GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Immunohistochemistry
2.3. Evaluation of Staining Intensity and Stratification
2.4. Clinicopathological Analysis
2.5. Cell Lines and Culture Conditions
2.6. Western Blotting
2.7. Cell Proliferation Under 4-HNE Exposure
2.8. Cell Death Analysis Under 4-HNE and Cisplatin Exposure
2.9. Analysis of Cytotoxicity Under GPX4 and FSP1 Inhibitor Exposure
2.10. Detailed Analysis of Cell Death Using Cell Death Inhibitors
2.11. Statistical Evaluation
3. Results
3.1. Measurement of H-Scores for 4-HNE, GPX4 and FSP1 in Immunostaining and Stratification of Cases
3.2. Assocation of 4-HNE, GPX4, and FSP1 Expression Levels
3.3. Prognostic Analysis of Lipid Peroxidation Regulators and Markers in Lung Adenocarcinoma
3.4. Association Between Accumulation/Expression Levels and Clinicopathological Factors
3.5. Univariate and Multivariate Analysis
3.6. Inhibition of Cell Proliferation in Lung Adenocarcinoma Cell Lines A549 and ABC-1 by 4-HNE
3.7. Evaluation of the Effect of 4-HNE on Induction of Cell Death in Lung Adenocarcinoma Cells
3.8. Synergistic Induction of Non-Apoptotic Cell Death in Lung Adenocarcinoma Cells by Combined Inhibition of GPX4 and FSP1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horinouchi, H.; Kusumoto, M.; Yatabe, Y.; Aokage, K.; Watanabe, S.I.; Ishikura, S. Lung cancer in Japan. J. Thorac. Oncol. 2022, 17, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Milkovic, L.; Zarkovic, N.; Marusic, Z.; Zarkovic, K.; Jaganjac, M. The 4-hydroxynonenal-protein adducts and their biological relevance: Are some proteins preferred targets? Antioxidants 2023, 12, 856. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Sugezawa, K.; Morimoto, M.; Yamamoto, M.; Matsumi, Y.; Nakayama, Y.; Hara, K.; Uejima, C.; Kihara, K.; Matsunaga, T.; Tokuyasu, N.; et al. GPX4 regulates tumor cell proliferation via suppressing ferroptosis and exhibits prognostic significance in gastric cancer. Anticancer Res. 2022, 42, 5719–5729. [Google Scholar] [CrossRef]
- Guerriero, E.; Capone, F.; Accardo, M.; Sorice, A.; Costantini, M.; Colonna, G.; Castello, G.; Costantini, S. GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur. J. Histochem. 2015, 59, 2540. [Google Scholar] [CrossRef]
- Miyauchi, W.; Shishido, Y.; Matsumi, Y.; Matsunaga, T.; Makinoya, M.; Shimizu, S.; Miyatani, K.; Sakamoto, T.; Umekita, Y.; Hasegawa, T.; et al. Simultaneous regulation of ferroptosis suppressor protein 1 and glutathione peroxidase 4 as a new therapeutic strategy of ferroptosis for esophageal squamous cell carcinoma. Esophagus 2023, 20, 492–501. [Google Scholar] [CrossRef]
- Im, S.B.; Cho, J.M.; Kim, H.B.; Shin, D.H.; Kwon, M.S.; Lee, I.Y.; Son, G.M. FSP-1 expression in cancer cells is relevant to long-term oncological outcomes in nonmetastatic colorectal cancer. Korean J. Clin. Oncol. 2022, 18, 66–77. [Google Scholar] [CrossRef]
- Watabe, S.; Aruga, Y.; Kato, R.; Kawade, G.; Kubo, Y.; Tatsuzawa, A.; Onishi, I.; Kinowaki, Y.; Ishibashi, S.; Ikeda, M.; et al. Regulation of 4-HNE via SMARCA4 is associated with worse clinical outcomes in hepatocellular carcinoma. Biomedicines 2023, 11, 2278. [Google Scholar] [CrossRef]
