Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Head and Neck Cancers
1.2. Main Areas
1.3. Photodynamic Therapy
1.4. Mechanism of Photodynamic Therapy
1.5. Pros and Cons
1.6. Photodynamic, Radiological, and Surgical Therapies
2. Methodology
3. A Review of the Literature
3.1. PDT Therapy in Eyes
3.1.1. Chronic Central Serous Chorioretinopathy (cCSC)
- A randomized controlled trial found that half-dose PDT was more effective than a high-density subthreshold micropulse laser (HSML) in resolving subretinal fluid (SRF) and improving visual outcomes in cCSC patients [91].
- Crossover to half-dose PDT after unsuccessful HSML treatment showed improved anatomical and functional outcomes in cCSC patients [92].
- A multicenter follow-up study revealed that cCSC patients treated with half-dose PDT were less likely to experience SRF recurrences compared to HSML at 20 months after treatment [93].
- Reduced doses of verteporfin PDT were found to significantly impact choroidal blood flow in chronic CSC [94].
- A prospective series indicated that primary PDT is a safe and efficient treatment for small pigmented posterior pole choroidal melanoma, offering short-term tumor control and preserving vision [95].
- A follow-up study in cCSC patients who achieved a complete resolution of SRF with either half-dose PDT or HSML showed that those treated with half-dose PDT were less likely to experience SRF recurrence [93].
- Evaluations of one-third dose verteporfin PDT in chronic CSC demonstrated improvements in choroidal thickness, central choroidal capillary layer thickness, and best-corrected visual acuity (BCVA) [96].
- A study comparing different doses of verteporfin PDT in chronic CSC indicated a significant impact on choroidal blood flow, with variations depending on the verteporfin dose [94].
- Topographical changes in choroidal thickness after PDT for CSC revealed a significant decrease in choroidal thickness up to 3 mm from the fovea [97].
- Another study on chronic CSC patients treated with half-dose PDT showed a significant decrease in subfoveal choroidal thickness after treatment [98].
3.1.2. Polypoidal Choroidal Vasculopathy (PCV)
- The EVEREST II trial suggested that combination therapy with ranibizumab and verteporfin PDT is efficacious and safe for treating PCV, achieving better BCVA gain, increased odds of complete polypoidal lesion regression, and fewer treatment episodes compared to ranibizumab monotherapy [99].
- A randomized clinical trial involving Asian participants with symptomatic macular PCV demonstrated that combination therapy with ranibizumab and verteporfin PDT was not only non-inferior but also superior to monotherapy in terms of BCVA improvement and complete polyp regression [100].
- In a case study, a rare side effect of PDT for circumscribed choroidal hemangioma was observed, leading to the development of polypoidal choroidal vasculopathy (PCV) [101].
- Combined treatment with ranibizumab and verteporfin PDT was found more effective than PDT alone in patients with predominantly classic choroidal neovascularization (CNV) secondary to neovascular age-related macular degeneration [102].
- A study exploring the outcomes of combined intravitreal triamcinolone and PDT with verteporfin for subfoveal CNV caused by AMD suggested better outcomes compared to PDT monotherapy [103].
3.1.3. Other Conditions and Studies
- A study explored the potential use of PDT for treating retinoblastoma, indicating a higher phototoxic effect in cancer cells compared to normal cells [104].
- Combining trabeculectomy with PDT was investigated as a new approach to modulate postoperative wound healing in glaucoma patients [105].
- An extrafoveal PDT occlusion of feeder vessels in patients with subfoveal CNV due to AMD demonstrated potential improvements in central vision without causing subfoveal retinal damage [106].
3.2. PDT Therapy in Ears
3.2.1. Posterior Choroidal Amelanotic Melanomas
3.2.2. Basal Cell Carcinoma (BCC) in the External Auditory Canal (EAC)
3.2.3. Vessel Sclerosis in Telangiectasia
3.2.4. Angiolymphoid Hyperplasia with Eosinophilia (ALHE)
3.3. PDT Therapy in Nasal Cavity
3.3.1. Staphylococcus aureus (S.A) Inhibition
3.3.2. Nasopharyngeal Cancer Treatment
3.3.3. Recurrent Tumors in Paranasal Sinuses
3.3.4. Intranasal PDT for SARS-CoV-2 Carriers
3.3.5. Photodynamic Therapy for Rhinosinusitis
3.3.6. PDT against Antibiotic-Resistant Bacteria
3.3.7. Light Dosimetry in Sinonasal PDT
3.3.8. Needleless Jet Injection for BCC PDT
3.3.9. HpD-PDT for Recurrent Nasopharyngeal Cancers
3.4. PDT Therapy in the Laryngeal Area
3.5. PDT Therapy in Oral Cavity
3.5.1. HPPH-PDT
3.5.2. AFL-PDT
3.5.3. Oral Squamous Cell Carcinoma
3.5.4. TB/TBO PDT
3.5.5. ALA-PDT
3.5.6. OLP-PDT
4. Clinical Use, Advances, and Limitations in the Use of Photodynamic Therapy
5. Ethical Considerations in the Use of Photodynamic Therapy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Zatoński, M.; Kucharczyk, N.; Naglik, K.; Bobak-Sarnowska, E.; Fedorowicz, O.; Kowalska, M.; Zatoński, T. The 2019 Oral, Head and Neck Cancer Awareness Week in light of the history of research on laryngeal cancer at the Otolaryngology, Head and Neck Surgery Department of Wrocław University Hospital. J. Health Inequalities 2021, 7, 70–76. [Google Scholar] [CrossRef]
- Cohen, N.; Fedewa, S.; Chen, A.Y. Epidemiology and Demographics of the Head and Neck Cancer Population. Oral Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An update on larynx cancer. CA Cancer J. Clin. 2017, 67, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Kumar, N.; Johnson, N.W. Evidence of past dental visits and incidence of head and neck cancers: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Kay, E.J. Is there an association between past dental visits and the incidence of cancers of the head and neck (HN), upper aerodigestive tract (UADT), and oral cavity? Evid. Based Dent. 2019, 20, 37–38. [Google Scholar] [CrossRef]
- Ramsay, D.; Stevenson, H.; Jerjes, W. From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J. Clin. Med. 2021, 10, 4404. [Google Scholar] [CrossRef]
- Hopper, C. Photodynamic therapy: A clinical reality in the treatment of cancer. Lancet Oncol. 2000, 1, 212–219. [Google Scholar] [CrossRef]
- Biel, M.A. Photodynamic therapy in head and neck cancer. Curr. Oncol. Rep. 2002, 4, 87–96. [Google Scholar] [CrossRef]
- Maisch, T.; Baier, J.; Franz, B.; Maier, M.; Landthaler, M.; Szeimies, R.M.; Bäumler, W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 7223–7228. [Google Scholar] [CrossRef]
- Di Stasio, D.; Romano, A.; Gentile, C.; Maio, C.; Lucchese, A.; Serpico, R.; Paparella, R.; Minervini, G.; Candotto, V.; Laino, L. Systemic and topical photodynamic therapy (PDT) on oral mucosa lesions: An overview. J. Biol. Regul. Homeost. Agents 2018, 32, 123–126. [Google Scholar]
- Mosaddad, S.A.; Namanloo, R.A.; Aghili, S.S.; Maskani, P.; Alam, M.; Abbasi, K.; Nouri, F.; Tahmasebi, E.; Yazdanian, M.; Tebyaniyan, H. Photodynamic therapy in oral cancer: A review of clinical studies. Med. Oncol. 2023, 40, 91. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Zhang, H.G.; Zhu, J. A photodynamic therapy combined with topical 5-aminolevulinic acid and systemic hematoporphyrin derivative is more efficient but less phototoxic for cancer. J. Cancer Res. Clin. Oncol. 2016, 142, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhong, J.; Jiang, J.J.; Hou, Q.; Ren, H.; Silverman, M.; Li, G. Office-Based Photodynamic Therapy Using Locally Applied 5-aminolevulinic Acid and 635 nm Laser for Laryngeal Leukoplakia. Otolaryngol. Head Neck Surg. 2023, 168, 805–813. [Google Scholar] [CrossRef]
