Cellular Therapies for Multiple Myeloma: Engineering Hope
Simple Summary
Abstract
1. Introduction
2. Types of Cell-Based Therapies for MM
2.1. CAR-T Cells
2.2. CAR-Natural Killer Cells
2.3. Dendritic Cell Vaccines
3. Cellular Therapies for Treatment of MM
3.1. BCMA CAR-T Cells
3.2. Approved BCMA-CAR-T Cell Products
3.3. Other BCMA-CAR-T Cell Products in Clinical Development
3.4. GPRC5D CAR-T Cells
3.5. SLAMF7/CS1 CAR-T Cells
3.6. CAR-NK Cells
3.7. Dendritic Cell Vaccines
4. Overcoming Challenges of CAR-T Cell Therapy in Multiple Myeloma
4.1. CAR-T Cell Production
4.2. Immunosuppressive Tumor Microenvironment
4.3. Tumor Heterogeneity
4.4. T Cell Dysfunction
4.5. Toxicities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003, 78, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple Myeloma: 2020 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Remstein, E.D.; Therneau, T.M.; Dispenzieri, A.; Kurtin, P.J.; Hodnefield, J.M.; Larson, D.R.; Plevak, M.F.; Jelinek, D.F.; Fonseca, R.; et al. Clinical Course and Prognosis of Smoldering (Asymptomatic) Multiple Myeloma. N. Engl. J. Med. 2007, 356, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Oben, B.; Froyen, G.; Maclachlan, K.H.; Leongamornlert, D.; Abascal, F.; Zheng-Lin, B.; Yellapantula, V.; Derkach, A.; Geerdens, E.; Diamond, B.T.; et al. Whole-Genome Sequencing Reveals Progressive versus Stable Myeloma Precursor Conditions as Two Distinct Entities. Nat. Commun. 2021, 12, 1861. [Google Scholar] [CrossRef]
- Maura, F.; Coffey, D.G.; Stein, C.K.; Braggio, E.; Ziccheddu, B.; Sharik, M.E.; Du, M.T.; Tafoya Alvarado, Y.; Shi, C.X.; Zhu, Y.X.; et al. The Genomic Landscape of Vk*MYC Myeloma Highlights Shared Pathways of Transformation between Mice and Humans. Nat. Commun. 2024, 15, 3844. [Google Scholar] [CrossRef]
- Diamond, B.; Yellapantula, V.; Rustad, E.H.; Maclachlan, K.H.; Mayerhoefer, M.; Kaiser, M.; Morgan, G.; Landgren, O.; Maura, F. Positive Selection as the Unifying Force for Clonal Evolution in Multiple Myeloma. Leukemia 2021, 35, 1511–1515. [Google Scholar] [CrossRef]
- Abdallah, N.H.; Smith, A.N.; Geyer, S.; Binder, M.; Greipp, P.T.; Kapoor, P.; Dispenzieri, A.; Gertz, M.A.; Baughn, L.B.; Lacy, M.Q.; et al. Conditional Survival in Multiple Myeloma and Impact of Prognostic Factors over Time. Blood Cancer J. 2023, 13, 78. [Google Scholar] [CrossRef]
- Lee, H.C.; Ailawadhi, S.; Gasparetto, C.J.; Jagannath, S.; Rifkin, R.M.; Durie, B.G.M.; Narang, M.; Terebelo, H.R.; Toomey, K.; Hardin, J.W.; et al. Treatment Patterns and Outcomes in Elderly Patients with Newly Diagnosed Multiple Myeloma: Results from the Connect® MM Registry. Blood Cancer J. 2021, 11, 134. [Google Scholar] [CrossRef]
- Turesson, I.; Bjorkholm, M.; Blimark, C.H.; Kristinsson, S.; Velez, R.; Landgren, O. Rapidly Changing Myeloma Epidemiology in the General Population: Increased Incidence, Older Patients, and Longer Survival. Eur. J. Haematol. 2018, 101, 237–244. [Google Scholar] [CrossRef]
- D’agostino, M.; Bertamini, L.; Oliva, S.; Boccadoro, M.; Gay, F. Pursuing a Curative Approach in Multiple Myeloma: A Review of New Therapeutic Strategies. Cancers 2019, 11, 2015. [Google Scholar] [CrossRef]
- Roshandel, E.; Ghaffari-Nazari, H.; Mohammadian, M.; Salimi, M.; Abroun, S.; Mirfakhraie, R.; Hajifathali, A. NK Cell Therapy in Relapsed Refractory Multiple Myeloma. Clin. Immunol. 2023, 246, 109168. [Google Scholar] [CrossRef] [PubMed]
- Verheye, E.; Melgar, J.B.; Deschoemaeker, S.; Raes, G.; Maes, A.; De Bruyne, E.; Menu, E.; Vanderkerken, K.; Laoui, D.; De Veirman, K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int. J. Mol. Sci. 2022, 23, 904. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves First Cell-Based Gene Therapy for Adult Patients with Multiple Myeloma|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-multiple-myeloma (accessed on 12 August 2024).
- FDA D.I.S.C.O. Burst Edition: FDA Approval of CARVYKTI (Ciltacabtagene Autoleucel) for the Treatment of Adult Patients with Relapsed or Refractory Multiple Myeloma After Four or More Prior Lines of Therapy, Including a Proteasome Inhibitor, an Immunomodulatory Agent, and an Anti-CD38 Monoclonal Antibody|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-carvykti-ciltacabtagene-autoleucel-treatment-adult-patients (accessed on 12 August 2024).
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Fraser Wright, J.; et al. Chimeric Antigen Receptor-Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Mazinani, M.; Rahbarizadeh, F. CAR-T Cell Potency: From Structural Elements to Vector Backbone Components. Biomark. Res. 2022, 10, 70. [Google Scholar] [CrossRef]
- Akhoundi, M.; Mohammadi, M.; Sahraei, S.S.; Sheykhhasan, M.; Fayazi, N. CAR T Cell Therapy as a Promising Approach in Cancer Immunotherapy: Challenges and Opportunities. Cell. Oncol. 2021, 44, 495–523. [Google Scholar] [CrossRef]
- Tokarew, N.; Ogonek, J.; Endres, S.; von Bergwelt-Baildon, M.; Kobold, S. Teaching an Old Dog New Tricks: Next-Generation CAR T Cells. Br. J. Cancer 2018, 120, 26–37. [Google Scholar] [CrossRef]
- Lin, P.; Reyes Silva, F.C.; Lin, P.; Gilbert, A.L.; Acharya, S.; Nunez Cortes, A.K.; Banerjee, P.; Fang, D.; Melo Garcia, L.; Daher, M.M.; et al. CD70 CAR NK Cells in the Treatment of Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 3463. [Google Scholar] [CrossRef]
- Frohn, C.; Höppner, M.; Schlenke, P.; Kirchner, H.; Koritke, P.; Luhm, J. Anti-Myeloma Activity of Natural Killer Lymphocytes. Br. J. Haematol. 2002, 119, 660–664. [Google Scholar] [CrossRef]
- Ponzetta, A.; Benigni, G.; Antonangeli, F.; Sciumè, G.; Sanseviero, E.; Zingoni, A.; Ricciardi, M.R.; Petrucci, M.T.; Santoni, A.; Bernardini, G. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Res. 2015, 75, 4766–4777. [Google Scholar] [CrossRef]
- Ng, Y.Y.; Du, Z.; Zhang, X.; Chng, W.J.; Wang, S. CXCR4 and Anti-BCMA CAR Co-Modified Natural Killer Cells Suppress Multiple Myeloma Progression in a Xenograft Mouse Model. Cancer Gene Ther. 2021, 29, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Daher, M.; Garcia, L.M.; Li, Y.; Rezvani, K. CAR-NK Cells: The next Wave of Cellular Therapy for Cancer. Clin. Transl. Immunol. 2021, 10, e1274. [Google Scholar] [CrossRef]
- Basar, R.; Daher, M.; Rezvani, K. Next-Generation Cell Therapies: The Emerging Role of CAR-NK Cells. Hematology 2020, 2020, 570–578. [Google Scholar] [CrossRef]