- Kawade, G.; Kurata, M.; Matsuki, Y.; Fukuda, S.; Onishi, I.; Kinowaki, Y.; Watabe, S.; Ishibashi, S.; Ikeda, M.; Yamamoto, M.; et al. Mediation of ferroptosis suppressor Protein 1 expression via 4-hydroxy-2-nonenal accumulation contributes to acquisition of resistance to apoptosis and ferroptosis in diffuse large B-cell lymphoma. Lab. Investig. 2024, 104, 102027. [Google Scholar] [CrossRef]
- Asakawa, A.; Kawade, G.; Kurata, M.; Fukuda, S.; Onishi, I.; Kinowaki, Y.; Ishibashi, S.; Ikeda, M.; Watabe, S.; Kobayashi, M.; et al. Stratification of lung squamous cell carcinoma based on ferroptosis regulators: Potential for new therapeutic strategies involving ferroptosis induction. Lung Cancer 2022, 165, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021, 593, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005, 205, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Yang, R.; Feng, H.; Liu, Y.; Liu, R.; Ma, B. A GPX4 non-enzymatic domain and MDM2 targeting peptide Protac for acute lymphoid leukemia therapy through ferroptosis induction. Biochem. Biophys. Res. Commun. 2023, 684, 149125. [Google Scholar] [CrossRef]
- Kinowaki, Y.; Kurata, M.; Ishibashi, S.; Ikeda, M.; Tatsuzawa, A.; Yamamoto, M.; Miura, O.; Kitagawa, M.; Yamamoto, K. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab. Investig. 2018, 98, 609–619. [Google Scholar] [CrossRef]
- Sha, R.; Xu, Y.; Yuan, C.; Sheng, X.; Wu, Z.; Peng, J.; Wang, Y.; Lin, Y.; Zhou, L.; Xu, S.; et al. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBiomedicine 2021, 71, 103560. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Available online: http://www.proteinatlas.org (accessed on 21 June 2024).
- TCGA Research Network. Available online: https://www.cancer.gov/tcga (accessed on 21 June 2024).
- Henle, E.S.; Luo, Y.; Gassmann, W.; Linn, S. Oxidative damage to DNA constituents by iron-mediated fenton reactions. The deoxyguanosine family. J. Biol. Chem. 1996, 271, 21177–21186. [Google Scholar] [CrossRef]
- Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef]
- García-Guede, Á.; Vera, O.; Ibáñez-de-Caceres, I. When oxidative stress meets epigenetics: Implications in cancer development. Antioxidants 2020, 9, 468. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Moneypenny, C.G.; Gallagher, E.P. 4-hydroxynonenal inhibits cell proliferation and alters differentiation pathways in human fetal liver hematopoietic stem cells. Biochem. Pharmacol. 2005, 69, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Schaur, R.J. 4-hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000, 50, 315–321. [Google Scholar]
- Ji, Y.; Dai, Z.; Wu, G.; Wu, Z. 4-hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells. Sci. Rep. 2016, 6, 32929. [Google Scholar] [CrossRef] [PubMed]
- Guéraud, F. 4-hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic. Biol. Med. 2017, 111, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Siems, W.; Grune, T. Intracellular metabolism of 4-hydroxynonenal. Mol. Aspects Med. 2003, 24, 167–175. [Google Scholar] [CrossRef]