- Blanco, K.C.; da Silva, A.P.; Panhoca, V.H.; Moriyama, L.T.; Bagnato, V.S. Photodynamic therapy of adenoid hypertrophy in acute rhinosinusitis. Photodiagn. Photodyn. Ther. 2022, 39, 102892. [Google Scholar] [CrossRef] [PubMed]
- Murri, D.; Botti, C.; Bassano, E.; Fornaciari, M.; Crocetta, F.M.; Ghidini, A. Reduction in healthcare services during the COVID-19 pandemic: Patient screening based on symptoms is an effective strategy for avoiding delayed laryngeal cancer diagnosis. Am. J. Otolaryngol. 2021, 42, 103162. [Google Scholar] [CrossRef] [PubMed]
- Harounian, J.; Postevka, E.; Jamal, N. Medications and the larynx. Curr. Opin. Otolaryngol. Head Neck Surg. 2019, 27, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, N.; Sevilla, A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024, 25, 1023. [Google Scholar] [CrossRef]
- Dailton Guedes de Oliveira Moraes, C.; Henrique Godoi, B.; Chaves Silva Carvalho, I.; Cristina Pinto, J.; Carvalho Rossato, R.; Soares da Silva, N.; Pacheco Soares, C. Genotoxic effects of photodynamic therapy in laryngeal cancer cells—An in vitro study. Exp. Biol. Med. 2019, 244, 262–271. [Google Scholar] [CrossRef]
- Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic Therapy as a Promising Method Used in the Treatment of Oral Diseases. Adv. Clin. Exp. Med. 2016, 25, 799–807. [Google Scholar] [CrossRef]
- Kharkwal, G.B.; Sharma, S.K.; Huang, Y.Y.; Dai, T.; Hamblin, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011, 43, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Pan, L.; Song, W.; Yuan, Y.; Yan, S.; Yu, S.; Chen, S. Elsinochrome A induces cell apoptosis and autophagy in photodynamic therapy. J. Cell Biochem. 2023, 124, 1346–1365. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qiao, C.; Guan, Q.; Wei, M.; Li, Z. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: Novel insights and perspectives. Asian J. Pharm. Sci. 2023, 18, 100829. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Arambula, J.F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J.L.; Kim, J.S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771–813. [Google Scholar] [CrossRef]
- Wang, H.; Shang, J.; Yang, F.; Zhang, S.; Cui, J.; Hou, X.; Li, Y.; Liu, W.; Shu, X.; Liu, Y.; et al. Modulation of tumour hypoxia by ultrasound-responsive microbubbles to enhance the sono-photodynamic therapy effect on triple-negative breast cancer. Photodiagn. Photodyn. Ther. 2023, 42, 103642. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005, 205, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Y.; Li, J.; Peng, Z.H.; Sheinin, Y.; Zhou, J.; Oupický, D. Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano 2017, 11, 2227–2238. [Google Scholar] [CrossRef]
- Peng, Q.; Nesland, J.M. Effects of photodynamic therapy on tumor stroma. Ultrastruct. Pathol. 2004, 28, 333–340. [Google Scholar] [CrossRef]
- Du, Y.; Han, J.; Jin, F.; Du, Y. Recent Strategies to Address Hypoxic Tumor Environments in Photodynamic Therapy. Pharmaceutics 2022, 14, 1763. [Google Scholar] [CrossRef]
- Murotomi, K.; Umeno, A.; Shichiri, M.; Tanito, M.; Yoshida, Y. Significance of Singlet Oxygen Molecule in Pathologies. Int. J. Mol. Sci. 2023, 24, 2739. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Correia, J.H. Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells 2022, 11, 3995. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Maharjan, P.S.; Bhattarai, H.K. Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. J. Oncol. 2022, 2022, 7211485. [Google Scholar] [CrossRef]
- Tavakkoli Yaraki, M.; Liu, B.; Tan, Y.N. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. Nano-Micro Lett. 2022, 14, 123. [Google Scholar] [CrossRef]
- Fujii, J.; Soma, Y.; Matsuda, Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023, 28, 4085. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Triesscheijn, M.; Baas, P.; Schellens, J.H.; Stewart, F.A. Photodynamic therapy in oncology. Oncologist 2006, 11, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.S.; Butler, G.J.; Beale, J.; Hamilton, R.W.; Lee, B.Y.; Lucas, P. Hyperbaric oxygen and malignancies: A potential role in radiotherapy, chemotherapy, tumor surgery and phototherapy. Med. Sci. Monit. 2005, 11, RA279–RA289. [Google Scholar] [PubMed]
- Lima, E.; Reis, L.V. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023, 28, 5092. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Hayashi, J.I.; Fujimura, T.; Iwamura, Y.; Yamamoto, G.; Nishida, E.; Ohno, T.; Okada, K.; Yamamoto, H.; Kikuchi, T.; et al. New Irradiation Method with Indocyanine Green-Loaded Nanospheres for Inactivating Periodontal Pathogens. Int. J. Mol. Sci. 2017, 18, 154. [Google Scholar] [CrossRef]
- Sabino, C.P.; Deana, A.M.; Yoshimura, T.M.; da Silva, D.F.; França, C.M.; Hamblin, M.R.; Ribeiro, M.S. The optical properties of mouse skin in the visible and near infrared spectral regions. J. Photochem. Photobiol. B 2016, 160, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Guseva, E.V.; Ataeva, A.N.; Sigan, A.L.; Shibaeva, A.V.; Dmitrieva, M.V.; Burtsev, I.D.; Volodina, Y.L.; Radchenko, A.S.; Egorov, A.E.; et al. Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia. Int. J. Mol. Sci. 2023, 24, 7995. [Google Scholar] [CrossRef] [PubMed]
- Dréano, M.; Mongin, O.; Frédéric, P.; Humphrey, M.G. Nonlinear optics: From theory to applications, with a focus on the use of two-photon absorption in biology. Aust. J. Chem. 2023, 76, 130–149. [Google Scholar] [CrossRef]
- Alekseeva, P.M.; Efendiev, K.T.; Savelieva, T.A.; Moskalev, A.S.; Steiner, R.; Loschenov, V.B. Optimization of energy parameters for laser-induced PDT of cervical tissues using numerical simulation and fluorescent monitoring. Laser Phys. 2023, 33, 065602. [Google Scholar] [CrossRef]
- Xiang, M.; Zhou, Q.; Shi, Z.; Wang, X.; Li, M.; Jia, Y.; Li, S.; Yang, F.; Wang, W.; Chen, T.; et al. A Review of Light Sources and Enhanced Targeting for Photodynamic Therapy. Curr. Med. Chem. 2021, 28, 6437–6457. [Google Scholar] [CrossRef]
- Lu, J.; Choi, E.; Tamanoi, F.; Zink, J.I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 2008, 4, 421–426. [Google Scholar] [CrossRef]
- Kwaśny, M. Light sources and diagnostic systems currently used in photodynamic therapy. Opt. Appl. 2002, 32, 673–684. [Google Scholar]
- Brancaleon, L.; Moseley, H. Laser and non-laser light sources for photodynamic therapy. Lasers Med. Sci. 2002, 17, 173–186. [Google Scholar] [CrossRef]
- Maisels, M.J. Phototherapy—traditional and nontraditional. J. Perinatol. 2001, 21, S93–S97. [Google Scholar] [CrossRef] [PubMed]
- Astuti, S.D.; Prasaja, B.I.; Prijo, T.A. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction. J. Phys. Conf. Ser. 2017, 853, 012038. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Musolino, C.; Gangemi, S. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants 2020, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 2020, 21, 678–695. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Gil-Guerrero, S.; González-Sánchez, L.; Sanz-Sanz, C.; Jambrina, P.G. Spin-Forbidden Addition of Molecular Oxygen to Stable Enol Intermediates—Decarboxylation of 2-Methyl-1-tetralone-2-carboxylic Acid. Int. J. Mol. Sci. 2023, 24, 7424. [Google Scholar] [CrossRef]