- Tamura, H. Immunopathogenesis and Immunotherapy of Multiple Myeloma. Int. J. Hematol. 2018, 107, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Pope, B.; Murray, A.; Esdale, W.; Sze, D.M.; Gibson, J.; Joy Ho, P.; Hart, D.; Joshua, D. Dendritic Cells from Patients with Myeloma Are Numerically Normal but Functionally Defective as They Fail to Up-Regulate CD80 (B7-1) Expression after HuCD40LT Stimulation Because of Inhibition by Transforming Growth Factor-Β1 and Interleukin-10. Blood 2001, 98, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Lacy, M.Q.; Mandrekar, S.; Dispenzieri, A.; Hayman, S.; Kumar, S.; Buadi, F.; Dingli, D.; Litzow, M.; Wettstein, P.; Padley, D.; et al. Idiotype-Pulsed Antigen Presenting Cells Following Autologous Transplantation for Multiple Myeloma May Be Associated with Prolonged Survival. Am. J. Hematol. 2009, 84, 799. [Google Scholar] [CrossRef]
- Chung, D.J.; Sharma, S.; Rangesa, M.; DeWolf, S.; Elhanati, Y.; Perica, K.; Young, J.W. Langerhans Dendritic Cell Vaccine Bearing MRNA-Encoded Tumor Antigens Induces Antimyeloma Immunity After Autotransplant. Blood Adv. 2022, 6, 1547. [Google Scholar] [CrossRef]
- Hobo, W.; Strobbe, L.; Maas, F.; Fredrix, H.; Greupink-Draaisma, A.; Esendam, B.; De Witte, T.; Preijers, F.; Levenga, H.; Van Rees, B.; et al. Immunogenicity of Dendritic Cells Pulsed with MAGE3, Survivin and B-Cell Maturation Antigen MRNA for Vaccination of Multiple Myeloma Patients. Cancer Immunol. Immunother. 2013, 62, 1381. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Vasir, B.; Uhl, L.; Blotta, S.; MacNamara, C.; Somaiya, P.; Wu, Z.; Joyce, R.; Levine, J.D.; Dombagoda, D.; et al. Vaccination with Dendritic Cell/Tumor Fusion Cells Results in Cellular and Humoral Antitumor Immune Responses in Patients with Multiple Myeloma. Blood 2011, 117, 393. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Avivi, I.; Vasir, B.; Uhl, L.; Munshi, N.C.; Katz, T.; Dey, B.R.; Somaiya, P.; Mills, H.; Campigotto, F.; et al. Vaccination with Dendritic Cell/Tumor Fusions Following Autologous Stem Cell Transplant Induces Immunologic and Clinical Responses in Multiple Myeloma Patients. Clin. Cancer Res. 2013, 19, 3640. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Dhodapkar, M.; Alsina, M.; Berdeja, J.; Patel, K.; Vij, R.; Leleu, X.; Truppel-Hartmann, A.; Basudhar, D.; Thompson, E.; Zheng, X.; et al. KarMMa-2 Cohort 2c: Efficacy and Safety of Idecabtagene Vicleucel in Patients with Clinical High-Risk Multiple Myeloma Due to Inadequate Response to Frontline Autologous Stem Cell Transplantation. Blood 2022, 140 (Suppl. S1), 7441–7443. [Google Scholar] [CrossRef]
- Usmani, S.; Patel, K.; Hari, P.; Berdeja, J.; Alsina, M.; Vij, R.; Raje, N.; Leleu, X.; Dhodapkar, M.; Reshef, R.; et al. KarMMa-2 Cohort 2a: Efficacy and Safety of Idecabtagene Vicleucel in Clinical High-Risk Multiple Myeloma Patients with Early Relapse after Frontline Autologous Stem Cell Transplantation. Blood 2022, 140 (Suppl. S1), 875–877. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-Cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Berdeja, J.G.; Truppel-Hartmann, A.; Fei, Y.; Wortman-Vayn, H.; Shelat, S.; Novick, S.; Shah, N. KarMMa-4: Idecabtagene Vicleucel (Ide-Cel, Bb2121), a BCMA-Directed CAR T-Cell Therapy in High-Risk Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 39 (Suppl. S15), TPS8053. [Google Scholar] [CrossRef]
- Xu, J.; Wang, B.Y.; Yu, S.H.; Chen, S.J.; Yang, S.S.; Liu, R.; Chen, L.J.; Hou, J.; Chen, Z.; Zhao, W.H.; et al. Long-Term Remission and Survival in Patients with Relapsed or Refractory Multiple Myeloma after Treatment with LCAR-B38M CAR T Cells: 5-Year Follow-up of the LEGEND-2 Trial. J. Hematol. Oncol. 2024, 17, 23. [Google Scholar] [CrossRef]
- Lin, Y.; Martin, T.G.; Usmani, S.Z.; Berdeja, J.G.; Jakubowiak, A.J.; Agha, M.E.; Cohen, A.D.; Deol, A.; Htut, M.; Lesokhin, A.M.; et al. CARTITUDE-1 Final Results: Phase 1b/2 Study of Ciltacabtagene Autoleucel in Heavily Pretreated Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8009. [Google Scholar] [CrossRef]
- Hillengass, J.; Cohen, A.D.; Agha, M.; Delforge, M.; Kerre, T.; Roeloffzen, W.; Einsele, H.; Goldschmidt, H.; Weisel, K.; Raab, M.-S.; et al. The Phase 2 Cartitude-2 Trial: Updated Efficacy and Safety of Ciltacabtagene Autoleucel in Patients with Multiple Myeloma and 1–3 Prior Lines of Therapy (Cohort A) and with Early Relapse after First Line Treatment (Cohort B). Transplant. Cell. Ther. 2024, 30, S36–S37. [Google Scholar] [CrossRef]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; Fernández de Larrea, C.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-Cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef]
- Oliver-Caldes, A.; Gonzalez-Calle, V.; Cabañas, V.; Lopez-Muñoz, N.; Rodriguez Otero, P.; Reguera, J.L.; Español-Rego, M.; Inoges, S.; Zabaleta, A.; Lopez Corral, L.; et al. ARI0002h (Cesnicabtagene Autoleucel), an Academic Point-of-Care B-Cell Maturation Antigen (BCMA)-Directed Chimeric Antigen Receptor (CAR) T-Cell Strategy: Activity and Safety after Fractionated Initial Therapy and Booster Dose in 60 Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 1026. [Google Scholar] [CrossRef]
- Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; et al. Orvacabtagene Autoleucel (Orva-Cel), a B-Cell Maturation Antigen (BCMA)-Directed CAR T Cell Therapy for Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Update of the Phase 1/2 EVOLVE Study (NCT03430011). J. Clin. Oncol. 2020, 38 (Suppl. S15), 8504. [Google Scholar] [CrossRef]
- Fu, C.; Chen, W.; Cai, Z.; Yan, L.; Wang, H.; Shang, J.; Wu, Y.; Yan, S.; Gao, W.; Shi, X.; et al. Three-Year Follow-up on Efficacy and Safety Results from Phase 1 Lummicar Study 1 of Zevorcabtagene Autoleucel in Chinese Patients with Relapsed or Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 4845. [Google Scholar] [CrossRef]
- Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D.; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 28–29. [Google Scholar] [CrossRef]
- Dholaria, B.; Kocoglu, M.H.; Kin, A.; Asch, A.S.; Ramakrishnan, A.; Bachier, C.; Rodriguez, T.E.; Shune, L.; McArthur, K.; McCaigue, J.; et al. Early Safety Results of P-BCMA-ALLO1, a Fully Allogeneic Chimeric Antigen Receptor T-Cell (CAR-T), in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2023, 142 (Suppl. S1), 3479. [Google Scholar] [CrossRef]
- Sperling, A.S.; Derman, B.A.; Nikiforow, S.; Im, S.-Y.; Ikegawa, S.; Prabhala, R.H.; Rodriguez, D.H.; Li, Y.; Quinn, D.S.; Pearson, D.; et al. Updated Phase I Study Results of PHE885, a T-Charge Manufactured BCMA-Directed CAR-T Cell Therapy, for Patients (Pts) with r/r Multiple Myeloma (RRMM). J. Clin. Oncol. 2023, 41 (Suppl. S16), 8004. [Google Scholar] [CrossRef]
- Wang, D.; Song, Y.; Huang, H.; Li, J.; Chen, B.; Liu, J.; Dong, Y.; Hu, K.; Liu, P.; Zhang, X.; et al. CT103A, a Novel Fully Human BCMA-Targeting CAR-T Cells, in Patients with Relapsed/Refractory Multiple Myeloma: Updated Results of Phase 1b/2 Study (FUMANBA-1). J. Clin. Oncol. 2023, 41 (Suppl. S16), 8025. [Google Scholar] [CrossRef]