- Cao, J.Y.; Poddar, A.; Magtanong, L.; Lumb, J.H.; Mileur, T.R.; Reid, M.A.; Dovey, C.M.; Wang, J.; Locasale, J.W.; Stone, E.; et al. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep. 2019, 26, 1544–1556.e8. [Google Scholar] [CrossRef]
- Kong, Y.; Akatsuka, S.; Motooka, Y.; Zheng, H.; Cheng, Z.; Shiraki, Y.; Mashimo, T.; Imaoka, T.; Toyokuni, S. BRCA1 haploinsufficiency promotes chromosomal amplification under Fenton reaction-based carcinogenesis through ferroptosis-resistance. Redox Biol. 2022, 54, 102356. [Google Scholar] [CrossRef]
- Rosell, R.; Jain, A.; Codony-Servat, J.; Jantus-Lewintre, E.; Morrison, B.; Ginesta, J.B.; González-Cao, M. Biological insights in non-small cell lung cancer. Cancer Biol. Med. 2023, 20, 500–518. [Google Scholar] [CrossRef]
- Ji, X.; Qian, J.; Rahman, S.M.J.; Siska, P.J.; Zou, Y.; Harris, B.K.; Hoeksema, M.D.; Trenary, I.A.; Heidi, C.; Eisenberg, R.; et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 2018, 37, 5007–5019. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.; Xia, J.; Cheng, S.; Pei, D.; Zhang, X.; Shu, X. The E3 ligase MIB1 promotes proteasomal degradation of NRF2 and sensitizes lung cancer cells to ferroptosis. Mol. Cancer Res. 2022, 20, 253–264. [Google Scholar] [CrossRef]
- Song, Z.; Jia, G.; Ma, P.; Cang, S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021, 276, 119399. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kang, N.; Ling, X.; Pan, M.; Du, W.; Gao, S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front. Oncol. 2021, 11, 759346. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Han, Y.; Dong, D.; Cao, Y.; Chen, X.; Liu, D.; Cheng, X.; Sun, D.; Li, H.; et al. Immune microenvironment heterogeneity of concurrent adenocarcinoma and squamous cell carcinoma in multiple primary lung cancers. npj Precis. Oncol. 2024, 8, 55. [Google Scholar] [CrossRef]
Antibody | Host | Type | Source | Antigen Retrieval | Buffer | Dilution | Method |
---|---|---|---|---|---|---|---|
4-HNE | Mouse | Monoclonal | Japan Institute for the Control of Aging | Microwave, 97 °C, 20 min | pH9.0 | 1:200 | ABC |
GPX4 | Rabbit | Monoclonal | abcam | Microwave, 97 °C, 20 min | pH6.0 | 1:4000 | ABC |
FSP1 | Rabbit | Polyclonal | ATLAS ANTIBODIES | Microwave, 97 °C, 20 min | pH9.0 | 1:200 | ABC |
4-HNE(C) low | 4-HNE(C) high | p value | phi coefficient | |
GPX4 low | 39 | 50 | 0.483 | −0.053 |
GPX4 high | 58 | 60 | ||
FSP1 low | FSP1 high | p value | phi coefficient | |
GPX4 low | 44 | 45 | 0.889 | 0.011 |
GPX4 high | 58 | 60 | ||
4-HNE(C) low | 4-HNE(C) high | p value | phi coefficient | |
FSP1 low | 66 | 36 | <0.001 | 0.362 |
FSP1 high | 31 | 74 | ||
4-HNE(N) none | 4-HNE(N) exist | p value | phi coefficient | |
GPX4 low | 79 | 10 | 0.467 | −0.062 |
GPX4 high | 109 | 9 | ||
4-HNE(N) none | 4-HNE(N) exist | p value | phi coefficient | |
4-HNE(C) low | 96 | 1 | <0.001 | 0.265 |
4-HNE(C) high | 92 | 18 | ||
4-HNE(N) none | 4-HNE(N) exist | p value | phi coefficient | |