- Puzanowska-Tarasiewicz, H.; Starczewska, B.; Kuźmicka, L. Reactive oxygen species. Bromatol. Chem. Toksykol. 2008, 41, 1007–1015. [Google Scholar]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Grumezescu, A.M. Photodynamic Therapy—An Up-to-Date Review. Appl. Sci. 2021, 11, 3626. [Google Scholar] [CrossRef]
- Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed. Pharmacother. 2021, 137, 111302. [Google Scholar] [CrossRef] [PubMed]
- Kubrak, T.P.; Kołodziej, P.; Sawicki, J.; Mazur, A.; Koziorowska, K.; Aebisher, D. Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. Molecules 2022, 27, 1192. [Google Scholar] [CrossRef] [PubMed]
- Sarbadhikary, P.; George, B.P.; Abrahamse, H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021, 11, 9054–9088. [Google Scholar] [CrossRef]
- Aires-Fernandes, M.; Botelho Costa, R.; Rochetti do Amaral, S.; Mussagy, C.U.; Santos-Ebinuma, V.C.; Primo, F.L. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment—From Benchtop to Clinical Practice. Molecules 2022, 27, 6848. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, e1900132. [Google Scholar] [CrossRef] [PubMed]
- Ozog, D.M.; Rkein, A.M.; Fabi, S.G.; Gold, M.H.; Goldman, M.P.; Lowe, N.J.; Martin, G.M.; Munavalli, G.S. Photodynamic Therapy: A Clinical Consensus Guide. Dermatol. Surg. 2016, 42, 804–827. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Song, X.; Dong, X.; Li, B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagn. Photodyn. Ther. 2021, 36, 102597. [Google Scholar] [CrossRef] [PubMed]
- Linger, C.; Lancel, M.; Port, M. Evaluation of relative efficiency of PDT photosensitizers in producing hydroxyl radicals and singlet oxygen in aqueous media using a UV-visible spectroscopy pNDA dosage. J. Photochem. Photobiol. B 2023, 241, 112664. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Correia, J.H. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int. J. Mol. Sci. 2023, 24, 12204. [Google Scholar] [CrossRef] [PubMed]
- Milanese, G.; Mazzaschi, G.; Ledda, R.E.; Balbi, M.; Lamorte, S.; Caminiti, C.; Colombi, D.; Tiseo, M.; Silva, M.; Sverzellati, N. The radiological appearances of lung cancer treated with immunotherapy. Br. J. Radiol. 2023, 96, 20210270. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Tang, X.; Yao, L.; Zhou, L.; Hu, S.; Zhao, S.; Zhang, L. Smart down/upconversion nanomachines integrated with “AND” logic computation and enzyme-free amplification for NIR-II fluorescence-assisted precise and enhanced photodynamic therapy. Chem. Sci. 2023, 14, 3070–3075. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, A.; Ventriglia, J.; Pisano, C.; Cecere, S.C.; Napoli, M.D.; Rossetti, S.; Tambaro, R.; Tarotto, L.; Fiore, F.; Farolfi, A.; et al. The way to precision medicine in gynecologic cancers: The first case report of an exceptional response to alpelisib in a PIK3CA-mutated endometrial cancer. Front. Oncol. 2023, 12, 1088962. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, E.; Ishiyama, N.; Lin, T.A.; Lucas, M.C. Current and emerging therapies for Achondroplasia: The dawn of precision medicine. Bioorg. Med. Chem. 2023, 87, 117275. [Google Scholar] [CrossRef]
- Hannan, M.N.; Sharma, A.K.; Baran, T.M. First in human measurements of abscess cavity optical properties and methylene blue uptake prior to photodynamic therapy by in vivo diffuse reflectance spectroscopy. medRxiv 2023. [Google Scholar] [CrossRef]
- Kahn, J.M.; Smits, G.A.H.J.; Oosterveld, B.J.; van der Steen-Banasik, E.M. How Small Can We Go? Partial Bladder Radiation Therapy and Brachytherapy. Semin. Radiat. Oncol. 2023, 33, 76–81. [Google Scholar] [CrossRef]
- Montero, E.; Roccuzzo, A.; Molina, A.; Monje, A.; Herrera, D.; Roccuzzo, M. Minimal invasiveness in the reconstructive treatment of peri-implantitis defects. Periodontology 2000 2023, 91, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Sebbe-Santos, P.F.; Miquilini, P.; Pinto, J.G.; de Menezes, P.F.C.; Ferreira-Strixino, J. Adverse effects of topical photodynamic therapy in rosacea—Case report. Photodiagn. Photodyn. Ther. 2023, 45, 103871. [Google Scholar] [CrossRef] [PubMed]
- Iovoli, A.J.; Turecki, L.; Qiu, M.L.; Khan, M.; Smith, K.; Yu, H.; Ma, S.J.; Farrugia, M.K.; Singh, A.K. Severe Oral Mucositis After Intensity-Modulated Radiation Therapy for Head and Neck Cancer. JAMA Netw. Open 2023, 6, e2337265. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.P.; Carazzo, C.A.; Guiroy, A.; White, K.P.; Guasque, J.; Sfreddo, E.; Joaquim, A.F.; Yurac, R.; AO Spine Latin America Trauma Study Group. In Reply to the Letter to the Editor Regarding “Risk Factors for Postoperative Complications After Surgical Treatment of Type B and C Injuries of the Thoracolumbar Spine”. World Neurosurg. 2023, 172, 121. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Gao, S.; Tian, R.; Wang, G.; Qin, Z.; Chen, M.; Zhang, W.; Wen, Q.; Ma, Q.; Zhu, L. Enzyme and Reactive Oxygen Species-Responsive Dual-Drug Delivery Nanocomplex for Tumor Chemo-Photodynamic Therapy. Int. J. Nanomed. 2023, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Macias-Verde, D.; Burgos-Burgos, J.; Lara, P.L.; Calabrese, E. Could Pulmonary Inflammation of COVID-19 ARDS Patients Worsen Due to an Excessive Repetition of Follow up Radiological Studies? Immunol. Allergy 2023. preprint. [Google Scholar] [CrossRef]
- De Francesco, F.; Zingaretti, N.; Parodi, P.C.; Riccio, M. The Evolution of Current Concept of the Reconstructive Ladder in Plastic Surgery: The Emerging Role of Translational Medicine. Cells 2023, 12, 2567. [Google Scholar] [CrossRef]
- Wang, S.; Dai, X.Y.; Ji, S.; Saeidi, T.; Schwiegelshohn, F.; Yassine, A.A.; Lilge, L.; Betz, V. Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE. J. Biomed. Opt. 2022, 27, 083006. [Google Scholar] [CrossRef]
- Beauchamp, N.J.; Bryan, R.N.; Bui, M.M.; Krestin, G.P.; McGinty, G.B.; Meltzer, C.C.; Neumaier, M. Integrative diagnostics: The time is now-a report from the International Society for Strategic Studies in Radiology. Insights Imaging 2023, 14, 54. [Google Scholar] [CrossRef]
- Graff, V.; Gabutti, L.; Treglia, G.; Pascale, M.; Anselmi, L.; Cafarotti, S.; La Regina, D.; Mongelli, F.; Saporito, A. Perioperative costs of local or regional anesthesia versus general anesthesia in the outpatient setting: A systematic review of recent literature. Braz. J. Anesthesiol. 2023, 73, 316–339. [Google Scholar] [CrossRef]
- van Dijk, E.H.C.; Fauser, S.; Breukink, M.B.; Blanco-Garavito, R.; Groenewoud, J.M.M.; Keunen, J.E.E.; Peters, P.J.H.; Dijkman, G.; Souied, E.H.; MacLaren, R.E.; et al. Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy: The PLACE Trial. Ophthalmology 2018, 125, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- van Rijssen, T.J.; van Dijk, E.H.C.; Scholz, P.; Breukink, M.B.; Dijkman, G.; Peters, P.J.H.; Tsonaka, R.; MacLaren, R.E.; Downes, S.M.; Fauser, S.; et al. Crossover to Photodynamic Therapy or Micropulse Laser After Failure of Primary Treatment of Chronic Central Serous Chorioretinopathy: The REPLACE Trial. Am. J. Ophthalmol. 2020, 216, 80–89. [Google Scholar] [CrossRef]
