AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Development
2.2. Literature Search
2.3. Search Strategy
2.4. Study Selection
2.5. Eligibility Criteria
2.5.1. Inclusion Criteria
2.5.2. Exclusion Criteria
2.6. Data Extraction
2.7. Quality Assessment
2.8. Data Synthesis and Analysis
2.9. Reporting
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.; Hu, L.; Li, J.; Wei, L.; Zhang, J.; Zhou, J. Magnitude, temporal trends and inequality in global burden of tracheal, bronchus and lung cancer: Findings from the Global Burden of Disease Study 2017. BMJ Glob. Health 2020, 5, e002788. [Google Scholar] [CrossRef] [PubMed]
- Chaft, J.E.; Rimner, A.; Weder, W.; Azzoli, C.G.; Kris, M.G.; Cascone, T. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 2021, 18, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Roointan, A.; Mir, T.A.; Wani, S.I.; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gandomani, G.; Gandomani, M.; Chinnappan, R. Early detection of lung cancer biomarkers through biosensor technology: A review. J. Pharm. Biomed. Anal. 2019, 164, 93–103. [Google Scholar] [CrossRef]
- Baldwin, D.R.; Gustafson, J.; Pickup, L.; Arteta, C.; Novotny, P.; Declerck, J.; Kadir, T.; Figueiras, C.; Sterba, A.; Exell, A. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 2020, 75, 306–312. [Google Scholar] [CrossRef]
- Choi, W.; Oh, J.H.; Riyahi, S.; Liu, C.J.; Jiang, F.; Chen, W.; White, C.; Rimner, A.; Mechalakos, J.G.; Deasy, J.O. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med. Phys. 2018, 45, 1537–1549. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Tsai, Y.-H.; Weng, H.-H.; Hsu, L.-S.; Tsai, Y.-H.; Lin, Y.-C.; Hung, M.-S.; Fang, Y.-H.; Chen, C.-W. Artificial neural networks improve LDCT lung cancer screening: A comparative validation study. BMC Cancer 2020, 20, 1023. [Google Scholar] [CrossRef]
- Wu, J.; Liu, C.; Liu, X.; Sun, W.; Li, L.; Gao, N.; Zhang, Y.; Yang, X.; Zhang, J.; Wang, H. Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer. Mod. Pathol. 2022, 35, 403–411. [Google Scholar] [CrossRef]
- Chen, S. Models of artificial intelligence-assisted diagnosis of lung cancer pathology based on deep learning algorithms. J. Healthc. Eng. 2022, 2022, 3972298. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.; Li, H.; You, B. Application of artificial intelligence in the diagnosis of multiple primary lung cancer. Thorac. Cancer 2019, 10, 2168–2174. [Google Scholar] [CrossRef]
- Alexander, M.; Solomon, B.; Ball, D.L.; Sheerin, M.; Dankwa-Mullan, I.; Preininger, A.M.; Jackson, G.P.; Herath, D.M. Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open 2020, 3, 209–215. [Google Scholar] [CrossRef]
- Huang, C.-H.; Zeng, C.; Wang, Y.-C.; Peng, H.-Y.; Lin, C.-S.; Chang, C.-J.; Yang, H.-Y. A study of diagnostic accuracy using a chemical sensor array and a machine learning technique to detect lung cancer. Sensors 2018, 18, 2845. [Google Scholar] [CrossRef]
- Li, S.; Xu, P.; Li, B.; Chen, L.; Zhou, Z.; Hao, H.; Duan, Y.; Folkert, M.; Ma, J.; Huang, S. Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features. Phys. Med. Biol. 2019, 64, 175012. [Google Scholar] [CrossRef]
- Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors 2019, 19, 3722. [Google Scholar] [CrossRef]
- Reddy, U.J.; Ramana Reddy, B.V.; Reddy, B.E. Categorization & recognition of lung tumor using machine learning representations. Curr. Med. Imaging 2019, 15, 405–413. [Google Scholar]
- Schwyzer, M.; Ferraro, D.A.; Muehlematter, U.J.; Curioni-Fontecedro, A.; Huellner, M.W.; von Schulthess, G.K.; Kaufmann, P.A.; Burger, I.A.; Messerli, M. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results. Lung Cancer 2018, 126, 170–173. [Google Scholar] [CrossRef]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Hussein, S.; Cao, K.; Song, Q.; Bagci, U. Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-Task Learning; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 249–260. [Google Scholar]
