Seo, H.; Lee, S.; Yun, S.; Leem, S.; So, S.; Han, D.H.
RenseNet: A Deep Learning Network Incorporating Residual and Dense Blocks with Edge Conservative Module to Improve Small-Lesion Classification and Model Interpretation. Cancers 2024, 16, 570.
https://doi.org/10.3390/cancers16030570
AMA Style
Seo H, Lee S, Yun S, Leem S, So S, Han DH.
RenseNet: A Deep Learning Network Incorporating Residual and Dense Blocks with Edge Conservative Module to Improve Small-Lesion Classification and Model Interpretation. Cancers. 2024; 16(3):570.
https://doi.org/10.3390/cancers16030570
Chicago/Turabian Style
Seo, Hyunseok, Seokjun Lee, Sojin Yun, Saebom Leem, Seohee So, and Deok Hyun Han.
2024. "RenseNet: A Deep Learning Network Incorporating Residual and Dense Blocks with Edge Conservative Module to Improve Small-Lesion Classification and Model Interpretation" Cancers 16, no. 3: 570.
https://doi.org/10.3390/cancers16030570
APA Style
Seo, H., Lee, S., Yun, S., Leem, S., So, S., & Han, D. H.
(2024). RenseNet: A Deep Learning Network Incorporating Residual and Dense Blocks with Edge Conservative Module to Improve Small-Lesion Classification and Model Interpretation. Cancers, 16(3), 570.
https://doi.org/10.3390/cancers16030570