- Frigault, M.J.; Bishop, M.R.; Rosenblatt, J.; O’Donnell, E.K.; Raje, N.; Cook, D.; Yee, A.J.; Logan, E.; Avigan, D.E.; Jakubowiak, A.; et al. Phase 1 Study of CART-DdBCMA for the Treatment of Subjects with Relapsed and Refractory Multiple Myeloma. Blood Adv. 2023, 7, 768–777. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Manasanch, E.E.; Lam, N.; Vanasse, D.; Brudno, J.N.; Maric, I.; Rose, J.J.; Stetler-Stevenson, M.; Wang, H.-W.; Yuan, C.M.; et al. T Cells Expressing an Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptor with a Fully-Human Heavy-Chain-Only Antigen Recognition Domain Induce Remissions in Patients with Relapsed Multiple Myeloma. Blood 2019, 134 (Suppl. S1), 3230. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef]
- Huang, H.; Hu, Y.; Zhang, M.; Wei, G.; Zhou, L.; Fu, S.; Feng, J.; Hong, R.; Cui, J.; Huang, S.; et al. OriCAR-017, a Novel GPRC5D-Targeting CAR-T, in Patients with Relapsed/Refractory Multiple Myeloma: Long Term Follow-up Results of Phase 1 Study (POLARIS). J. Clin. Oncol. 2024, 42 (Suppl. S16), 7511. [Google Scholar] [CrossRef]
- Bal, S.; Htut, M.; Nadeem, O.; Anderson, L.D.; Koçoğlu, H.; Gregory, T.; Rossi, A.C.; Martin, T.; Egan, D.N.; Costa, L.; et al. BMS-986393 (CC-95266), a G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 Study. Blood 2023, 142 (Suppl. S1), 219. [Google Scholar] [CrossRef]
- Costa, L.J.; Kumar, S.K.; Atrash, S.; Liedtke, M.; Kaur, G.; Derman, B.A.; Bergsagel, P.L.; Mailankody, S.; McCarthy, P.L.; Limones, J.; et al. Results from the First Phase 1 Clinical Study of the B-Cell Maturation Antigen (BCMA) Nex T Chimeric Antigen Receptor (CAR) T Cell Therapy CC-98633/BMS-986354 in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2022, 140 (Suppl. S1), 1360–1362. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-Targeting CAR T Cells in Relapsed/Refractory Multiple Myeloma: Phase 1 UNIVERSAL Trial Interim Results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Lim, W.C.; Galas-Filipowicz, D.; Fung, K.; Taylor, J.; Patel, D.; Akbar, Z.; Mediavilla, E.A.; Wawrzyniecka, P.; Shome, D.; et al. Limited Efficacy of APRIL CAR in Patients with Multiple Myeloma Indicate Challenges in the Use of Natural Ligands for CAR T-Cell Therapy. J. Immunother. Cancer 2023, 11, 6699. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.P.; Roy, N.K.; Zhang, K.; Anukanth, A.; Asthana, A.; Shirkey-Son, N.J.; Dunmire, S.; Jones, B.J.; Lahr, W.S.; Webber, B.R.; et al. A BAFF Ligand-Based CAR-T Cell Targeting Three Receptors and Multiple B Cell Cancers. Nat. Commun. 2022, 13, 217. [Google Scholar] [CrossRef]
- Sallman, D.A.; Kerre, T.; Havelange, V.; Poiré, X.; Lewalle, P.; Wang, E.S.; Brayer, J.B.; Davila, M.L.; Moors, I.; Machiels, J.P.; et al. CYAD-01, an Autologous NKG2D-Based CAR T-Cell Therapy, in Relapsed or Refractory Acute Myeloid Leukaemia and Myelodysplastic Syndromes or Multiple Myeloma (THINK): Haematological Cohorts of the Dose Escalation Segment of a Phase 1 Trial. Lancet Haematol. 2023, 10, e191–e202. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Wang, K.; Wei, C.; Feng, D.; Liu, Y.; He, Q.; Xu, X.; Wang, C.; Zhao, S.; Lv, L.; et al. The BCMA-Targeted Fourth-Generation CAR-T Cells Secreting IL-7 and CCL19 for Therapy of Refractory/Recurrent Multiple Myeloma. Front. Immunol. 2021, 12, 609421. [Google Scholar] [CrossRef]
- Zhou, D.; Sun, Q.; Xia, J.; Gu, W.; Qian, J.; Zhuang, W.; Yan, Z.; Cheng, H.; Chen, W.; Zhu, F.; et al. Anti-BCMA/GPRC5D Bispecific CAR T Cells in Patients with Relapsed or Refractory Multiple Myeloma: A Single-Arm, Single-Centre, Phase 1 Trial. Lancet Haematol. 2024, 11, e751–e760. [Google Scholar] [CrossRef]
- Shi, M.; Wang, J.; Huang, H.; Liu, D.; Cheng, H.; Wang, X.; Chen, W.; Yan, Z.; Sang, W.; Qi, K.; et al. Bispecific CAR T Cell Therapy Targeting BCMA and CD19 in Relapsed/Refractory Multiple Myeloma: A Phase I/II Trial. Nat. Commun. 2024, 15, 3371. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Luo, W.; Liao, D.; Xie, W.; Wei, Q.; Zhang, Y.; Wang, X.; Wu, Z.; Kang, Y.; et al. Bispecific CS1-BCMA CAR-T Cells Are Clinically Active in Relapsed or Refractory Multiple Myeloma. Leukemia 2023, 38, 149–159. [Google Scholar] [CrossRef]
- Dhakal, B.; Berdeja, J.G.; Gregory, T.; Ly, T.; Bickers, C.; Zong, X.; Wong, L.; Goodridge, J.P.; Cooley, S.; Valamehr, B.; et al. Interim Phase I Clinical Data of FT576 As Monotherapy and in Combination with Daratumumab in Subjects with Relapsed/Refractory Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 4586–4587. [Google Scholar] [CrossRef]
- Freeman, C.L.; Atkins, R.; Varadarajan, I.; Menges, M.; Edelman, J.; Baz, R.; Brayer, J.; Puglianini, O.C.; Ochoa-Bayona, J.L.; Nishihori, T.; et al. Survivin Dendritic Cell Vaccine Safely Induces Immune Responses and Is Associated with Durable Disease Control after Autologous Transplant in Patients with Myeloma. Clin. Cancer Res. 2023, 29, 4575–4585. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.J.; Shah, N.; Wu, J.; Logan, B.; Bisharat, L.; Callander, N.; Cheloni, G.; Anderson, K.; Chodon, T.; Dhakal, B.; et al. Randomized Phase II Trial of Dendritic Cell/Myeloma Fusion Vaccine with Lenalidomide Maintenance after Upfront Autologous Hematopoietic Cell Transplantation for Multiple Myeloma: BMT CTN 1401. Clin. Cancer Res. 2023, 29, 4784. [Google Scholar] [CrossRef] [PubMed]
- Neri, P.; Leblay, N.; Lee, H.; Gulla, A.; Bahlis, N.J.; Anderson, K.C. Just Scratching the Surface: Novel Treatment Approaches for Multiple Myeloma Targeting Cell Membrane Proteins. Nat. Rev. Clin. Oncol. 2024, 21, 590–609. [Google Scholar] [CrossRef]
- Scheller, L.; Tebuka, E.; Rambau, P.F.; Einsele, H.; Hudecek, M.; Prommersberger, S.R.; Danhof, S. BCMA CAR-T Cells in Multiple Myeloma–Ready for Take-Off? Leuk. Lymphoma 2024, 65, 143–157. [Google Scholar] [CrossRef]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for Relapsed/Refractory Multiple Myeloma: Real-World Experience from the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2022, 41, 1265–1274. [Google Scholar] [CrossRef]
- Cordas dos Santos, D.M.; Tix, T.; Shouval, R.; Gafter-Gvili, A.; Alberge, J.B.; Cliff, E.R.S.; Theurich, S.; von Bergwelt-Baildon, M.; Ghobrial, I.M.; Subklewe, M.; et al. A Systematic Review and Meta-Analysis of Nonrelapse Mortality after CAR T Cell Therapy. Nat. Med. 2024, 30, 2667–2678. [Google Scholar] [CrossRef]
- Chen, W.; Fu, C.; Fang, B.; Liang, A.; Xia, Z.; He, Y.; Lu, J.; Liu, H.; Hou, M.; Cai, Z.; et al. Phase 2 Study of Fully Human BCMA-Targeting CAR-T cells (Zevorcabtagene autoleucel) in Patients with Relapsed/Refractory Multiple Myeloma. Available online: https://library.ehaweb.org/eha/2024/eha2024-congress/422313/wenming.chen.phase.2.study.of.fully.human.bcma-targeting.car-t.cells.html?f=menu%3D6%2Abrowseby%3D8%2Asortby%3D2%2Ace_id%3D2552%2Aot_id%3D29201%2Amarker%3D5099%2Afeatured%3D18527 (accessed on 15 August 2024).