- Venkadesh, K.V.; Setio, A.A.A.; Schreuder, A.; Scholten, E.T.; Chung, K.; Wille, W.M.M.; Saghir, Z.; van Ginneken, B.; Prokop, M.; Jacobs, C. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology 2021, 300, 438–447. [Google Scholar] [CrossRef]
- Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.W.; Marchiano, A. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7, 46479. [Google Scholar] [CrossRef] [PubMed]
- Petousis, P.; Han, S.X.; Aberle, D.; Bui, A.A.T. Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network. Artif. Intell. Med. 2016, 72, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, X.; Dang, K.; Li, K.; Guo, X.w.; Chang, J.; Yu, Z.Q.; Huang, F.Y.; Wu, Y.S.; Liang, Z. Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. Oncologist 2019, 24, 1159–1165. [Google Scholar] [CrossRef]
- Petousis, P.; Winter, A.; Speier, W.; Aberle, D.R.; Hsu, W.; Bui, A.A.T. Using sequential decision making to improve lung cancer screening performance. Ieee Access 2019, 7, 119403–119419. [Google Scholar] [CrossRef]
- Huang, P.; Lin, C.T.; Li, Y.; Tammemagi, M.C.; Brock, M.V.; Atkar-Khattra, S.; Xu, Y.; Hu, P.; Mayo, J.R.; Schmidt, H. Prediction of lung cancer risk at follow-up screening with low-dose CT: A training and validation study of a deep learning method. Lancet Digit. Health 2019, 1, e353–e362. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Ming, S.; Lin, Y.; Chen, F.; Shen, Q.; Li, H.; Chen, G.; Gong, X.; Wang, H. Development and clinical application of deep learning model for lung nodules screening on CT images. Sci. Rep. 2020, 10, 13657. [Google Scholar] [CrossRef] [PubMed]
- Chauvie, S.; De Maggi, A.; Baralis, I.; Dalmasso, F.; Berchialla, P.; Priotto, R.; Violino, P.; Mazza, F.; Melloni, G.; Grosso, M. Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial. Eur. Radiol. 2020, 30, 4134–4140. [Google Scholar] [CrossRef]
- Tam, M.D.B.S.; Dyer, T.; Dissez, G.; Morgan, T.N.; Hughes, M.; Illes, J.; Rasalingham, R.; Rasalingham, S. Augmenting lung cancer diagnosis on chest radiographs: Positioning artificial intelligence to improve radiologist performance. Clin. Radiol. 2021, 76, 607–614. [Google Scholar] [CrossRef]
- Schwyzer, M.; Martini, K.; Benz, D.C.; Burger, I.A.; Ferraro, D.A.; Kudura, K.; Treyer, V.; von Schulthess, G.K.; Kaufmann, P.A.; Huellner, M.W.; et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: Impact of image reconstructions on diagnostic performance. Eur. Radiol. 2020, 30, 2031–2040. [Google Scholar] [CrossRef]
- Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [Google Scholar] [CrossRef]
- Kirienko, M.; Sollini, M.; Silvestri, G.; Mognetti, S.; Voulaz, E.; Antunovic, L.; Rossi, A.; Antiga, L.; Chiti, A. Convolutional neural networks promising in lung cancer T-parameter assessment on baseline FDG-PET/CT. Contrast Media Mol. Imaging 2018, 2018, 1382309. [Google Scholar] [CrossRef]
- Sibille, L.; Seifert, R.; Avramovic, N.; Vehren, T.; Spottiswoode, B.; Zuehlsdorff, S.; Schäfers, M. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology 2020, 294, 445–452. [Google Scholar] [CrossRef]
- Toney, L.K.; Vesselle, H.J. Neural networks for nodal staging of non–small cell lung cancer with FDG PET and CT: Importance of combining uptake values and sizes of nodes and primary tumor. Radiology 2014, 270, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.A.; McDermott, S.; Kilcoyne, A.; Wang, Y.; Halpern, E.F.; Ackman, J.B. Comparison of 18F-FDG avidity at PET of benign and malignant pure ground-glass opacities: A paradox? Part II: Artificial neural network integration of the PET/CT characteristics of ground-glass opacities to predict their likelihood of malignancy. Clin. Radiol. 2019, 74, 692–696. [Google Scholar] [CrossRef]
- Hyun, S.H.; Ahn, M.S.; Koh, Y.W.; Lee, S.J. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin. Nucl. Med. 2019, 44, 956–960. [Google Scholar] [CrossRef]
- Jayasurya, K.; Fung, G.; Yu, S.; Dehing-Oberije, C.; De Ruysscher, D.; Hope, A.; De Neve, W.; Lievens, Y.; Lambin, P.; Dekker, A. Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy. Med. Phys. 2010, 37, 1401–1407. [Google Scholar] [CrossRef]