- van Rijssen, T.J.; van Dijk, E.H.C.; Scholz, P.; Breukink, M.B.; Dijkman, G.; Peters, P.J.H.; Tsonaka, R.; Keunen, J.E.E.; MacLaren, R.E.; Hoyng, C.B.; et al. Long-term follow-up of chronic central serous chorioretinopathy after successful treatment with photodynamic therapy or micropulse laser. Acta Ophthalmol. 2021, 99, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Kumashiro, S.; Takagi, S.; Itokawa, T.; Tajima, A.; Kobayashi, T.; Hori, Y. Decrease in choroidal blood flow after half and one-third dose verteporfin photodynamic therapy for chronic central serous chorioretinopathy. BMC Ophthalmol. 2021, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Fabian, I.D.; Stacey, A.W.; Papastefanou, V.; Al Harby, L.; Arora, A.K.; Sagoo, M.S.; Cohen, V.M. Primary photodynamic therapy with verteporfin for small pigmented posterior pole choroidal melanoma. Eye 2017, 31, 519–528. [Google Scholar] [CrossRef]
- Hua, L.; Lin, B.; Hong, J.; Min, H.B.; Han, W.L.; Zhou, T.Y.; Zhang, Z.Q. Clinical research on one-third dose verteporfin photodynamic therapy in the treatment of chronic central serous chorioretinopathy. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 278–284. [Google Scholar]
- Wirostko, W.J.; Nordgren, R.N.; Dubis, A.M. Topographical Choroidal Thickness Change Following PDT for CSC: An OCT Case Report. J. Ophthalmol. 2012, 2012, 347206. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yan, Y.Y.; Ding, X.Y.; Liu, R.; Li, J.Q. Choroidal thickness after half-dose verteporfin photodynamic therapy in chronic central serous chorioretinopathy. Zhonghua Yan Ke Za Zhi 2013, 49, 490–494. [Google Scholar]
- Lim, T.H.; Lai, T.Y.Y.; Takahashi, K.; Wong, T.Y.; Chen, L.J.; Ruamviboonsuk, P.; Tan, C.S.; Lee, W.K.; Cheung, C.M.G.; Ngah, N.F.; et al. Comparison of Ranibizumab with or without Verteporfin Photodynamic Therapy for Polypoidal Choroidal Vasculopathy: The EVEREST II Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 935–942. [Google Scholar] [CrossRef]
- Koh, A.; Lai, T.Y.Y.; Takahashi, K.; Wong, T.Y.; Chen, L.J.; Ruamviboonsuk, P.; Tan, C.S.; Feller, C.; Margaron, P.; Lim, T.H.; et al. Efficacy and Safety of Ranibizumab with or Without Verteporfin Photodynamic Therapy for Polypoidal Choroidal Vasculopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2017, 135, 1206–1213. [Google Scholar] [CrossRef]
- Tuncer, S.; Demirci, H.; Shields, C.L.; Shields, J.A. Polypoidal choroidal vasculopathy following photodynamic therapy for choroidal hemangioma. Eur. J. Ophthalmol. 2009, 19, 159–162. [Google Scholar] [CrossRef]
- Antoszyk, A.N.; Tuomi, L.; Chung, C.Y.; Singh, A.; FOCUS Study Group. Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration (FOCUS): Year 2 results. Am. J. Ophthalmol. 2008, 145, 862–874. [Google Scholar] [CrossRef]
- Chan, W.M.; Lai, T.Y.; Wong, A.L.; Tong, J.P.; Liu, D.T.; Lam, D.S. Combined photodynamic therapy and intravitreal triamcinolone injection for the treatment of subfoveal choroidal neovascularisation in age related macular degeneration: A comparative study. Br. J. Ophthalmol. 2006, 90, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Walther, J.; Schastak, S.; Dukic-Stefanovic, S.; Wiedemann, P.; Neuhaus, J.; Claudepierre, T. Efficient photodynamic therapy on human retinoblastoma cell lines. PLoS ONE 2014, 9, e87453. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.F.; Diestelhorst, M.; Grisanti, S.; Krieglstein, G.K. Photodynamic modulation of wound healing in glaucoma filtration surgery. Br. J. Ophthalmol. 2003, 87, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Kozak, I.; Cheng, L.; Cochran, D.E.; Freeman, W.R. Phase I clinical trial results of verteporfin enhanced feeder vessel therapy in subfoveal choroidal neovascularisation in age related macular degeneration. Br. J. Ophthalmol. 2006, 90, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- O’Day, R.F.; Pejnovic, T.M.; Isaacs, T.; Muecke, J.S.; Glasson, W.J.; Campbell, W.G. Australian and New Zealand Study of Photodynamic Therapy in Choroidal Amelanotic Melanoma. Retina 2020, 40, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, L.; Zhang, M. Photodynamic therapy for basal cell carcinoma of external auditory canal: A case report. Photodiagn. Photodyn. Ther. 2019, 28, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Buzzá, H.H.; Holmo, D., Jr.; Stringasci, M.D.; Bertanha, M.; Leão, P.D.S.; Fabro, A.T.; Silva, N.F., Jr.; Zangirolami, A.C.; Bagnato, V.S.; Yoshida, W.B. Photodynamic Therapy Versus Glucose for the Treatment of Telangiectasia: A Randomised Controlled Study in a Rabbit Ear Model. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 583–591. [Google Scholar] [CrossRef]
- Wu, L.; Li, F.; Shi, W.; Su, J.; Chen, M.; Chen, X.; Zhao, S. Combination of electrocoagulation and photodynamic therapy for angiolymphoid hyperplasia with eosinophilia in the external ear. Photodiagn. Photodyn. Ther. 2019, 27, 449–451. [Google Scholar] [CrossRef]
- Entezari, S.; Moezzimoghadam, N.; Lawaf, S.; Azizi, A. In vitro Effect of Photodynamic Therapy with Curcumin and Methylene Blue Photosensitizers on Staphylococcus Aureus. J. Dent. 2022, 23, 387–392. [Google Scholar]
- Li, L.B.; Luo, R.C.; Liao, W.J.; Zhang, M.J.; Luo, Y.L.; Miao, J.X. Clinical study of Photofrin photodynamic therapy for the treatment of relapse nasopharyngeal carcinoma. Photodiagn. Photodyn. Ther. 2006, 3, 266–271. [Google Scholar] [CrossRef]
- Caesar, L.; van Doeveren, T.E.; Tan, I.B.; Dilci, A.; van Veen, R.L.; Karakullukcu, B. The use of photodynamic therapy as adjuvant therapy to surgery in recurrent malignant tumors of the paranasal sinuses. Photodiagn. Photodyn. Ther. 2015, 12, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Montero, A.; Zuaznabar, J.; Pina-Sanchez, M.; Maestro, S.; Martin-Navarro, L.; Muñoz-Rodríguez, N.; Olagüe, C.; Pastrana, M.; Martínez-Fernández, M.; Camps, G.; et al. Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-Cell responses. Front. Cell. Infect. Microbiol. 2023, 13, 1110467. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, C.; Ding, G.; Liu, C.; Ma, Y.; Chen, X.; Wu, Y.; Zheng, C. In-vitro study of photodynamic therapy of antibiotic-resistant staphylococcus from patients with chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016, 51, 164–168. [Google Scholar]
- van Doeveren, T.E.M.; van Veen, R.L.P.; van den Boom, F.; Tan, I.B.; Schreuder, W.H.; Karakullukçu, M.B. Intracavity Photodynamic Therapy for malignant tumors of the paranasal sinuses: An in vivo light dosimetry study. Photodiagn. Photodyn. Ther. 2020, 32, 101972. [Google Scholar] [CrossRef]
- Barolet, D.; Boucher, A. No-needle jet intradermal aminolevulinic Acid photodynamic therapy for recurrent nodular Basal cell carcinoma of the nose: A case report. J. Skin Cancer 2011, 2011, 790509. [Google Scholar] [CrossRef] [PubMed]
- Kulapaditharom, B.; Boonkitticharoen, V. Photodynamic therapy for residual or recurrent cancer of the nasopharynx. J. Med. Assoc. Thai 1999, 82, 1111–1117. [Google Scholar]
- Cerrati, E.W.; Nguyen, S.A.; Farrar, J.D.; Lentsch, E.J. The efficacy of photodynamic therapy in the treatment of oral squamous cell carcinoma: A meta-analysis. Ear Nose Throat J. 2015, 94, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Chou, A.; Gong, T.; Devine, E.E.; Jiang, J.J. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts. Laryngoscope 2018, 128, E323–E331. [Google Scholar] [CrossRef]
- Li, Y.; Wei, F. Combining aminolaevulinic acid photodynamic therapy with carbon dioxide laser therapy to treat adult-onset laryngeal papillomatosis: Case reports and a literature review. Transl. Cancer Res. 2021, 10, 3576–3581. [Google Scholar] [CrossRef]