- Li, C.; Wang, D.; Yu, Q.; Li, Z.; Wang, W.; Hu, G.; Mu, W.; Li, C.; An, N.; Long, X.; et al. Long-Term Follow-up of Fully Human BCMA-Targeting CAR (CT103A) in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 4854. [Google Scholar] [CrossRef]
- Chen, L.-J.; Shao, X.; Jin, Y.; Li, P.; Zhang, R.; Xu, Y.; Shi, Q.; Zeng, H.; Zhu, Y.; Guan, C.; et al. Eque-cel, a Novel Fully Human BCMA-Targeting CAR-T Therapy in Patients with High Risk Newly Diagnosed Multiple Myeloma. Available online: https://library.ehaweb.org/eha/2024/eha2024-congress/422310/lijuan.chen.eque-cel.a.novel.fully.human.bcma-targeting.car-t.therapy.in.html?f=menu%3D6%2Abrowseby%3D8%2Asortby%3D2%2Ace_id%3D2552%2Aot_id%3D29201%2Amarker%3D5099%2Afeatured%3D18527 (accessed on 15 August 2024).
- Frigault, M.J.; Rosenblatt, J.; Dhakal, B.; Raje, N.; Cook, D.; Gaballa, M.; Emmanuel-Alejandro, E.; Nissen, D.; Bannerjee, K.; Rotte, A.; et al. Phase 1 Study of Anitocabtagene Autoleucel for the Treatment of Patients with Relapsed and/or Refractory Multiple Myeloma: Results from at Least 1-Year Follow-Up in All Patients. Available online: https://library.ehaweb.org/eha/2024/eha2024-congress/422311/matthew.frigault.phase.1.study.of.anitocabtagene.autoleucel.for.the.treatment.html?f=menu%3D6%2Abrowseby%3D8%2Asortby%3D2%2Ace_id%3D2552%2Aot_id%3D29201%2Amarker%3D5099%2Afeatured%3D18527 (accessed on 16 August 2024).
- Rodriguez-Otero, P.; van de Donk, N.W.C.J.; Pillarisetti, K.; Cornax, I.; Vishwamitra, D.; Gray, K.; Hilder, B.; Tolbert, J.; Renaud, T.; Masterson, T.; et al. GPRC5D as a Novel Target for the Treatment of Multiple Myeloma: A Narrative Review. Blood Cancer J. 2024, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally Designed CAR T Cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wei, G.; Zhou, L.; Zhou, J.; Chen, S.; Zhang, W.; Wang, D.; Luo, X.; Cui, J.; Huang, S.; et al. GPRC5D CAR T Cells (OriCAR-017) in Patients with Relapsed or Refractory Multiple Myeloma (POLARIS): A First-in-Human, Single-Centre, Single-Arm, Phase 1 Trial. Lancet Haematol. 2023, 10, e107–e116. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ahn, S.; Maity, R.; Leblay, N.; Ziccheddu, B.; Truger, M.; Chojnacka, M.; Cirrincione, A.; Durante, M.; Tilmont, R.; et al. Mechanisms of Antigen Escape from BCMA- or GPRC5D-Targeted Immunotherapies in Multiple Myeloma. Nat. Med. 2023, 29, 2295–2306. [Google Scholar] [CrossRef]
- Gogishvili, T.; Danhof, S.; Prommersberger, S.; Rydzek, J.; Schreder, M.; Brede, C.; Einsele, H.; Hudecek, M. SLAMF7-CAR T Cells Eliminate Myeloma and Confer Selective Fratricide of SLAMF7+ Normal Lymphocytes. Blood 2017, 130, 2838–2847. [Google Scholar] [CrossRef]
- Prommersberger, S.; Reiser, M.; Beckmann, J.; Danhof, S.; Amberger, M.; Quade-Lyssy, P.; Einsele, H.; Hudecek, M.; Bonig, H.; Ivics, Z. CARAMBA: A First-in-Human Clinical Trial with SLAMF7 CAR-T Cells Prepared by Virus-Free Sleeping Beauty Gene Transfer to Treat Multiple Myeloma. Gene Ther. 2021, 28, 560–571. [Google Scholar] [CrossRef]
- Biederstädt, A.; Rezvani, K. Engineering the next Generation of CAR-NK Immunotherapies. Int. J. Hematol. 2021, 114, 554–571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, M.; Zhang, W.; Liu, N.; Wang, D.; Jing, L.; Xu, N.; Yang, N.; Ren, T. Chimeric Antigen Receptor-Based Natural Killer Cell Immunotherapy in Cancer: From Bench to Bedside. Cell Death Dis. 2024, 15, 50. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Bjordahl, R.; Mahmood, S.; Reiser, J.; Gaidarova, S.; Blum, R.; Cichocki, F.; Chu, H.; Bonello, G.; Lee, T.; et al. FT576: Multi-Specific Off-the-Shelf CAR-NK Cell Therapy Engineered for Enhanced Persistence, Avoidance of Self-Fratricide and Optimized Mab Combination Therapy to Prevent Antigenic Escape and Elicit a Deep and Durable Response in Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 4–5. [Google Scholar] [CrossRef]
- Vu, S.H.; Pham, H.H.; Thi, T.; Pham, P.; Le, T.T.; Vo, M.-C.; Jung, S.-H.; Lee, J.-J.; Nguyen, X.-H. Adoptive NK Cell Therapy—A Beacon of Hope in Multiple Myeloma Treatment. Front. Oncol. 2023, 13, 1275076. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Roy Berger, E.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Greene, M.I. Survivin as a Therapeutic Target for the Treatment of Human Cancer. Cancers 2024, 16, 1705. [Google Scholar] [CrossRef] [PubMed]
- Grube, M.; Moritz, S.; Obermann, E.C.; Rezvani, K.; Mackensen, A.; Andreesen, R.; Holler, E. CD8 + Tcells Reactive to Survivin Antigen in Patients with Multiple Myeloma. Clin. Cancer Res. 2007, 13, 1053–1060. [Google Scholar] [CrossRef]
- Locke, F.L.; Menges, M.; Veerapathran, A.; Coppola, D.; Gabrilovich, D.; Anasetti, C. Survivin-Specific CD4+ T Cells Are Decreased in Patients with Survivin-Positive Myeloma. J. Immunother. Cancer 2015, 3, 20. [Google Scholar] [CrossRef]
- Ayala Ceja, M.; Khericha, M.; Harris, C.M.; Puig-Saus, C.; Chen, Y.Y. CAR-T Cell Manufacturing: Major Process Parameters and next-Generation Strategies. J. Exp. Med. 2024, 221, e20230903. [Google Scholar] [CrossRef]
- Song, H.W.; Prochazkova, M.; Shao, L.; Traynor, R.; Underwood, S.; Black, M.; Fellowes, V.; Shi, R.; Pouzolles, M.; Chou, H.C.; et al. CAR-T Cell Expansion Platforms Yield Distinct T Cell Differentiation States. Cytotherapy 2024, 26, 757–768. [Google Scholar] [CrossRef]
- Reyes, K.R.; Huang, C.Y.; Lo, M.; Arora, S.; Chung, A.; Wong, S.W.; Wolf, J.; Olin, R.L.; Martin, T.; Shah, N.; et al. Safety and Efficacy of BCMA CAR-T Cell Therapy in Older Patients With Multiple Myeloma. Transplant. Cell. Ther. 2023, 29, 350–355. [Google Scholar] [CrossRef]
- Mock, U.; Nickolay, L.; Philip, B.; Cheung, G.W.K.; Zhan, H.; Johnston, I.C.D.; Kaiser, A.D.; Peggs, K.; Pule, M.; Thrasher, A.J.; et al. Automated Manufacturing of Chimeric Antigen Receptor T Cells for Adoptive Immunotherapy Using CliniMACS Prodigy. Cytotherapy 2016, 18, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.N.; Asija, S.; Pendhari, J.; Purwar, R. CAR-T Cell Therapy in Hematological Malignancies: Where Are We Now and Where Are We Heading For? Eur. J. Haematol. 2024, 112, 6–18. [Google Scholar] [CrossRef]