- Luo, Y.; McShan, D.; Ray, D.; Matuszak, M.; Jolly, S.; Lawrence, T.; Kong, F.-M.; Ten Haken, R.; El Naqa, I. Development of a fully cross-validated Bayesian network approach for local control prediction in lung cancer. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 3, 232–241. [Google Scholar] [CrossRef]
- Chamberlin, J.; Kocher, M.R.; Waltz, J.; Snoddy, M.; Stringer, N.F.C.; Stephenson, J.; Sahbaee, P.; Sharma, P.; Rapaka, S.; Schoepf, U.J.; et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: Accuracy and prognostic value. BMC Med. 2021, 19, 55. [Google Scholar] [CrossRef]
- Duan, S.; Cao, H.; Liu, H.; Miao, L.; Wang, J.; Zhou, X.; Wang, W.; Hu, P.; Qu, L.; Wu, Y. Development of a machine learning-based multimode diagnosis system for lung cancer. Aging 2020, 12, 9840. [Google Scholar] [CrossRef]
- da Silva, G.L.F.; da Silva Neto, O.P.; Silva, A.C.; de Paiva, A.C.; Gattass, M. Lung nodules diagnosis based on evolutionary convolutional neural network. Multimed. Tools Appl. 2017, 76, 19039–19055. [Google Scholar] [CrossRef]
- Trajanovski, S.; Mavroeidis, D.; Swisher, C.L.; Gebre, B.G.; Veeling, B.S.; Wiemker, R.; Klinder, T.; Tahmasebi, A.; Regis, S.M.; Wald, C.; et al. Towards radiologist-level cancer risk assessment in CT lung screening using deep learning. Comput. Med. Imaging Graph. 2021, 90, 101883. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, X.; Fan, K.; Zheng, Y.; Tian, N.; Fan, K. The value of artificial intelligence film reading system based on deep learning in the diagnosis of non-Small-Cell lung cancer and the significance of efficacy monitoring: A retrospective, clinical, nonrandomized, controlled study. Comput. Math. Methods Med. 2022, 2022, 2864170. [Google Scholar] [CrossRef]
- Gürsoy Çoruh, A.; Yenigün, B.; Uzun, Ç.; Kahya, Y.; Büyükceran, E.U.; Elhan, A.; Orhan, K.; Kayı Cangır, A. A comparison of the fusion model of deep learning neural networks with human observation for lung nodule detection and classification. Br. J. Radiol. 2021, 94, 20210222. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef]
- Lauri, H. High-resolution CT of the lungs: Indications and diagnosis. Duodecim Laaketieteellinen Aikakauskirja 2017, 133, 549–556. [Google Scholar]
- Liu, M.; Wu, J.; Wang, N.; Zhang, X.; Bai, Y.; Guo, J.; Zhang, L.; Liu, S.; Tao, K. The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0273445. [Google Scholar] [CrossRef]
- Binczyk, F.; Prazuch, W.; Bozek, P.; Polanska, J. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer Res. 2021, 10, 1186. [Google Scholar] [CrossRef]
- Rabbani, M.; Kanevsky, J.; Kafi, K.; Chandelier, F.; Giles, F.J. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur. J. Clin. Investig. 2018, 48, e12901. [Google Scholar] [CrossRef]
- Espinoza, J.L.; Dong, L.T. Artificial intelligence tools for refining lung cancer screening. J. Clin. Med. 2020, 9, 3860. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 773840. [Google Scholar] [CrossRef] [PubMed]
- Braghetto, A.; Marturano, F.; Paiusco, M.; Baiesi, M.; Bettinelli, A. Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset. Sci. Rep. 2022, 12, 14132. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Country | Study Design | AI Models Used | Source of Dataset | Key Performance Metrics of AI Models | Validation Method | Outcomes | ||
---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | |||||||
Wu et al., 2022 [7] | China | Retrospective study | DL | Whole slide images | 86% | 96.4% | 93.2% | NA | AI-assisted system can be an effective and valuable tool to overcome the challenges of PD-L1 assessment. |
Chen 2022 [8] | China | Retrospective study | CNN and RNN | H-E stained pathological slices | 95.1% | 34.4% | 92% | NA | AI-based approach using CNN and RCN could be very effective for improving the accuracy of predicting lung cancer. |