FSP1 low | 92 | 10 | 0.812 | −0.024 |
FSP1 high | 96 | 9 |
Characteristics | 4-HNE(C) High (n = 110) | 4-HNE(C) Low (n = 97) | p Value | Characteristics | 4-HNE(N) Expression (n = 19) | 4-HNE(N) None (n = 188) | p Value |
Age | Age | ||||||
<70 | 38 | 44 | 0.120 | <70 | 5 | 77 | 0.325 |
≥70 | 72 | 53 | ≥70 | 14 | 111 | ||
Gender | Gender | ||||||
Male | 61 | 64 | 0.154 | Male | 8 | 117 | 0.138 |
Female | 49 | 33 | Female | 11 | 71 | ||
Stage | Stage | ||||||
I | 76 | 57 | 0.146 | I | 16 | 117 | 0.077 |
II, III, IV | 34 | 40 | II, III, IV | 3 | 71 | ||
Lymphovascular invasion | Lymphovascular invasion | ||||||
None | 101 | 76 | 0.009 | None | 17 | 160 | 1.000 |
Exist | 9 | 21 | Exist | 2 | 28 | ||
Vessel invasion | Vessel invasion | ||||||
None | 76 | 51 | 0.016 | None | 17 | 110 | 0.011 |
Exist | 34 | 46 | Exist | 2 | 78 | ||
Pleural invasion | Pleural invasion | ||||||
None | 78 | 64 | 0.457 | None | 15 | 127 | 0.438 |
Exist | 32 | 33 | Exist | 4 | 61 | ||
Characteristics | GPX4 High (n = 118) | GPX4 Low (n = 89) | p Value | Characteristics | FSP1 High (n = 105) | FSP1 Low (n = 102) | p Value |
Age | Age | ||||||
<70 | 51 | 31 | 0.252 | <70 | 40 | 42 | 0.672 |
≥70 | 67 | 58 | ≥70 | 65 | 60 | ||
Gender | Gender | ||||||
Male | 71 | 54 | 1.000 | Male | 62 | 63 | 0.776 |
Female | 47 | 35 | Female | 43 | 39 | ||
Stage | Stage | ||||||
I | 81 | 52 | 0.144 | I | 73 | 60 | 0.114 |
II, III, IV | 37 | 37 | II, III, IV | 32 | 42 | ||
Lymphovascular invasion | Lymphovascular invasion | ||||||
None | 99 | 78 | 0.551 | None | 93 | 84 | 0.239 |
Exist | 19 | 11 | Exist | 12 | 18 | ||
Vessel invasion | Vessel invasion | ||||||
None | 74 | 53 | 0.667 | None | 71 | 56 | 0.065 |
Exist | 44 | 36 | Exist | 34 | 46 | ||
Pleural invasion | Pleural invasion | ||||||
None | 83 | 59 | 0.549 | None | 80 | 62 | 0.024 |
Exist | 35 | 30 | Exist | 25 | 40 |
Variable | Category | Number of Patients | HR | 95%CI | p Value |
---|---|---|---|---|---|
Age | <70 | 82 | 0.960 | 0.480, 1.920 | 0.908 |
≥70 | 125 | ||||
Gender | Male | 125 | 0.590 | 0.298, 1.170 | 0.147 |
Female | 82 | ||||
stage | I | 133 | 4.638 | 2.158, 9.966 | <0.001 |
II, III, IV | 74 | ||||
ly | - | 177 | 3.453 | 1.096, 10.88 | 0.001 |
+ | 30 | ||||
v | - | 127 | 2.181 | 1.037, 4.588 | 0.021 |
+ | 80 | ||||
pl | - | 142 | 2.962 | 1.366, 6.423 | 0.001 |
+ | 65 | ||||
4-HNE(C) | high expression | 110 | 2.205 | 1.064, 4.569 | 0.017 |
low expression | 97 | ||||
4-HNE(N) | expression | 19 | 4.686 | 1.686, 13.02 | 0.090 |
no expression | 188 | ||||
GPX4 | high expression | 118 | 2.690 | 1.338, 5.406 | 0.004 |
low expression | 89 | ||||
FSP1 | high expression | 105 | 1.387 | 0.692, 2.780 | 0.344 |
low expression | 102 |
Variable | Category | Number of Patients | HR | 95%CI | p Value | Variable | Category | Number of Patients | HR | 95%CI | p Value |
Age | <70 | 82 | 0.911 | 0.407, 2.039 | 0.821 | Age | <70 | 82 | 0.901 | 0.403, 2.017 | 0.800 |
≥70 | 125 | ≥70 | 125 | ||||||||
Gender | Male | 125 | 0.835 | 0.361, 1.932 | 0.674 | Gender | Male | 125 | 0.856 | 0.371, 1.979 | 0.717 |
