Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Regulatory Approval
2.2. Immunohistochemistry
2.3. Statistical Analysis
3. Results
3.1. ATLL Patient Demographics and Survival Data
3.2. EZH2 Is Overexpressed in ATLL and Correlates with an Increased Tumor Proliferation Index
3.3. EZH2 Expression Is Upregulated in a Range of T-Cell Neoplasms in Addition to ATLL
3.4. EZH2 Upregulation Is Associated with pERK in ATLL and Correlates with Different Signaling Molecules in Other T-Cell Neoplasms
3.5. Association of EZH2 Overexpression with PRC2 Complex Protein SUZ12
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margueron, R.; Reinberg, D. The Polycomb Complex PRC2 and Its Mark in Life. Nature 2011, 469, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in Cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, Y.; Zhou, F.; Gao, G.; Ren, S.; Zhou, C. Prognostic Value of High EZH2 Expression in Patients with Different Types of Cancer: A Systematic Review with Meta-Analysis. Oncotarget 2015, 7, 4584–4597. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, J.; Fletcher, C.; Hornick, J.L.; Dorfman, D.M. Expression of Enhancer of Zeste Homolog 2 (EZH2) Protein in Histiocytic and Dendritic Cell Neoplasms with Evidence for p-ERK1/2-Related, but Not MYC- or p-STAT3-Related Cell Signaling. Modern Pathol. 2018, 31, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Pelton, A.; Shahsafaei, A.; Dorfman, D.M. Differential Expression of Enhancer of Zeste Homolog 2 (EZH2) Protein in Small Cell and Aggressive B-Cell Non-Hodgkin Lymphomas and Differential Regulation of EZH2 Expression by p-ERK1/2 and MYC in Aggressive B-Cell Lymphomas. Modern Pathol. 2016, 29, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, J.; Dorfman, D.M. Utility of Combined EZH2, p-ERK1/2, p-STAT, and MYC Expression in the Differential Diagnosis of EZH2-Positive Hodgkin Lymphomas and Related Large B-Cell Lymphomas. Am. J. Surg. Pathol. 2019, 43, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Herviou, L.; Cavalli, G.; Cartron, G.; Klein, B.; Moreaux, J. EZH2 in Normal Hematopoiesis and Hematological Malignancies. Oncotarget 2015, 7, 2284–2296. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Baquero, D.; Sakhdari, A.; Mo, H.; Kim, D.H.; Kanagal-Shamanna, R.; Li, S.; Young, K.H.; O’Malley, D.P.; Dogan, A.; Jain, P.; et al. EZH2 Expression Is Associated with Inferior Overall Survival in Mantle Cell Lymphoma. Modern Pathol. 2021, 34, 2183–2191. [Google Scholar] [CrossRef]
- Shi, M.; Shahsafaei, A.; Liu, C.; Yu, H.; Dorfman, D.M. Enhancer of Zeste Homolog 2 Is Widely Expressed in T-Cell Neoplasms, Is Associated with High Proliferation Rate and Correlates with MYC and PSTAT3 Expression in a Subset of Cases. Leukemia Lymphoma 2014, 56, 2087–2091. [Google Scholar] [CrossRef]
- Duan, R.; Du, W.; Guo, W. EZH2: A Novel Target for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef]
- Fujikawa, D.; Nakagawa, S.; Hori, M.; Kurokawa, N.; Soejima, A.; Nakano, K.; Yamochi, T.; Nakashima, M.; Kobayashi, S.; Tanaka, Y.; et al. Polycomb-Dependent Epigenetic Landscape in Adult T-Cell Leukemia. Blood 2016, 127, 1790–1802. [Google Scholar] [CrossRef]
- Bracken, A.P.; Pasini, D.; Capra, M.; Prosperini, E.; Colli, E.; Helin, K. EZH2 Is Downstream of the PRB-E2F Pathway, Essential for Proliferation and Amplified in Cancer. EMBO J. 2003, 22, 5323–5335. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Tokita, K.; Wada, N.; Ito, K.; Yamauchi, C.; Ito, Y.; Ochiai, A. MEK–ERK Pathway Regulates EZH2 Overexpression in Association with Aggressive Breast Cancer Subtypes. Oncogene 2011, 30, 4118–4128. [Google Scholar] [CrossRef]