- Sperling, A.S.; Nikiforow, S.; Nadeem, O.; Mo, C.C.; Laubach, J.P.; Anderson, K.C.; Alonso, A.; Ikegawa, S.; Prabhala, R.; Hernandez Rodriguez, D.; et al. Phase I Study of PHE885, a Fully Human BCMA-Directed CAR-T Cell Therapy for Relapsed/Refractory Multiple Myeloma Manufactured in <2 Days Using the T-Charge TM Platform. Blood 2021, 138 (Suppl. S1), 3864. [Google Scholar] [CrossRef]
- Juan Du, Q.; Fu, W.; Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Li, L.; Lu, J.; et al. Updated Results of a Phase I, Open-Label Study of BCMA/CD19 Dual-Targeting FasTCAR-T GC012F for Patients with Relapsed/Refractory Multiple Myeloma (RRMM). HemaSphere 2023, 7, e84060bf. [Google Scholar]
- Berdeja, J.G.; Martin, T.G.; Rossi, A.; Essell, J.H.; Siegel, D.S.D.; Mailankody, S.; Saini, N.; Holmes, H.; Dhakal, B.; Gasparetto, C.J.; et al. A First-in-Human Phase 1, Multicenter, Open-Label Study of CB-011, a next-Generation CRISPR-Genome Edited Allogeneic Anti-BCMA Immune-Cloaked CAR-T Cell Therapy, in Patients with Relapsed/Refractory Multiple Myeloma (CAMMOUFLAGE Trial). J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS8063. [Google Scholar] [CrossRef]
- Sasu, B.J.; Opiteck, G.J.; Gopalakrishnan, S.; Kaimal, V.; Furmanak, T.; Huang, D.; Goswami, A.; He, Y.; Chen, J.; Nguyen, A.; et al. Detection of Chromosomal Alteration after Infusion of Gene-Edited Allogeneic CAR T Cells. Mol. Ther. 2023, 31, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Nahmad, A.D.; Reuveni, E.; Goldschmidt, E.; Tenne, T.; Liberman, M.; Horovitz-Fried, M.; Khosravi, R.; Kobo, H.; Reinstein, E.; Madi, A.; et al. Frequent Aneuploidy in Primary Human T Cells after CRISPR–Cas9 Cleavage. Nat. Biotechnol. 2022, 40, 1807–1813. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-Engineered T Cells in Patients with Refractory Cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J.; Liu, D.R. Prime Editing for Precise and Highly Versatile Genome Manipulation. Nat. Rev. Genet. 2022, 24, 161–177. [Google Scholar] [CrossRef]
- Lindo, L.; Wilkinson, L.H.; Hay, K.A. Befriending the Hostile Tumor Microenvironment in CAR T-Cell Therapy. Front. Immunol. 2020, 11, 618387. [Google Scholar] [CrossRef] [PubMed]
- Kankeu Fonkoua, L.A.; Sirpilla, O.; Sakemura, R.; Siegler, E.L.; Kenderian, S.S. CAR T Cell Therapy and the Tumor Microenvironment: Current Challenges and Opportunities. Mol. Ther. Oncolytics 2022, 25, 69–77. [Google Scholar] [CrossRef]
- Hanahan, D.; Coussens, L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef]
- Sakemura, R.; Hefazi, M.; Siegler, E.L.; Cox, M.J.; Larson, D.P.; Hansen, M.J.; Manriquez Roman, C.; Schick, K.J.; Can, I.; Tapper, E.E.; et al. Targeting Cancer-Associated Fibroblasts in the Bone Marrow Prevents Resistance to CART-Cell Therapy in Multiple Myeloma. Blood 2022, 139, 3708. [Google Scholar] [CrossRef] [PubMed]
- Monteran, L.; Erez, N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front. Immunol. 2019, 10, 1835. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How Regulatory T Cells Work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Alabanza, L.M.; Xiong, Y.; Vu, B.; Webster, B.; Wu, D.; Hu, P.; Zhu, Z.; Dropulic, B.; Dash, P. Armored BCMA CAR T Cells Eliminate Multiple Myeloma and Are Resistant to the Suppressive Effects of TGF-β. Front. Immunol. 2022, 13, 832645. [Google Scholar] [CrossRef]
- Larson, R.C.; Kann, M.C.; Graham, C.; Mount, C.W.; Castano, A.P.; Lee, W.-H.; Bouffard, A.A.; Takei, H.N.; Almazan, A.J.; Scarfó, I.; et al. Anti-TACI Single and Dual-Targeting CAR T Cells Overcome BCMA Antigen Loss in Multiple Myeloma. Nat. Commun. 2023, 14, 7509. [Google Scholar] [CrossRef]
- Ray, A.; Du, T.; Wan, X.; Song, Y.; Pillai, S.C.; Musa, M.A.; Fang, T.; Moore, J.; Blank, B.; Du, X.; et al. A Novel Small Molecule Inhibitor of CD73 Triggers Immune-Mediated Multiple Myeloma Cell Death. Blood Cancer J. 2024, 14, 58. [Google Scholar] [CrossRef]
- Da Vià, M.C.; Dietrich, O.; Truger, M.; Arampatzi, P.; Duell, J.; Heidemeier, A.; Zhou, X.; Danhof, S.; Kraus, S.; Chatterjee, M.; et al. Homozygous BCMA Gene Deletion in Response to Anti-BCMA CAR T Cells in a Patient with Multiple Myeloma. Nat. Med. 2021, 27, 616–619. [Google Scholar] [CrossRef]
- Wang, Q.J.; Yu, Z.; Hanada, K.-I.; Patel, K.; Kleiner, D.; Restifo, N.P.; Yang, J.C. Preclinical Evaluation of Chimeric Antigen Receptors Targeting CD70-Expressing Cancers. Clin. Cancer Res. 2017, 23, 2267–2276. [Google Scholar] [CrossRef]
- Mcearchern, J.A.; Oflazoglu, E.; Francisco, L.; Mcdonagh, C.F.; Gordon, K.A.; Stone, I.; Klussman, K.; Turcott, E.; Van Rooijen, N.; Carter, P.; et al. Engineered Anti-CD70 Antibody with Multiple Effector Functions Exhibits In Vitro and In Vivo Antitumor Activities. Blood 2007, 109, 1185–1192. [Google Scholar] [CrossRef]
- Kasap, C.; Izgutdina, A.; Patiño-Escobar, B.; Kang, A.; Chilakapati, N.; Akagi, N.; Johnson, H.; Rashid, T.; Werner, J.; Barpanda, A.; et al. Targeting High-Risk Multiple Myeloma Genotypes with Optimized Anti-CD70 CAR-T Cells. bioRxiv 2024. [Google Scholar] [CrossRef]
- Baumeister, S.H.; Murad, J.; Werner, L.; Daley, H.; Trebeden-Negre, H.; Gicobi, J.K.; Schmucker, A.; Reder, J.; Sentman, C.L.; Gilham, D.E.; et al. Phase 1 Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol. Res. 2019, 7, 100–112. [Google Scholar] [CrossRef]
- Barber, A.; Meehan, K.R.; Sentman, C.L. Treatment of Multiple Myeloma with Adoptively Transferred Chimeric NKG2D Receptor-Expressing T Cells. Gene Ther. 2011, 18, 509–516. [Google Scholar] [CrossRef]
- Fontaine, M.; Demoulin, B.; Bornschein, S.; Raitano, S.; Lenger, S.; Machado, H.; Moore, J.D.; Sotiropoulou, P.A.; Gilham, D.E. Next Generation NKG2D-Based CAR T-Cells (CYAD-02): Co-Expression of a Single ShRNA Targeting MICA and MICB Improves Cell Persistence and Anti-Tumor Efficacy in Vivo. Blood 2019, 134 (Suppl. S1), 3931. [Google Scholar] [CrossRef]
- Al-Homsi, A.S.; Purev, E.; Lewalle, P.; Abdul-Hay, M.; Pollyea, D.A.; Salaroli, A.; Lequertier, T.; Alcantar-Orozco, E.; Borghese, F.; Lonez, C.; et al. Interim Results from the Phase I Deplethink Trial Evaluating the Infusion of a NKG2D CAR T-Cell Therapy Post a Non-Myeloablative Conditioning in Relapse or Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients. Blood 2019, 134 (Suppl. S1), 3844. [Google Scholar] [CrossRef]