Female | 82 | Female | 82 | ||||||||
stage | I | 133 | 3.271 | 1.304, 8.204 | 0.012 | stage | I | 133 | 3.237 | 0.831,5.962 | 0.012 |
II, III, IV | 74 | II, III, IV | 74 | ||||||||
ly | - | 177 | 1.528 | 0.556, 4.204 | 0.411 | ly | - | 177 | 1.652 | 1.099,6.656 | 0.330 |
+ | 30 | + | 30 | ||||||||
v | - | 127 | 0.59 | 0.223, 1.564 | 0.289 | v | - | 127 | 0.516 | 0.189, 1.412 | 0.198 |
+ | 80 | + | 80 | ||||||||
pl | - | 142 | 2.042 | 0.811, 5.139 | 0.130 | pl | - | 142 | 2.125 | 0.841, 5.369 | 0.111 |
+ | 65 | + | 65 | ||||||||
4-HNE(C) | high expression | 110 | 1.042 | 0.468, 2.317 | 0.920 | 4-HNE(N) | expression | 19 | 3.575 | 0.408, 31.36 | 0.250 |
low expression | 97 | no expression | 188 | ||||||||
Variable | Category | Number of Patients | HR | 95%CI | p Value | Variable | Category | Number of Patients | HR | 95%CI | p Value |
Age | <70 | 82 | 0.794 | 0.348, 1.809 | 0.583 | Age | <70 | 82 | 0.908 | 0.405, 2.034 | 0.815 |
≥70 | 125 | ≥70 | 125 | ||||||||
Gender | Male | 125 | 0.851 | 0.362, 2.000 | 0.711 | Gender | Male | 125 | 0.825 | 0.357, 1.908 | 0.654 |
Female | 82 | Female | 82 | ||||||||
stage | I | 133 | 3.005 | 1.170, 7.715 | 0.022 | stage | I | 133 | 3.338 | 1.328, 8.391 | 0.010 |
II, III, IV | 74 | II, III, IV | 74 | ||||||||
ly | - | 177 | 1.765 | 0.627, 4.972 | 0.282 | ly | - | 177 | 1.561 | 0.573, 4.258 | 0.384 |
+ | 30 | + | 30 | ||||||||
v | - | 127 | 0.562 | 0.206, 1.531 | 0.260 | v | - | 127 | 0.589 | 0.222, 1.568 | 0.290 |
+ | 80 | + | 80 | ||||||||
pl | - | 142 | 2.095 | 0.811, 5.408 | 0.126 | pl | - | 142 | 2.153 | 0.840, 5.517 | 0.110 |
+ | 65 | + | 65 | ||||||||
GPX4 | high expression | 118 | 02.749 | 1.210, 6.246 | 0.016 | FSP1 | high expression | 105 | 0.739 | 0.331, 1.649 | 0.460 |
low expression | 89 | low expression | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahara, H.; Kanazawa, T.; Oshita, H.; Tomita, Y.; Hananoi, Y.; Ishibashi, S.; Ikeda, M.; Furukawa, A.; Kinoshita, M.; Yamamoto, K.; et al. GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies. Cancers 2024, 16, 3888. https://doi.org/10.3390/cancers16223888
Takahara H, Kanazawa T, Oshita H, Tomita Y, Hananoi Y, Ishibashi S, Ikeda M, Furukawa A, Kinoshita M, Yamamoto K, et al. GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies. Cancers. 2024; 16(22):3888. https://doi.org/10.3390/cancers16223888
Chicago/Turabian StyleTakahara, Hirotomo, Takumi Kanazawa, Haruna Oshita, Yoshinobu Tomita, Yuri Hananoi, Sachiko Ishibashi, Masumi Ikeda, Asuka Furukawa, Mayumi Kinoshita, Kurara Yamamoto, and et al. 2024. "GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies" Cancers 16, no. 22: 3888. https://doi.org/10.3390/cancers16223888
APA StyleTakahara, H., Kanazawa, T., Oshita, H., Tomita, Y., Hananoi, Y., Ishibashi, S., Ikeda, M., Furukawa, A., Kinoshita, M., Yamamoto, K., Kato, Y., Ishibashi, H., Okubo, K., Kurata, M., Kitagawa, M., Ohashi, K., & Yamamoto, K. (2024). GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies. Cancers, 16(22), 3888. https://doi.org/10.3390/cancers16223888