- Pan, Y.-M.; Wang, C.-G.; Zhu, M.; Xing, R.; Cui, J.-T.; Li, W.-M.; Yu, D.-D.; Wang, S.-B.; Zhu, W.; Ye, Y.-J.; et al. STAT3 Signaling Drives EZH2 Transcriptional Activation and Mediates Poor Prognosis in Gastric Cancer. Mol. Cancer 2016, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.M.; Iwata, T.; Zheng, Q.; Bethel, C.; Yegnasubramanian, S.; Marzo, A.M.D. Myc Enforces Overexpression of EZH2 in Early Prostatic Neoplasia via Transcriptional and Post-Transcriptional Mechanisms. Oncotarget 2011, 2, 669–683. [Google Scholar] [CrossRef]
- Yamagishi, M.; Nakano, K.; Miyake, A.; Yamochi, T.; Kagami, Y.; Tsutsumi, A.; Matsuda, Y.; Sato-Otsubo, A.; Muto, S.; Utsunomiya, A.; et al. Polycomb-Mediated Loss of MiR-31 Activates NIK-Dependent NF-ΚB Pathway in Adult T Cell Leukemia and Other Cancers. Cancer Cell 2012, 21, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Selvarajan, V.; Huang, G.; Zhou, J.; Feldman, A.L.; Law, M.; Kwong, Y.; Shimizu, N.; Kagami, Y.; Aozasa, K.; et al. Activated Oncogenic Pathways and Therapeutic Targets in Extranodal Nasal-type NK/T Cell Lymphoma Revealed by Gene Expression Profiling. J. Pathol. 2011, 223, 496–510. [Google Scholar] [CrossRef]
- Yan, J.; Ng, S.-B.; Tay, J.L.-S.; Lin, B.; Koh, T.L.; Tan, J.; Selvarajan, V.; Liu, S.-C.; Bi, C.; Wang, S.; et al. EZH2 Overexpression in Natural Killer/T-Cell Lymphoma Confers Growth Advantage Independently of Histone Methyltransferase Activity. Blood 2013, 121, 4512–4520. [Google Scholar] [CrossRef]
- Redston, M.; Noffsinger, A.; Kim, A.; Akarca, F.G.; Rara, M.; Stapleton, D.; Nowden, L.; Lash, R.; Bass, A.J.; Stachler, M.D. Abnormal TP53 Predicts Risk of Progression in Patients with Barrett’s Esophagus Regardless of a Diagnosis of Dysplasia. Gastroenterology 2022, 162, 468–481. [Google Scholar] [CrossRef]
- Bachmann, I.M.; Halvorsen, O.J.; Collett, K.; Stefansson, I.M.; Straume, O.; Haukaas, S.A.; Salvesen, H.B.; Otte, A.P.; Akslen, L.A. EZH2 Expression Is Associated with High Proliferation Rate and Aggressive Tumor Subgroups in Cutaneous Melanoma and Cancers of the Endometrium, Prostate, and Breast. J. Clin. Oncol. 2005, 24, 268–273. [Google Scholar] [CrossRef]
- Qi, W.; Chan, H.; Teng, L.; Li, L.; Chuai, S.; Zhang, R.; Zeng, J.; Li, M.; Fan, H.; Lin, Y.; et al. Selective Inhibition of Ezh2 by a Small Molecule Inhibitor Blocks Tumor Cells Proliferation. Proc. Natl. Acad. Sci. USA 2012, 109, 21360–21365. [Google Scholar] [CrossRef]
- Garapaty-Rao, S.; Nasveschuk, C.; Gagnon, A.; Chan, E.Y.; Sandy, P.; Busby, J.; Balasubramanian, S.; Campbell, R.; Zhao, F.; Bergeron, L.; et al. Identification of EZH2 and EZH1 Small Molecule Inhibitors with Selective Impact on Diffuse Large B Cell Lymphoma Cell Growth. Chem. Biol. 2013, 20, 1329–1339. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Hsu, Y.-J.; Fujiwara, Y.; Kim, J.; Mao, X.; Yuan, G.-C.; Orkin, S.H. EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maintaining Stem Cell Identity and Executing Pluripotency. Mol. Cell 2008, 32, 491–502. [Google Scholar] [CrossRef]