- Liang, F.; Han, P.; Chen, R.; Lin, P.; Luo, M.; Cai, Q.; Huang, X. Topical 5-aminolevulinic acid photodynamic therapy for laryngeal papillomatosistosis treatment. Photodiagn. Photodyn. Ther. 2019, 28, 136–141. [Google Scholar] [CrossRef]
- Toksoy, A.; Sonkaya, Ö.; Erkan, D.S.; Gulen, R.B.; Algi, M.P.; Algi, F. Norsquaraine endowed with anticancer and antibacterial activities. Photodiagn. Photodyn. Ther. 2022, 40, 103110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Y.M.; Liu, X.M.; Che, W.; Xiong, L.Y.; Xu, S.Z. Effects of elevating temperature on photodynamic reaction in laryngeal squamous carcinoma cells induced by delta-aminolevulinic acid. Zhonghua Yi Xue Za Zhi 2009, 89, 994–996. [Google Scholar]
- Dima, V.F.; Ionescu, M.D.; Vasiliu, V.; Murg, B.; Dima, S.V. Macromolecular synthesis and ultrastructural changes induced in human larynx carcinoma cells following photodynamic therapy in vitro. Rom. Arch. Microbiol. Immunol. 1997, 56, 97–112. [Google Scholar]
- Shafirstein, G.; Rigual, N.R.; Arshad, H.; Cooper, M.T.; Bellnier, D.A.; Wilding, G.; Tan, W.; Merzianu, M.; Henderson, B.W. Photodynamic therapy with 3-(1′-hexyloxyethyl) pyropheophorbide-a for early-stage cancer of the larynx: Phase Ib study. Head Neck 2016, 38, E377–E383. [Google Scholar] [CrossRef] [PubMed]
- Yslas, E.I.; Durantini, E.N.; Rivarola, V.A. Zinc-(II) 2,9,16,23-tetrakis (methoxy) phthalocyanine: Potential photosensitizer for use in photodynamic therapy in vitro. Bioorg. Med. Chem. 2007, 15, 4651–4660. [Google Scholar] [CrossRef] [PubMed]
- Milanesio, M.E.; Alvarez, M.G.; Silber, J.J.; Rivarola, V.; Durantini, E.N. Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media. Photochem. Photobiol. Sci. 2003, 2, 926–933. [Google Scholar] [CrossRef]
- Milanesio, M.E.; Alvarez, M.G.; Rivarola, V.; Silber, J.J.; Durantini, E.N. Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochem. Photobiol. 2005, 81, 891–897. [Google Scholar]
- Puñal Vidal, L.; Suárez Peñaranda, J.M.; Rossi Izquierdo, M.; Dios Loureiro, C.; Labella Caballero, T.; Forteza Vila, J. Adenocarcinoma de laringe: Presentación de un caso [Laryngeal adenocarcinoma: Case report]. Acta Otorrinolaringol. Esp. 2008, 59, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, A.; Sonkaya, Ö.; Soylukan, C.; Karaduman, T.; Algi, F. BODIPY and 2,3-Dihydrophthalazine-1,4-Dione Conjugates as Heavy Atom-Free Chemiluminogenic Photosensitizers. ACS Appl. Bio Mater. 2021, 4, 5090–5098. [Google Scholar] [CrossRef]
- Kleemann, D.; MacRobert, A.J.; Mentzel, T.; Speight, P.M.; Bown, S.G. Photodynamic therapy on the normal rabbit larynx with phthalocyanine and 5-aminolaevulinic acid induced protoporphyrin IX photosensitisation. Br. J. Cancer 1996, 74, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pang, W.; Gong, T.; Jiang, J.J.; Silverman, M.; Li, G. 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Improves Vocal Fold Wound Healing in Rats. Laryngoscope 2023, 133, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- de Paula Rodrigues, R.; Tini, I.R.; Soares, C.P.; da Silva, N.S. Effect of photodynamic therapy supplemented with quercetin in HEp-2 cells. Cell Biol. Int. 2014, 38, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Abramson, A.L.; Levy, A.S.; Hirschfield, L.S. The pathologic and thermal effects of gold vapor laser photodynamic therapy on the larynx. Experimental study. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Sieron, A.; Namyslowski, G.; Misiolek, M.; Adamek, M.; Kawczyk-Krupka, A. Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers. Eur. Arch. Otorhinolaryngol. 2001, 258, 349–352. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, T.; Wang, J.; Chou, A.; Jiang, J.J. Topical Application of 5-Aminolevulinic Acid Is Sufficient for Photodynamic Therapy on Vocal Folds. Laryngoscope 2019, 129, E80–E86. [Google Scholar] [CrossRef]
- von Beckerath, M.P.; Reizenstein, J.A.; Berner, A.L.; Nordqvist, K.W.; Landström, F.J.; Löfgren, A.L.; Möller, C.G. Outcome of primary treatment of early laryngeal malignancies using photodynamic therapy. Acta Otolaryngol. 2014, 134, 852–858. [Google Scholar] [CrossRef]
- Silbergleit, A.K.; Somers, M.L.; Schweitzer, V.G.; Gardner, G.M.; Peterson, E. Vocal fold vibration after photofrin-mediated photodynamic therapy for treatment of early-stage laryngeal malignancies. J. Voice 2013, 27, 762–764. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Han, J.H.; Sun, B.C.; Chen, M.M.; Dai, Z.Y.; Shen, Y.; Wang, F.; Han, Z.L.; Yang, S.Z.; Wang, T.; et al. Photodynamic therapy by topical drup for the treatment of juvenile onset laryngeal papillomatosis. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016, 30, 1918–1920. [Google Scholar]
- Peng, Z.; Li, Y.; Jin, L.; Tao, X.; Cai, X.; Feng, J.; Liu, R.; Zhang, Q.; Li, L. Retrospective analysis of therapeutic effect and prognostic factors on early glottic carcinoma. Photodiagn. Photodyn. Ther. 2016, 15, 167–171. [Google Scholar] [CrossRef]
- Abramson, A.L.; Waner, M.; Brandsma, J. The clinical treatment of laryngeal papillomas with hematoporphyrin therapy. Arch. Otolaryngol. Head Neck Surg. 1988, 114, 795–800. [Google Scholar] [CrossRef]
- Schweitzer, V.G. PHOTOFRIN-mediated photodynamic therapy for treatment of early stage oral cavity and laryngeal malignancies. Lasers Surg. Med. 2001, 29, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.A., Jr. Aminolevulinic acid 585 nm pulsed dye laser photodynamic treatment of laryngeal keratosis with atypia. Otolaryngol. Head Neck Surg. 2007, 136, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Rigual, N.; Shafirstein, G.; Cooper, M.T.; Baumann, H.; Bellnier, D.A.; Sunar, U.; Tracy, E.C.; Rohrbach, D.J.; Wilding, G.; Tan, W.; et al. Photodynamic therapy with 3-(1′-hexyloxyethyl) pyropheophorbide a for cancer of the oral cavity. Clin. Cancer Res. 2013, 19, 6605–6613. [Google Scholar] [CrossRef] [PubMed]
- McCaw, D.L.; Pope, E.R.; Payne, J.T.; West, M.K.; Tompson, R.V.; Tate, D. Treatment of canine oral squamous cell carcinomas with photodynamic therapy. Br. J. Cancer 2000, 82, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, D.J.; Rigual, N.; Tracy, E.; Kowalczewski, A.; Keymel, K.L.; Cooper, M.T.; Mo, W.; Baumann, H.; Henderson, B.W.; Sunar, U. Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies. Biomed. Opt. Express 2012, 3, 2142–2153. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, D.J.; Rigual, N.; Arshad, H.; Tracy, E.C.; Cooper, M.T.; Shafirstein, G.; Wilding, G.; Merzianu, M.; Baumann, H.; Henderson, B.W.; et al. Intraoperative optical assessment of photodynamic therapy response of superficial oral squamous cell carcinoma. J. Biomed. Opt. 2016, 21, 18002. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shi, L.; Wang, Y.; Shen, X.; Ye, S.; Tang, G.; Wu, L. Ablative fractional laser-assisted photodynamic therapy vs. ablative fractional laser for oral leukoplakia treatment: A randomized, controlled pilot study. Photodiagn. Photodyn. Ther. 2021, 36, 102523. [Google Scholar] [CrossRef]
- Yao, Y.L.; Wang, Y.F.; Li, C.X.; Wu, L.; Tang, G.Y. Management of oral leukoplakia by ablative fractional laser-assisted photodynamic therapy: A 3-year retrospective study of 48 patients. Lasers Surg. Med. 2022, 54, 682–687. [Google Scholar] [CrossRef]
- Hopper, C.; Kübler, A.; Lewis, H.; Tan, I.B.; Putnam, G. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int. J. Cancer 2004, 111, 138–146. [Google Scholar] [CrossRef]