- Bou Zerdan, M.; Nasr, L.; Kassab, J.; Saba, L.; Ghossein, M.; Yaghi, M.; Dominguez, B.; Chaulagain, C.P. Adhesion Molecules in Multiple Myeloma Oncogenesis and Targeted Therapy Practice Points. Int. J. Hematol. Oncol. 2021, 11, IJH39. [Google Scholar] [CrossRef]
- Glisovic-Aplenc, T.; Diorio, C.; Chukinas, J.A.; Veliz, K.; Shestova, O.; Shen, F.; Nunez-Cruz, S.; Vincent, T.L.; Miao, F.; Milone, M.C.; et al. CD38 as a Pan-Hematologic Target for Chimeric Antigen Receptor T Cells. Blood Adv. 2023, 7, 4418–4430. [Google Scholar] [CrossRef]
- Hosen, N.; Matsunaga, Y.; Hasegawa, K.; Matsuno, H.; Nakamura, Y.; Makita, M.; Watanabe, K.; Yoshida, M.; Satoh, K.; Morimoto, S.; et al. The Activated Conformation of Integrin Β7 Is a Novel Multiple Myeloma-Specific Target for CAR T Cell Therapy. Nat. Med. 2017, 23, 1436–1443. [Google Scholar] [CrossRef]
- Sun, C.; Mahendravada, A.; Ballard, B.; Kale, B.; Ramos, C.; West, J.; Maguire, T.; Mckay, K.; Lichtman, E.; Tuchman, S.; et al. Safety and Efficacy of Targeting CD138 with a Chimeric Antigen Receptor for the Treatment of Multiple Myeloma. Oncotarget 2019, 10, 2369–2383. [Google Scholar] [CrossRef]
- van der Schans, J.J.; van de Donk, N.W.C.J.; Mutis, T. Dual Targeting to Overcome Current Challenges in Multiple Myeloma CAR T-Cell Treatment. Front. Oncol. 2020, 10, 534747. [Google Scholar] [CrossRef]
- Sun, F.; Cheng, Y.; Wanchai, V.; Guo, W.; Mery, D.; Xu, H.; Gai, D.; Siegel, E.; Bailey, C.; Ashby, C.; et al. Bispecific BCMA/CD24 CAR-T Cells Control Multiple Myeloma Growth. Nat. Commun. 2024, 15, 615. [Google Scholar] [CrossRef]
- Nobari, S.T.; Nojadeh, J.N.; Talebi, M. B-Cell Maturation Antigen Targeting Strategies in Multiple Myeloma Treatment, Advantages and Disadvantages. J. Transl. Med. 2022, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- St. Martin, Y.; Franz, J.K.; Agha, M.E.; Lazarus, H.M. Failure of CAR-T Cell Therapy in Relapsed and Refractory Large Cell Lymphoma and Multiple Myeloma: An Urgent Unmet Need. Blood Rev. 2023, 60, 101095. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J. T Cell Exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T Cell Expansion and Prolonged Persistence in Pediatric Patients with ALL Treated with a Low-Affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, S.; Fang, C.; Yang, S.; Olalere, D.; Pequignot, E.C.; Cogdill, A.P.; Li, N.; Ramones, M.; Granda, B.; et al. Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice. Cancer Res. 2015, 75, 3596–3607. [Google Scholar] [CrossRef]
- Zhao, Z.; Condomines, M.; van der Stegen, S.J.C.; Perna, F.; Kloss, C.C.; Gunset, G.; Plotkin, J.; Sadelain, M. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell 2015, 28, 415–428. [Google Scholar] [CrossRef]
- Velasco Cárdenas, R.M.H.; Brandl, S.M.; Meléndez, A.V.; Schlaak, A.E.; Buschky, A.; Peters, T.; Beier, F.; Serrels, B.; Taromi, S.; Raute, K.; et al. Harnessing CD3 Diversity to Optimize CAR T Cells. Nat. Immunol. 2023, 24, 2135–2149. [Google Scholar] [CrossRef]
- Ventin, M.; Cattaneo, G.; Maggs, L.; Arya, S.; Wang, X.; Ferrone, C.R. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy: A Review. JAMA Oncol. 2024, 10, 115–121. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Klysz, D.D.; Chen, Y.; Malipatlolla, M.; Lone, J.; Fowler, C.; Stuani, L.; May, A.; Bashti, M.; Xu, P.; et al. GLUT1 Overexpression in CAR-T Cells Induces Metabolic Reprogramming and Enhances Potency. Nat. Commun. 2024, 15, 8658. [Google Scholar] [CrossRef]
- Borgeaud, M.; Sandoval, J.; Obeid, M.; Banna, G.; Michielin, O.; Addeo, A.; Friedlaender, A. Novel Targets for Immune-Checkpoint Inhibition in Cancer. Cancer Treat. Rev. 2023, 120, 102614. [Google Scholar] [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Rivière, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase i Trial of Regional Mesothelin-Targeted Car t-Cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–Pd-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yin, H.; Zhou, C.; Zhou, L.; Zeng, Y.; Yao, H. Phase I Clinical Trial of MUC1-Targeted CAR-T Cells with PD-1-Knockout in the Treatment of Advanced Breast Cancer. J. Clin. Oncol. 2024, 42 (Suppl. S16), 1089. [Google Scholar] [CrossRef]
- Smith, K.A. Interleukin-2: Inception, Impact, and Implications. Science 1988, 240, 1169–1176. [Google Scholar] [CrossRef]
- Giuffrida, L.; Sek, K.; Henderson, M.A.; House, I.G.; Lai, J.; Chen, A.X.Y.; Todd, K.L.; Petley, E.V.; Mardiana, S.; Todorovski, I.; et al. IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors. Mol. Ther. 2020, 28, 2379–2393. [Google Scholar] [CrossRef]
- Loschinski, R.; Böttcher, M.; Stoll, A.; Bruns, H.; Mackensen, A.; Mougiakakos, D. IL-21 Modulates Memory and Exhaustion Phenotype of T-Cells in a Fatty Acid Oxidation-Dependent Manner. Oncotarget 2018, 9, 13125. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, D.; Wong, R.A.; Yang, X.; Wang, D.; Pecoraro, J.R.; Kuo, C.F.; Aguilar, B.; Qi, Y.; Ann, D.K.; Starr, R.; et al. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing MTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunol. Res. 2019, 7, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Cieri, N.; Camisa, B.; Cocchiarella, F.; Forcato, M.; Oliveira, G.; Provasi, E.; Bondanza, A.; Bordignon, C.; Peccatori, J.; Ciceri, F.; et al. IL-7 and IL-15 Instruct the Generation of Human Memory Stem T Cells from Naive Precursors. Blood 2013, 121, 573–584. [Google Scholar] [CrossRef]
- Klysz, D.D.; Fowler, C.; Malipatlolla, M.; Stuani, L.; Freitas, K.A.; Chen, Y.; Meier, S.; Daniel, B.; Sandor, K.; Xu, P.; et al. Inosine Induces Stemness Features in CAR-T Cells and Enhances Potency. Cancer Cell 2024, 42, 266–282.e8. [Google Scholar] [CrossRef]
- Afrough, A.; Abraham, P.R.; Turer, L.; Kaur, G.; Sannareddy, A.; Hansen, D.K.; Anderson, L.D., Jr. Toxicity of CAR T-Cell Therapy for Multiple Myeloma. Acta Haematol. 2024, 1–15. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nat. Rev. Immunol. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Ferreri, C.J.; Bhutani, M. Mechanisms and Management of CAR T Toxicity. Front. Oncol. 2024, 14, 1396490. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef] [PubMed]