- Honma, D.; Kanno, O.; Watanabe, J.; Kinoshita, J.; Hirasawa, M.; Nosaka, E.; Shiroishi, M.; Takizawa, T.; Yasumatsu, I.; Horiuchi, T.; et al. Novel Orally Bioavailable EZH1/2 Dual Inhibitors with Greater Antitumor Efficacy than an EZH2 Selective Inhibitor. Cancer Sci. 2017, 108, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; On, D.M.; Ma, A.; Parton, T.; Konze, K.D.; Pattenden, S.G.; Allison, D.F.; Cai, L.; Rockowitz, S.; Liu, S.; et al. Selective Inhibition of EZH2 and EZH1 Enzymatic Activity by a Small Molecule Suppresses MLL-Rearranged Leukemia. Blood 2015, 125, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Konze, K.D.; Ma, A.; Li, F.; Barsyte-Lovejoy, D.; Parton, T.; MacNevin, C.J.; Liu, F.; Gao, C.; Huang, X.-P.; Kuznetsova, E.; et al. An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem. Biol. 2013, 8, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Groisberg, R.; Subbiah, V. EZH2 Inhibition for Epithelioid Sarcoma and Follicular Lymphoma. Lancet Oncol. 2020, 21, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Pikman, Y.; Conway, A.S.; Robichaud, A.L.; Kitara, S.; Church, A.J.; Kennedy, A.L.; Silverman, L.B.; Billett, A.L.; Weinstock, D.M.; Harris, M.H.; et al. Targeting EZH2 for the Treatment of Hepatosplenic T-Cell Lymphoma. Blood Adv. 2020, 4, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Izutsu, K.; Makita, S.; Nosaka, K.; Yoshimitsu, M.; Utsunomiya, A.; Kusumoto, S.; Morishima, S.; Tsukasaki, K.; Kawamata, T.; Ono, T.; et al. An Open-Label, Single-Arm Phase 2 Trial of Valemetostat for Relapsed or Refractory Adult T-Cell Leukemia/Lymphoma. Blood 2023, 141, 1159–1168. [Google Scholar] [CrossRef]
- Katsuya, H.; Ishitsuka, K.; Utsunomiya, A.; Hanada, S.; Eto, T.; Moriuchi, Y.; Saburi, Y.; Miyahara, M.; Sueoka, E.; Uike, N.; et al. Treatment and Survival among 1594 Patients with ATL. Blood 2015, 126, 2570–2577. [Google Scholar] [CrossRef]
Variables | N = 36 |
---|---|
Age at diagnosis, mean ± SD | 60.0 ± 14.5 |
(Minimum–Maximum) | (25–83) |
Sex, n (%) | |
Male | 16 (44.4) |
Female | 20 (55.6) |
Endemic origin, n (%) | |
Caribbean | 30 (83.3) |
West Africa | 1 (2.8) |
Not available | 5 (13.9) |
Variants, n (%) | |
Acute | 11 (30.5) |
Lymphomatous | 10 (27.8) |
Chronic | 1 (2.8) |
Smoldering | 1 (2.8) |
Not available | 13 (36.1) |
Survival data, n (%) | |
Alive | 12 (33.3) |
Deceased | 24 (66.7) |
Survival months, mean ± SD | 57.3 (142.8) |
(Minimum–Maximum) | 0.1–721.6 |
T-Cell Neoplasms | EZH2 (POS/Total) | pERK | MYC (POS/Total) | pSTAT3 |
---|---|---|---|---|
ATLL | 43/43 (100%) | 37/43 (86%) | 3/43 (7%) | 5/43 (11%) |
AITL | 15/17 (88%) | 13/15 (85%) | 4/15 (27%) | 8/15 (54%) |
ALCL-ALK+ | 13/14 (93%) | 8/13(62%) | 12/13 (92%) | 10/13(77%) |
ALCL-ALK− | 12/12 (100%) | 7/12 (58%) | 9/11 (82%) | 4/12 (33%) |
NK/TCL | 15/16 (94%) | 11/15 (73%) | 10/15 (67%) | 11/15 (73%) |
PTCL-NOS | 15/16 (94%) | 7/15 (47%) | 10/15 (67%) | 7/15 (47%) |
T-ALL | 19/19 (100%) | 0/18 (0%) | 5/17 (30%) | 1/16 (6%) |
T-PLL | 3/9 (33%) | 0/3 (0%) | 1/3 (33%) | 0/3 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, J.; Choudhuri, J.; Gong, J.Z.; Wang, Y.; Tian, X. Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma. Cancers 2024, 16, 646. https://doi.org/10.3390/cancers16030646
Chai J, Choudhuri J, Gong JZ, Wang Y, Tian X. Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma. Cancers. 2024; 16(3):646. https://doi.org/10.3390/cancers16030646
Chicago/Turabian StyleChai, Jiani, Jui Choudhuri, Jerald Z. Gong, Yanhua Wang, and Xuejun Tian. 2024. "Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma" Cancers 16, no. 3: 646. https://doi.org/10.3390/cancers16030646
APA StyleChai, J., Choudhuri, J., Gong, J. Z., Wang, Y., & Tian, X. (2024). Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma. Cancers, 16(3), 646. https://doi.org/10.3390/cancers16030646