- Yoon, H.E.; Ahn, M.Y.; Kim, Y.C.; Yoon, J.H. Involvement of endoplasmic reticulum stress and cell death by synthesized Pa-PDT in oral squamous cell carcinoma cells. J. Dent. Sci. 2022, 17, 1722–1730. [Google Scholar] [CrossRef]
- He, X.; Hu, N.; Yang, S.; Yang, Z.; Hu, L.; Wang, X.; Wen, N. Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells. Photodiagn. Photodyn. Ther. 2022, 38, 102817. [Google Scholar] [CrossRef]
- Rosin, F.C.P.; Teixeira, M.G.; Pelissari, C.; Corrêa, L. Resistance of oral cancer cells to 5-ALA-mediated photodynamic therapy. J. Cell Biochem. 2018, 119, 3554–3562. [Google Scholar] [CrossRef]
- Fan, H.Y.; Zhu, Z.L.; Zhang, W.L.; Yin, Y.J.; Tang, Y.L.; Liang, X.H.; Zhang, L. Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur. J. Med. Chem. 2020, 199, 112394. [Google Scholar] [CrossRef]
- Pinto, M.A.F.; Ferreira, C.B.R.; de Lima, B.E.S.; Molon, Â.C.; Ibarra, A.M.C.; Cecatto, R.B.; Dos Santos Franco, A.L.; Rodrigues, M.F.S.D. Effects of 5-ALA mediated photodynamic therapy in oral cancer stem cells. J. Photochem. Photobiol. B 2022, 235, 112552. [Google Scholar] [CrossRef] [PubMed]
- Narahara, S.; Ikeda, H.; Ogata, K.; Shido, R.; Asahina, I.; Ohba, S. Long-term effect of photodynamic therapy on oral squamous cell carcinoma and epithelial dysplasia. Photodiagn. Photodyn. Ther. 2023, 41, 103246. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Sun, Y.; Li, E.; Liu, Y.; Wang, C.; Song, L. Hematoporphyrin monomethyl ether mediated photodynamic therapy inhibits oral squamous cell carcinoma by regulating the P53-miR-21-PDCD4 axis via singlet oxygen. Lasers Med. Sci. 2022, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneswari, R.; Ng, Q.F.; Thong, P.S.; Soo, K.C. Nimotuzumab increases the anti- tumor effect of photodynamic therapy in an oral tumor model. Oncotarget 2015, 6, 13487–13505. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Zhang, L.; Zhou, Z.; Shi, L.; Zeng, Q.; Zhu, L.; Wang, X. 5-Aminolevulinic acid photodynamic therapy for early-stage lip squamous cell carcinoma. Photodiagn. Photodyn. Ther. 2021, 35, 102321. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Kwon, S.M.; Kim, Y.C.; Ahn, S.G.; Yoon, J.H. Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo. Oncol. Rep. 2012, 27, 1772–1778. [Google Scholar]
- Cangussu, L.M.B.; de Souza, L.R.; de Souza, M.G.; Junior, R.S.M.; Muehlmann, L.A.; de Souza, P.N.; Farias, L.C.; Santos, S.H.S.; de Paula, A.M.B.; Guimarães, A.L.S. Photodynamic therapy mediated by nanoparticles Aluminum Chloro Phthalocyanine in oral squamous carcinoma cells. Lasers Med. Sci. 2022, 37, 2509–2516. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Yoon, H.E.; Kwon, S.M.; Lee, J.; Min, S.K.; Kim, Y.C.; Ahn, S.G.; Yoon, J.H. Synthesized Pheophorbide a-mediated photodynamic therapy induced apoptosis and autophagy in human oral squamous carcinoma cells. J. Oral Pathol. Med. 2013, 42, 17–25. [Google Scholar] [CrossRef]
- Uehara, M.; Ikeda, H.; Nonaka, M.; Sumita, Y.; Nanashima, A.; Nonaka, T.; Asahina, I. Predictive factor for photodynamic therapy effects on oral squamous cell carcinoma and oral epithelial dysplasia. Arch. Oral Biol. 2011, 56, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Hamdoon, Z.; Alexander Mosse, C.; Morcos, M.; Hopper, C. Photodynamic therapy outcome for T1/T2 N0 oral squamous cell carcinoma. Lasers Surg. Med. 2011, 43, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, N.; Meng, J.; Wen, N. The use of topical ALA-photodynamic therapy combined with induction chemotherapy for locally advanced oral squamous cell carcinoma. Am. J. Otolaryngol. 2021, 42, 103112. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Ohba, S.; Egashira, K.; Asahina, I. The effect of photodynamic therapy with talaporfin sodium, a second-generation photosensitizer, on oral squamous cell carcinoma: A series of eight cases. Photodiagn. Photodyn. Ther. 2018, 21, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Jajarm, H.H.; Falaki, F.; Sanatkhani, M.; Ahmadzadeh, M.; Ahrari, F.; Shafaee, H. A comparative study of toluidine blue-mediated photodynamic therapy versus topical corticosteroids in the treatment of erosive-atrophic oral lichen planus: A randomized clinical controlled trial. Lasers Med. Sci. 2015, 30, 1475–1480. [Google Scholar] [CrossRef]
- Dos Santos, L.F.M.; Melo, N.B.; de Carli, M.L.; Mendes, A.C.S.C.; Bani, G.M.A.C.; Verinaud, L.M.; Burger, E.; de Oliveira, I.; Moraes, G.; Pereira, A.A.C.; et al. Photodynamic inactivation of Paracoccidioides brasiliensis helps the outcome of oral paracoccidiodomycosis. Lasers Med. Sci. 2017, 32, 921–930. [Google Scholar] [CrossRef]
- Garcia, M.T.J.; de Paula Freitas, C.; Graciano, T.B.; Coutinho, T.S.; Cressoni, C.B.; de Lima Pereira, S.A.; Shimano, M.M. Chitosan-based mucoadhesive gel for oral mucosal toluidine blue O delivery: The influence of a non-ionic surfactant. Photodiagn. Photodyn. Ther. 2017, 20, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, S.; Jin, J.; Wang, X.; Liu, X.; Hua, H.; Wang, X.; Liu, H. Primary Clinical Evaluation of Photodynamic Therapy with Oral Leukoplakia in Chinese Patients. Front. Physiol. 2019, 9, 1911. [Google Scholar] [CrossRef] [PubMed]
- Selvam, N.P.; Sadaksharam, J.; Singaravelu, G.; Ramu, R. Treatment of oral leukoplakia with photodynamic therapy: A pilot study. J. Cancer Res. Ther. 2015, 11, 464–467. [Google Scholar] [CrossRef]
- Sieroń, A.; Adamek, M.; Kawczyk-Krupka, A.; Mazur, S.; Ilewicz, L. Photodynamic therapy (PDT) using topically applied delta-aminolevulinic acid (ALA) for the treatment of oral leukoplakia. J. Oral Pathol. Med. 2003, 32, 330–336. [Google Scholar] [CrossRef]
- Wang, X.; Jin, J.; Li, W.; Wang, Q.; Han, Y.; Liu, H. Differential in vitro sensitivity of oral precancerous and squamous cell carcinoma cell lines to 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagn. Photodyn. Ther. 2020, 29, 101554. [Google Scholar] [CrossRef]
- Yamamoto, M.; Fujita, H.; Katase, N.; Inoue, K.; Nagatsuka, H.; Utsumi, K.; Sasaki, J.; Ohuchi, H. Improvement of the efficacy of 5-aminolevulinic acid-mediated photodynamic treatment in human oral squamous cell carcinoma HSC-4. Acta Med. Okayama 2013, 67, 153–164. [Google Scholar] [PubMed]
- Cosgarea, R.; Pollmann, R.; Sharif, J.; Schmidt, T.; Stein, R.; Bodea, A.; Auschill, T.; Sculean, A.; Eming, R.; Greene, B.; et al. Photodynamic therapy in oral lichen planus: A prospective case-controlled pilot study. Sci. Rep. 2020, 10, 1667. [Google Scholar] [CrossRef]
- Saleh, W.; Tageldin, S.; Khashaba, E.; Darwish, M.; Elnagdy, S.; Khashaba, O. Could photodynamic therapy be utilized as a treatment modality for oral lichen planus? Photodiagn. Photodyn. Ther. 2020, 30, 101677. [Google Scholar] [CrossRef]
- Zborowski, J.; Kida, D.; Szarwaryn, A.; Nartowski, K.; Rak, P.; Jurczyszyn, K.; Konopka, T. A Comparison of Clinical Efficiency of Photodynamic Therapy and Topical Corticosteroid in Treatment of Oral Lichen Planus: A Split-Mouth Randomised Controlled Study. J. Clin. Med. 2021, 10, 3673. [Google Scholar] [CrossRef]
- Kim, T.E.; Chang, J.E. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023, 15, 2257. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Mahootchi, P.; Rastegar, Z.; Abbasi, B.; Alam, M.; Abbasi, K.; Fani-Hanifeh, S.; Amookhteh, S.; Sadeghi, S.; Soufdoost, R.S.; et al. Photodynamic Therapy in Oral Cancer: A Narrative Review. Photobiomodul. Photomed. Laser Surg. 2023, 41, 248–264. [Google Scholar] [CrossRef]
