.0 versus <11.0 ng/mL) | 2.06 | 1.23–3.45 | 0.006 | 2.52 | 1.35–4.70 | 0.004 |
Albumin (≥4.1 versus <4.1 mg/dL) | 0.74 | 0.45–1.23 | 0.243 | 0.60 | 0.33–1.11 | 0.103 |
Tumor diameter (≥5 versus <5 cm) | 1.61 | 0.85–3.04 | 0.141 | 0.81 | 0.34–1.95 | 0.641 |
Type of liver metastasis (metachronous versus synchronous) | 0.73 | 0.43–1.23 | 0.235 | 0.82 | 0.43–1.57 | 0.556 |
Location of colorectal cancer (right-sided versus left-sided) | 1.35 | 0.81–2.27 | 0.252 | 1.64 | 0.93–2.87 | 0.086 |
Surgical procedure (sectionectomy or more than sectionectomy versus partial hepatectomy) | 1.19 | 0.72–1.98 | 0.498 | 1.24 | 0.71–2.16 | 0.444 |
Resection status (R0 versus R1) | 1.19 | 0.48–2.98 | 0.710 | 1.57 | 0.56–4.41 | 0.393 |
Histological tumor differentiation (poor/muc versus well/mod) | 1.16 | 0.57–2.35 | 0.685 | 0.72 | 0.31–1.70 | 0.456 |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Adipophilin (positive versus negative) | 2.64 | 1.38–5.02 | 0.003 | 2.89 | 1.43–5.85 | 0.003 |
Age (≥75 versus <75 years) | 1.63 | 0.86–3.10 | 0.137 | 1.30 | 0.63–2.69 | 0.471 |
Gender (female versus male) | 1.96 | 1.03–3.72 | 0.040 | 1.74 | 0.88–3.43 | 0.114 |
Body mass index (≥25 versus <25 kg/m2) | 2.25 | 1.18–4.29 | 0.014 | 3.12 | 1.50–6.50 | 0.002 |
CEA (≥11.0 versus <11.0 ng/mL) | 2.13 | 1.13–4.01 | 0.019 | 1.72 | 0.83–3.57 | 0.147 |
Albumin (≥4.1 versus <4.1 mg/dL) | 0.63 | 0.34–1.16 | 0.138 | 0.57 | 0.28–1.17 | 0.126 |
Tumor diameter (≥5 versus <5 cm) | 1.67 | 0.82–3.40 | 0.156 | 1.34 | 0.56–3.17 | 0.509 |
Type of liver metastasis (metachronous versus synchronous) | 0.92 | 0.49–1.72 | 0.787 | 1.57 | 0.68–3.60 | 0.289 |
Location of colorectal cancer (right-sided versus left-sided) | 1.77 | 0.96–3.24 | 0.067 | 2.28 | 1.13–4.61 | 0.021 |
Surgical procedure (sectionectomy or more than sectionectomy versus partial hepatectomy) | 1.13 | 0.62–2.08 | 0.688 | 0.96 | 0.49–1.86 | 0.902 |
Resection status (R1 versus R0) | 1.09 | 0.34–3.53 | 0.887 | 2.59 | 0.68–9.83 | 0.163 |
Histological tumor differentiation (poor/muc versus well/mod) | 1.43 | 0.66–3.09 | 0.363 | 0.68 | 0.27–1.74 | 0.422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, T.T.; Ishida, M.; Kosaka, H.; Matsui, K.; Matsushima, H.; Yamamoto, H.; Kiguchi, G.; Nguyen, K.V.; Inoue, K.; Takada, M.; et al. The Prognostic Impact of Adipophilin Expression on Long-Term Survival Following Liver Resection in Patients with Colorectal Liver Metastases. Cancers 2024, 16, 3827. https://doi.org/10.3390/cancers16223827
Lai TT, Ishida M, Kosaka H, Matsui K, Matsushima H, Yamamoto H, Kiguchi G, Nguyen KV, Inoue K, Takada M, et al. The Prognostic Impact of Adipophilin Expression on Long-Term Survival Following Liver Resection in Patients with Colorectal Liver Metastases. Cancers. 2024; 16(22):3827. https://doi.org/10.3390/cancers16223827
Chicago/Turabian StyleLai, Tung Thanh, Mitsuaki Ishida, Hisashi Kosaka, Kosuke Matsui, Hideyuki Matsushima, Hidekazu Yamamoto, Gozo Kiguchi, Khanh Van Nguyen, Kyoko Inoue, Moriyasu Takada, and et al. 2024. "The Prognostic Impact of Adipophilin Expression on Long-Term Survival Following Liver Resection in Patients with Colorectal Liver Metastases" Cancers 16, no. 22: 3827. https://doi.org/10.3390/cancers16223827
APA StyleLai, T. T., Ishida, M., Kosaka, H., Matsui, K., Matsushima, H., Yamamoto, H., Kiguchi, G., Nguyen, K. V., Inoue, K., Takada, M., Kato, H., Hirose, Y., Yoshii, K., & Kaibori, M. (2024). The Prognostic Impact of Adipophilin Expression on Long-Term Survival Following Liver Resection in Patients with Colorectal Liver Metastases. Cancers, 16(22), 3827. https://doi.org/10.3390/cancers16223827