- Jatiani, S.S.; Aleman, A.; Madduri, D.; Chari, A.; Cho, H.J.; Richard, S.; Richter, J.; Brody, J.; Jagannath, S.; Parekh, S. Myeloma CAR-T CRS Management With IL-1R Antagonist Anakinra. Clin. Lymphoma Myeloma Leuk. 2020, 20, 632–636.e1. [Google Scholar] [CrossRef] [PubMed]
- Baur, K.; Heim, D.; Beerlage, A.; Poerings, A.S.; Kopp, B.; Medinger, M.; Dirks, J.C.; Passweg, J.R.; Holbro, A. Dasatinib for Treatment of CAR T-Cell Therapy-Related Complications. J. Immunother. Cancer 2022, 10, 5956. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef]
- Vinnakota, J.M.; Biavasco, F.; Schwabenland, M.; Chhatbar, C.; Adams, R.C.; Erny, D.; Duquesne, S.; El Khawanky, N.; Schmidt, D.; Fetsch, V.; et al. Targeting TGFβ-Activated Kinase-1 Activation in Microglia Reduces CAR T Immune Effector Cell-Associated Neurotoxicity Syndrome. Nat. Cancer 2024, 5, 1227–1249. [Google Scholar] [CrossRef]
- Cohen, A.D.; Parekh, S.; Santomasso, B.D.; Pérez-Larraya, J.G.; van de Donk, N.W.C.J.; Arnulf, B.; Mateos, M.V.; Lendvai, N.; Jackson, C.C.; De Braganca, K.C.; et al. Incidence and Management of CAR-T Neurotoxicity in Patients with Multiple Myeloma Treated with Ciltacabtagene Autoleucel in CARTITUDE Studies. Blood Cancer J. 2022, 12, 32. [Google Scholar] [CrossRef]
- Van Oekelen, O.; Aleman, A.; Upadhyaya, B.; Schnakenberg, S.; Madduri, D.; Gavane, S.; Teruya-Feldstein, J.; Crary, J.F.; Fowkes, M.E.; Stacy, C.B.; et al. Neurocognitive and Hypokinetic Movement Disorder with Features of Parkinsonism after BCMA-Targeting CAR-T Cell Therapy. Nat. Med. 2021, 27, 2099–2103. [Google Scholar] [CrossRef]
- Couturier, A.; Escoffre, M.; Leh, F.; Villoteau, A.S.; Palard, X.; Le Jeune, F.; Decaux, O.; Lamy, T.; Houot, R. Parkinson-like Neurotoxicity in Female Patients Treated with Idecabtagene-vicleucel. Hemasphere 2024, 8, e131. [Google Scholar] [CrossRef]
- Karschnia, P.; Miller, K.C.; Yee, A.J.; Rejeski, K.; Johnson, P.C.; Raje, N.; Frigault, M.J.; Dietrich, J. Neurologic Toxicities Following Adoptive Immunotherapy with BCMA-Directed CAR T Cells. Blood 2023, 142, 1243–1248. [Google Scholar] [CrossRef]
- Midha, S.; Hartley-Brown, M.A.; Mo, C.C.; Hossain, S.; Nadeem, O.; O’Donnell, E.K.; Bianchi, G.; Sperling, A.S.; Laubach, J.P.; Richardson, P.G. A Safety Review of Recently Approved and Emerging Drugs for Patients with Relapsed or Refractory Multiple Myeloma. Expert Opin. Drug Saf. 2023, 22, 1049–1071. [Google Scholar] [CrossRef] [PubMed]
Trial Name (Number) | Cell Product | Target | Phase | Product Design | Targeted Population | Treatment | Ref. |
---|---|---|---|---|---|---|---|
KarMMa (NCT03361748) | T cell | BCMA | II | Murine- derived | RRMM ≥ 3 prior LOTs (PI, IMiD, anti-CD38 mAb) | Single bb2121 (ide-cel) infusion | [33] |
KarMMa-2 (NCT03601078) | T cell | BCMA | II | Murine- derived | Cohort 1 (RRMM after ≥3 prior LOTs); cohort 2 (1 prior LOT, PD < 18 mo with (2a) or without (2b) ASCT or with inadequate response post ASCT (2c)); cohort 3 (NDMM with suboptimal response after ASCT) | Cohort 1: ide-cel Cohort 2: ide-cel Cohort 3: ide-cel + lenalidomide maintenance | [34,35] |
KarMMa-3 (NCT03651128) | T cell | BCMA | III | Murine- derived | RRMM after 2 to 4 prior LOTs (including PI, IMiD, anti-CD38) | Arm A: ide-cel Arm B: DPd or DVd or IRd or Kd or EPd | [36] |
KarMMa-4 (NCT04196491) | T cell | BCMA | I | Murine- derived | HR (R-ISS Stage III) NDMM after 3 cycles of induction | Single ide-cel infusion | [37] |
KarMMa-7 (NCT04855136) | T cell | BCMA | I/II | Murine- derived | MM ≥ 3 prior LOTs (PI, IMiD, anti-CD38 mAb) for Arm B and Arm A Cohort 1, after 1–2 prior LOTs for Arm A Cohort 2 (IMiD) | Arm A: ide-cel + CC-220 Arm B: ide-cel + BMS-986405 | N/A |
LEGEND-2 (NCT03090659, ChiCTRONH-17012285) | T cell | BCMA | I/II | Camelid- derived | RRMM ≥ 3 prior LOTs (bortezomib) | Split doses of LCAR-B38M cells | [38] |
CARTITUDE-1 (NCT03548207) | T cell | BCMA | Ib/II | Camelid- derived | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | Single JNJ-68284528 (cilta-cel) infusion | [39] |
CARTITUDE-2 (NCT04133636) | T cell | BCMA | II | Camelid- derived | Cohort A (PD after 1–3 prior LOT), cohort B (early relapse after front-line), cohort C (RRMM after PI, IMiD, anti-CD38 and anti-BCMA), cohort D (<CR after front-line ASCT), cohort E (high-risk NDMM with no plans for ASCT), cohort F (standard-risk NDMM with ≥VGPR after initial therapy) | Cohorts A, B, C, F: single cilta-cel infusion Cohort D: cilta-cel + lenalidomide maintenance Cohort E: DVRd induction + cilta-cel + lenalidomide consolidation | [40] |
CARTITUDE-4 (NCT04181827) | T cell | BCMA | III | Camelid- derived | RRMM after 1 to 3 prior LOTs (lenalidomide refractory) | Arm A: PVd or DPd Arm B: cilta-cel | [41] |
CARTITUDE-5 (NCT04923893) | T cell | BCMA | III | Camelid- derived | NDMM, not intended to receive ASCT | Arm A: 8c VRd + Rd Arm B: 8c VRd + cilta-cel | N/A |
CARTITUDE-6 (NCT05257083) | T cell | BCMA | III | Camelid- derived | NDMM, transplant eligible | Arm A: 4c DVRd + ASCT + 2c DVRd + lenalidomide maintenance Arm B: 6c DVRd + cilta-cel + lenalidomide maintenance | N/A |
ARI0002h (NCT04309981) | T cell | BCMA | I/II | Humanized | RRMM ≥ 2 prior LOTs (IMiD, PI, anti-CD38 mAb) | Single ARI0002h dose | [42] |
EVOLVE (NCT03430011) | T cell | BCMA | I/II | Fully humanized | Phase I cohort: RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb, ASCT) Phase IIa cohort: RRMM with prior BMCA-directed therapy (anti-BCMA CAR-T cells at least 6 months prior, BCMA-directed engager therapy, BCMA-directed antibody–drug conjugate therapy) | Arm A: JCARH125 (orva-cel) Arm B: JCARH125 (orva-cel) + anakinra | [43] |
LUMMICAR (NCT03975907) | T cell | BCMA | I/II | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, ASCT) | Phase I: single CT053 dose escalation Phase II: single arm (single dose) | [44] |
LUMMICAR-2 (NCT03915184) | T cell | BCMA | Ib/2 | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | Phase Ib: single CT053 dose escalation Phase II: single CT053 dose | [45] |
P-BCMA-ALLO1 (NCT04960579) | T cell | BCMA | I/Ib | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | Part A: P-BCMA-ALLO1 dose escalation +/− Rimiducid Part B: single fixed P-BCMA-ALLO1 dose +/− Rimiducid | [46] |