- D’Cruz, A.K.; Robinson, M.H.; Biel, M.A. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study of 128 patients. Head Neck 2004, 26, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.B.; Dolivet, G.; Ceruse, P.; Vander Poorten, V.; Roest, G.; Rauschning, W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck 2010, 32, 1597–1604. [Google Scholar] [CrossRef]
- Songca, S.P. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int. J. Mol. Sci. 2023, 24, 10875. [Google Scholar] [CrossRef]
- Gholami, L.; Shahabi, S.; Jazaeri, M.; Hadilou, M.; Fekrazad, R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front. Microbiol. 2023, 13, 1020995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jin, A.; Yang, Z.; Huang, W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS Nano 2023, 17, 8935–8965. [Google Scholar] [CrossRef]
- Yu, C.; Li, L.; Wang, S.; Xu, Y.; Wang, L.; Huang, Y.; Hieawy, A.; Liu, H.; Ma, J. Advances in nanomaterials for the diagnosis and treatment of head and neck cancers: A review. Bioact. Mater. 2022, 25, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Alla, R.K.; Sarangi, S.; Ganta, G.K.; Abusua, F. Photodynamic Therapy: A Distinct Therapeutic Modality. Int. J. Dent. Mater. 2023, 5, 52–61. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.; Dan, H.; Zeng, X.; Chen, Q.; Wang, J. Photodynamic therapy in focal epithelial hyperplasia. Photodiagn. Photodyn. Ther. 2023, 44, 103757. [Google Scholar] [CrossRef]
- Zenga, J.; Awan, M.; Hadi Razeghi Kondelaji, M.; Hansen, C.; Shafiee, S.; Frei, A.; Foeckler, J.; Kuehn, R.; Bruening, J.; Massey, B.; et al. Photoactivated HPPH-Liposomal therapy for the treatment of HPV-Negative head and neck cancer. Oral Oncol. 2023, 144, 106487. [Google Scholar] [CrossRef]
- Penetra, M.; Arnaut, L.G.; Gomes-da-Silva, L.C. Trial watch: An update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023, 12, 2226535. [Google Scholar] [CrossRef]
- Miyazaki, N.L.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Review of RM-1929 Near-Infrared Photoimmunotherapy Clinical Efficacy for Unresectable and/or Recurrent Head and Neck Squamous Cell Carcinoma. Cancers 2023, 15, 5117. [Google Scholar] [CrossRef]
- Luo, H.; Gao, S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J. Control. Release 2023, 362, 425–445. [Google Scholar] [CrossRef]
- Xu, B.; He, P.; Wang, Y.; Wang, H.; Zhang, J.; Zhu, J.; Pu, W.; Chen, H. PDT for Gastric Cancer—The view from China. Photodiagn. Photodyn. Ther. 2023, 42, 103366. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, J.; Bu, W.; Zhu, X.; Zhang, P.; Zhu, Y.; Fan, X.; Wang, C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater. Sci. 2023, 11, 704–718. [Google Scholar] [CrossRef]
- Bartusik-Aebisher, D.; Serafin, I.; Dynarowicz, K.; Aebisher, D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front. Pharmacol. 2023, 14, 1250699. [Google Scholar] [CrossRef]
- Kessel, D. Photodynamic Therapy: Critical PDT Theory. Photochem. Photobiol. 2023, 99, 199–203. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, J.; Zhuang, C.; Xiong, J.; Wang, H.; Xiao, K. Mitochondria-Targeting and Multiresponsive Nanoplatform Based on AIEgens for Synergistic Chemo-Photodynamic Therapy and Enhanced Immunotherapy. Biomacromolecules 2023, 24, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Wahnou, H.; Youlyouz-Marfak, I.; Liagre, B.; Sol, V.; Oudghiri, M.; Duval, R.E.; Limami, Y. Shining a Light on Prostate Cancer: Photodynamic Therapy and Combination Approaches. Pharmaceutics 2023, 15, 1767. [Google Scholar] [CrossRef] [PubMed]
- Combuca da Silva Junior, R.; da Silva Souza Campanholi, K.; Amanda Pedroso de Morais, F.; de Moraes Pinto, L.A.; dos Santos Rando, F.; Soares dos Santos Pozza, M.; Caetano, W. Phenazines and Photoactive Formulations: Promising Photodrugs for Photodynamic Therapy. In Dyes and Pigments—Insights and Applications; IntechOpen: London, UK, 2023. [Google Scholar]
- An, Y.; Xu, D.; Wen, X.; Chen, C.; Liu, G.; Lu, Z. Internal Light Sources-Mediated Photodynamic Therapy Nanoplatforms: Hope for the Resolution of the Traditional Penetration Problem. Adv. Healthc. Mater. 2024, 13, e2301326. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yuan, F.; Zheng, L.; Wen, L.; Gao, M.; Zhou, W.; Fan, X. Limitations of ALA-PDT as a reliable therapy for AK in clinical practice. Photodiagn. Photodyn. Ther. 2023, 44, 103797. [Google Scholar] [CrossRef]
- Dinakaran, D.; Wilson, B.C. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front. Bioeng. Biotechnol. 2023, 11, 1250804. [Google Scholar] [CrossRef]
- Ou-Yang, Y.; Zheng, Y.; Mills, K.E. Photodynamic therapy for skin carcinomas: A systematic review and meta-analysis. Front. Med. 2023, 10, 1089361. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, A.; Khachemoune, A. Photodynamic Therapy in Treating a Subset of Basal Cell Carcinoma: Strengths, Shortcomings, Comparisons with Surgical Modalities, and Potential Role as Adjunctive Therapy. Am. J. Clin. Dermatol. 2024, 25, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Nadaf, A.; Imran, M.; Jiba, U.; Sheikh, A.; Almalki, W.H.; Almujri, S.S.; Mohammed, Y.H.; Kesharwani, P.; Ahmad, F.J. Skin cancer: Understanding the journey of transformation from conventional to advanced treatment approaches. Mol. Cancer 2023, 22, 168. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Cao, R.; Ma, Z.; Zhu, M. Development of “smart” drug delivery systems for chemo/PDT synergistic treatment. J. Mater. Chem. B 2023, 11, 1416–1433. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Khan, S.; Chatterjee, T.; Ghosh, M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. J. Photochem. Photobiol. B 2023, 248, 112796. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.L.L.; Sobral, A.P.T.; Gallo, J.M.A.S.; Gimenez, T.; Ferri, E.P.; Ianello, S.; Motta, P.B.; Motta, L.J.; Horliana, A.C.R.T.; Santos, E.M.; et al. Antimicrobial photodynamic therapy with erythrosine and blue light on dental biofilm bacteria: Study protocol for randomised clinical trial. BMJ Open 2023, 13, e075084. [Google Scholar] [CrossRef] [PubMed]
- Almadi, K.H.; Alkahtany, M.F. Adjunctive use of different lasers Er, Cr: YSGG, femtosecond, potassium titanyl phosphate and photodynamic therapy on radicular disinfection bonded to glass fiber post. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2241–2249. [Google Scholar]
- Lazuardi, I.; Marwiyah, S. Analysis of informed consent as the legal protection of physician relationships and patients in malpractice case. Policy Law Notary Regul. Issues 2023, 2, 327–338. [Google Scholar] [CrossRef]
- Carwan, C.; Lestari, S.I. Use of Standard Clauses in Transactions Therapeutics Based on Regulation Theory. Int. J. Soc. Serv. Res. 2023, 3, 2735–2745. [Google Scholar] [CrossRef]
- Requena, M.B.; Salvio, A.G.; Stringasci, M.D.; Vollet-Filho, J.D.; Bagnato, V.S. Intradermal delivery of methyl aminolevulinate by dermograph for BCC treatment using PDT: A randomized clinical trial. Photodiagn. Photodyn. Ther. 2023, 41, 103446. [Google Scholar] [CrossRef]
- Moloudi, K.; Sarbadhikary, P.; Abrahamse, H.; George, B.P. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants 2023, 12, 1434. [Google Scholar] [CrossRef] [PubMed]
- Soto-Moreno, A.; Montero-Vilchez, T.; Diaz-Calvillo, P.; Molina-Leyva, A.; Arias-Santiago, S. The impact of photodynamic therapy on skin homeostasis in patients with actinic keratosis: A prospective observational study. Skin Res. Technol. 2023, 29, e13493. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.R.S.; Khanam, H.K.; Qamar, Z.; Abdul, N.S.; Reddy, N.; Vempalli, S.; Noushad, M.; Alqahtani, W.M.S. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis. Photodiagn. Photodyn. Ther. 2023, 42, 103326. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, R.; Wang, N.; Bai, Y.; Shi, Q.; Maswikiti, E.P.; Chen, H. Photodynamic therapy in combination with immune checkpoint inhibitors plus chemotherapy for first-line treatment in advanced or metastatic gastric or gastroesophageal junction cancer: A phase 2-3 clinical trial protocol. Front. Pharmacol. 2023, 14, 1063775. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarthi, U.; Mahadik, N.S.; Koteshwar, D.; Krishna, N.V.; Giribabu, L.; Banerjee, R. Potentiation of novel porphyrin based photodynamic therapy against colon cancer with low dose doxorubicin and elucidating the molecular signalling pathways responsible for relapse. J. Photochem. Photobiol. B 2023, 238, 112625. [Google Scholar] [CrossRef]
Photodynamic Therapy | Radiological Therapy | Surgical Therapy | |
---|---|---|---|
Treatment mechanism | PDT relies on the interaction of photosensitizing agents, light, and oxygen to induce localized cytotoxic effects. It is a non-invasive and targeted therapy that selectively damages abnormal cells while sparing surrounding healthy tissues [73] | Radiological therapies, including external beam radiation and brachytherapy, use ionizing radiation to damage DNA within cells. This affects both cancerous and healthy cells, with the goal of inhibiting the growth of malignant tissues [74] | Surgical interventions involve the physical removal of abnormal tissue, offering immediate tumor debulking and potential cure, but may be associated with postoperative complications [75] |
Selectivity and precision | High selectivity for diseased tissues due to the preferential accumulation of photosensitizers. Precise targeting minimizes damage to adjacent normal structures [76] | Targets both cancerous and normal tissues, leading to potential collateral damage and adverse effects [77] | Provides precision in localizing and removing abnormal tissue but may lead to collateral damage to nearby healthy structures [78] |
Invasiveness | Generally non-invasive, with light delivery through optical fibers. Minimal impact on surrounding structures [79] | Non-invasive externally but may cause internal tissue damage. Brachytherapy involves the insertion of radioactive sources into or close to the tumor [80] | Invasive, involving incisions and tissue removal, with associated risks of bleeding, infection, and scarring [81] |
Side effects and complications | Generally well tolerated, with localized erythema and edema as common side effects. Photosensitivity is transient [82] | Can cause acute and chronic side effects, including radiation dermatitis, mucositis, and damage to surrounding structures [83] | Potential for complications such as bleeding, infection, and nerve damage. Postoperative recovery may be prolonged [84] |
Repeatability | Can be repeated without cumulative toxicity, allowing for multiple treatment sessions [85] | Limited by cumulative radiation toxicity, with a maximum dose constraint [86] | Repeat surgeries may be challenging due to tissue scarring and patient recovery considerations [87] |
Cost and accessibility | Equipment and photosensitizing agents may contribute to costs, but accessibility is generally good [88] | Equipment costs are high, and access may be limited in certain regions [89] | Associated with significant costs, including surgical facilities, anesthesia, and postoperative care [90] |
References | PS | PS Dose | Research Group |
---|---|---|---|
[91] | Verteprofin | 3 mg/m2 | 179 (67 final half dose PDT) |
[92] | Verteprofin | 3 mg/m2 | 42 (32 half dose PDT) |
[93] | Verteprofin | 3 mg/m2 | 90 (42 half dose PDT) |
[94] | Verteprofin | 2 mg/m2 or 3 mg/m2 | 27 |
[95] | Verteprofin | 6 mg/m2 | 12 |
[96] | Verteprofin | 2 mg/m2 | 60 |
[99] | Verteprofin | 6 mg/m2 | 322 |
[100] | Verteprofin | 6 mg/m2 | 322 |
[101] | Verteprofin | 6 mg/m2 | 1 |
[102] | Verteprofin | - | 56 |
[103] | Verteprofin | 6 mg/m2 | 48 |
[105] | BCECF-AM (2,7,-bis-(2-carboxyethyl)-5-(and-6)-carboxy-fluorescein, acetoxymethyl-ester) | 80 μg/300 μL BSS | 36 |
[106] | Verteprofin | 6 mg/m2 | 9 |
[107] | Verteprofin | 6 mg/m2 | 41 |
[108] | 5-ALA | 20% 5-ALA solution was applied on the tumor and its surrounding area of 0.5 cm of normal skin | 1 |
[112] | Photofrin | 2 mg/kg | 30 |
[113] | mtetrahydroxyphenylchlorin | 0.15 mg/kg | 15 |
[114] | methylene blue | - | 75 (37 PDT) |
[116] | meta-tetraHydroxyPhenylChlorin (mTHPC or Foscan | 0.15 mg/kg | 11 |
[117] | 5-ALA | 0.4 cc, 20% | 1 |
[118] | hematoporphyrin | - | 13 |
[122] | 5-ALA | 118 mg/bottle | 3 |
[123] | 5-ALA | 20% concentration solution | 13 |
[127] | 3-(1′-hexyloxyethyl) pyropheophorbide-a | 4 mg/m2 | 29 |
[137] | delta-aminolaevulinic acid | 3 g and ointment containing 10% ALA | 10 |
[139] | temoporfin | 0.15 mg/kg | 10 |
HpD | 2 mg/kg 5 mg/kg | ||
[140] | photofrin | - | 8 |
[141] | 5-ALA | 20% solution | 28 |
[142] | photofrin | 2 mg/kg | 202 (30) |
[143] | hematoporphyrin derivative | 6 mg/kg | 72 |
[144] | porfimer sodium | 2.0 mg/kg | 20 |
[145] | ALA | 1.5 to 3.0 cc of 20% ALA was aerosolized and sprayed into the larynx | 12 |
[146] | 3-(1′-hexyloxyethyl)pyropheophorbide-a | 4 mg/m2 | 40 |
[148] | 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a | 4.0 mg/m2 | 2 |
[149] | 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a | 4.0 mg/m2 | 13 |
[150] | 5-ALA | 20% 5-ALA | 48 |
[151] | 5-ALA | 20% 5-ALA gel | 48 |
[152] | meta-tetrahydroxyphenylchlorin | 0.15 mg/kg | 121 |
[158] | porfimer sodium or talaporfin sodium | 2 mg/kg | 23 |
[161] | 5-ALA | 20% 5-ALA | 6 |
[166] | meta-tetrahydroxyphenylchlorin | 0.15 mg/kg | 28 |
[167] | 5-ALA | 10% 5-ALA cream | 11 |
[168] | talaporfin sodium | 40 mg/kg | 8 |
[169] | toluidine blue | 50 μL toluidine blue (1 mg/mL) | 25 |
[170] | hydroxyphenyl fluorescein and aminophenyl fluorescein | 37.5 mg/L | 3 |
[172] | 5-ALA | 20% 5-ALA gel | 29 |
[173] | 5-ALA | 10% solution | 5 |
[174] | delta-aminolevulinic acid | 10% solution | 12 |
[178] | methylene blue | 5% | 20 |
[179] | methylene blue | 5% | 30 |
[182] | 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (mTHPC) | 0.15 mg/kg | 128 |
[183] | temoporfin | 0.15 mg/kg | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domka, W.; Bartusik-Aebisher, D.; Mytych, W.; Myśliwiec, A.; Dynarowicz, K.; Cieślar, G.; Kawczyk-Krupka, A.; Aebisher, D. Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers 2024, 16, 645. https://doi.org/10.3390/cancers16030645
Domka W, Bartusik-Aebisher D, Mytych W, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers. 2024; 16(3):645. https://doi.org/10.3390/cancers16030645
Chicago/Turabian StyleDomka, Wojciech, Dorota Bartusik-Aebisher, Wiktoria Mytych, Angelika Myśliwiec, Klaudia Dynarowicz, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka, and David Aebisher. 2024. "Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review" Cancers 16, no. 3: 645. https://doi.org/10.3390/cancers16030645
APA StyleDomka, W., Bartusik-Aebisher, D., Mytych, W., Myśliwiec, A., Dynarowicz, K., Cieślar, G., Kawczyk-Krupka, A., & Aebisher, D. (2024). Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers, 16(3), 645. https://doi.org/10.3390/cancers16030645