PHE885 (NCT04318327) | T cell | BCMA | I | Fully human | Part A cohort: RRMM ≥ 2 prior LOTs (IMiD, PI, anti-CD38 mAb) Part B cohort: NDMM ≥ 4–6 c of VRd, DVRd, DRd | Part A: PHE885 dose escalation Part B: PHE885 dose evaluation | [47] |
FUMANBA-1 (NCT05066646) | T cell | BCMA | I/II | Fully human | RRMM ≥ 3 prior LOTs (PI, IMiD) | Single CT103A dose | [48] |
Anito-cel (NCT04155749) | T cell | BCMA | I | D domain | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) or “triple-refractory” disease | Single anito-cel dose | [49] |
iMMagine-1 (NCT05396885) | T cell | BCMA | II | D domain | RRMM ≥ 3 prior LOTs (PI, IMiD, anti-CD38 mAb) | Single arm: anitocabtagene autoleucel | N/A |
NCT03602612 | T cell | BCMA | I | Fully human | NDMM not controlled with standard therapies | Arm A: CAR-T cell dose escalation Arm B: CAR-T cell expansion phase | [50] |
MCARH109 (NCT04555551) | T cell | GPRC5D | I | Fully human | RRMM ≥ 3 prior LOTs (PI, IMiD, anti-CD38 mAb) | Single MCARH109 dose escalation | [51] |
OriCAR-017 (NCT06182696) | T cell | GPRC5D | I/II | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb, ASCT) | OriCAR-017 dose escalation followed by dose expansion | [52] |
RIGEL Study (NCT06271252) | T cell | GPRC5D | I/II | Fully human | Dose escalation phase I: RRMM ≥ 3 prior LOTs Dose expansion phase I and phase II: RRMM (previous BCMA-directed therapies including anti-BCMA bispecific antibody (teclistamab), BCMA-directed antibody conjugate (Blenrep) and BCMA-CAR-T (CARVYKT1TM) | Single OriCAR-017 infusion | N/A |
QUINTESSENTIAL (NCT06297226) | T cell | GPRC5D | II | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb, anti-BCMA) | Single specified BMS-986393 dose | [53] |
CARAMBA-1 (NCT04499339) | T cell | SLAMF7 | I/II | Humanized | RRMM ≥ 2 prior LOTs (ASCT, IMiD, PI, anti-CD38 mAb) | Single SLAMF7 CAR-T cell dose escalation | N/A |
NCT03710421 | T cell | SLAMF7 | I | N/A | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb, ASCT) | Single SLAMF7 CAR-T dose | N/A |
NCT03958656 | T cell | SLAMF7 | I | N/A | RRMM ≥ 3 prior LOTs (IMiD, PI) | Arm A: SLAMF7 CAR-T cell dose escalation Arm B: SLAMF7 CAR-T cell expansion phase | N/A |
CC-98633 (NCT04394650) | T cell | BCMA | I | Fully human | Arm A and Arm B Cohort A: RRMM ≥ 3 prior LOTs Arm B Cohort B only: RRMM ≥ 1–3 prior LOTs | Arm A: CC-98633 (orva-cel) dose escalation Arm B: CC-98633 expansion phase | [54] |
UNIVERSAL (NCT04093596) | T cell | BCMA | I | Fully human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | Arm A: ALLO-715 Arm B: ALLO-715 + nirogacestat | [55] |
CaMMouflage (NCT05722418) | T cell | BCMA | I | Humanized | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | Arm A: CB-011 dose escalation Arm B: CB-011 expansion phase | N/A |
NCT04662294 | T cell | CD70 | I | N/A | Patients with CD70-positive malignant hematologic diseases (AML, NHL, MM) | Single CD70 CAR-T cell dose escalation | N/A |
AUTO2 (NCT03287804) | T cell | BCMA/TACI | I/II | Murine- derived | RRMM ≥ 3 prior LOTs (IMiD, PI, alkylator) | Phase I: AUTO2 dose escalation phase Phase II: AUTO2 expansion phase selected dose | [56] |
NCT05020444 | T cell | BCMA/TACI | I | Human- derived | RRMM ≥ 3 prior LOTs (IMiD, PI, CD38 mAb) or “triple refractory” disease | Part A: TriPRIL CAR-T cell dose escalation Part B: TriPRIL CAR-T cell dose expansion | N/A |
LMY-920-002 (NCT05546723) | T cell | BAFF | I | Human | RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) | LMY-920 single dose escalation | [57] |
THINK (NCT03018405) | T cell | NKG2D | I/II | Fully human | RRMM | Three cohorts: NKR2 single dose escalation | [58] |
NCT03778346 | T cell | Integrin β7, BCMA, SLAMF7, CD38, CD138 | I | N/A | RRMM ≥ 2 prior LOTs | Single dose escalation of different dual target combinations | [59] |
NCT05509530 | T cell | BCMA/GPRC5D | II | Murine- derived | RRMM ≥ 3 prior LOTs (chemotherapy based on bortezomib and/or lenalidomide) | Pre-specified single anti-BCMA/GPRC5D CAR-T cell dose escalation | [60] |
ChiCTR2000033567 | T cell | BCMA/CD19 | I/II | Humanized | RRMM ≥ 2 prior LOTs (IMiD, PI) | Single BC19 dose escalation | [61] |
NCT04662099 | T cell | BCMA/SLAMF7 | I | Murine- derived | RRMM ≥ 2 prior LOTs (IMiD, PI) | Single anti-BCMA/SLAMF7 CAR-T cell dose escalation | [62] |
FT576 (NCT05182073) | NK cell | BCMA | I | Derived from scFv human iPSCs | Arm A: RRMM ≥ 3 prior LOTs (IMiD, PI, anti-CD38 mAb) Arm B: RRMM ≥ 2 prior LOTs (IMiD, PI) | Arm A: FT576 Arm B: FT576 + daratumumab | [63] |
NCT05008536 | NK cell | BCMA | I | N/A CB-derived | RRMM ≥ 2 prior LOTs (PI, IMiD) | Single anti-BCMA CAR-NK dose escalation | N/A |
AsclepiusTCG02 (NCT03940833) | NK cell | BCMA | I/II | N/A NK-92- derived | RRMM | Single anti-BCMA CAR-NK dose escalation | N/A |
NCT02851056 | DC vaccine | Survivin | I | N/A | NDMM | Single DC: AdmS doses before and after ASCT | [64] |
BMT CTN 1401 (NCT02728102) | DC vaccine | - | II | N/A | NDMM transplant eligible | Arm A: lenalidomide + DC vaccine + GM-CSF Arm B: lenalidomide + GM-CSF Arm C: lenalidomide | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Cruz, S.; Jornet Culubret, M.; Konetzki, V.; Alb, M.; Friedel, S.R.; Hudecek, M.; Einsele, H.; Danhof, S.; Scheller, L. Cellular Therapies for Multiple Myeloma: Engineering Hope. Cancers 2024, 16, 3867. https://doi.org/10.3390/cancers16223867
Vera-Cruz S, Jornet Culubret M, Konetzki V, Alb M, Friedel SR, Hudecek M, Einsele H, Danhof S, Scheller L. Cellular Therapies for Multiple Myeloma: Engineering Hope. Cancers. 2024; 16(22):3867. https://doi.org/10.3390/cancers16223867
Chicago/Turabian StyleVera-Cruz, Sarah, Maria Jornet Culubret, Verena Konetzki, Miriam Alb, Sabrina R. Friedel, Michael Hudecek, Hermann Einsele, Sophia Danhof, and Lukas Scheller. 2024. "Cellular Therapies for Multiple Myeloma: Engineering Hope" Cancers 16, no. 22: 3867. https://doi.org/10.3390/cancers16223867
APA StyleVera-Cruz, S., Jornet Culubret, M., Konetzki, V., Alb, M., Friedel, S. R., Hudecek, M., Einsele, H., Danhof, S., & Scheller, L. (2024). Cellular Therapies for Multiple Myeloma: Engineering Hope. Cancers, 16(22), 3867. https://doi.org/10.3390/cancers16223867