Li et al., 2019 [9] | China | Retrospective study | 3D deep learning technology | CT scans | 75% | 82% | 88.8% | Internal validation | AI may represent a valuable diagnostic tool that shows more precise and unbiased outcomes in the diagnosis of pulmonary nodules, thus minimizing the time required for interpretation of results by radiologists. |
Alexander et al., 2020 [10] | Australia | Retrospective study | ML and NLP | TMC | 83.3% | 93.8% | 91.6% | Internal validation | The AI-assisted system enables efficient and reliable screening of cancer patients, with an accuracy of 91.6% for overall eligibility assessment. |
Baldwin et al., 2020 [4] | UK | Retrospective study | LCP-CNN | EDC | 99.5% | 28% | - | External validation | The LCP-CNN approach minimizes the risk of missing cancer cases when compared to the Brock model. |
Choi et al., 2018 [5] | USA | Retrospective study | SVM-LASSO | LIDC-IDRI | 87.2% | 81.2% | 84.6% | Cross-validation | The proposed AI model achieved 84.6% accuracy, which was 12.4% higher than accuracy for Lung-RADS. |
Huang et al., 2018 [11] | Taiwan | Prospective study | ML | - | For internal validation 92.3% For external validation 83.3% | For internal validation 92.9% For external validation 86.2% | For internal validation 92.7% For external validation 85.4% | External validation/ internal validation | The integration of the sensor array technique and machine learning enables the precise identification of lung cancer with high accuracy. |
Li et al., 2019 [12] | China | Retrospective study | 3D deep CNN (SS-OLHF) | LIDC_IDRI | 82.6% | 91.3% | 93.0% | Cross-validation | The proposed fusion algorithm achieved the highest specificity, sensitivity, and accuracy scores among all classification models. |
Nasrullah et al., 2019 [13] | China | Retrospective study | 3D CMixNet | LUNA-16 and LIDC-IDRI | 94.0% | 91.0% | - | - | The proposed system, evaluated on LIDC-IDRI datasets, showed better results compared to the existing methods. |
Reddy et al., 2018 [14] | India | Retrospective study | GLCM | Microarray data clustering mechanisms | 95.3% | 100% | 97.6% | Cross-validation | GLCM features predicted lung tumor with higher accuracy than histogram features. |
Schwyzer et al., 2018 [15] | Switzerland | Retrospective study | ANN | Internal | 93.6% | 95.5% | 94.7% | Cross-validation | ML algorithms may help in fully automated lung cancer detection even at a low effective radiation doses. |
Ardila et al., 2019 [16] | USA | Retrospective study | 3D CNN | LUNA, LIDC and NLST | 64.7% | 95.2% | - | Internal validation | DL models have the potential to increase consistency and accuracy and enable the adoption of lung cancer screening. |
Coudray et al., 2018 [17] | USA | Retrospective study | CNN | TCGA | 89% | 93% | - | Internal validation | The outcomes suggest that DL can assist healthcare professionals in the detection of cancer. |
Hussein et al., 2017 [18] | USA | - | 3D CNN | LIDC-IDRI | - | - | 91.2% | Internal validation | The proposed approach achieved cutting-edge outcomes in regressing malignancy scores. |
Venkadesh et al., 2021 [19] | Denmark | Retrospective study | DL | NLST and DLCST | For subset A: 91% For subset B: 54% | 90% | - | Cross-validation | This algorithm has the potential to provide reliable and reproducible malignancy risk scores for experts, which could contribute to promoting the effectiveness of lung cancer screening management. |
Ciompi et al., 2017 [20] | The Netherlands | Retrospective study | CNN | MILD and DLCST | - | - | 72.9% | Internal validation | The performance of the proposed DL model in classifying nodule type surpassed that of conventional machine learning approaches. |
Petousis et al., 2016 [21] | USA | Retrospective study | DBN | NLST | - | - | - | Cross-validation | The lung cancer screening DBNs were reported to have high discrimination and predictive power with most of the cancer as well as non-cancer cases. |
Zhang et al., 2019 [22] | China | Retrospective study | 3D CNN | LUNA and Kaggle | 84.4% | 83% | - | Cross-validation | The 3D CNN with a DL algorithm may assist experts by providing accurate data for diagnosing pulmonary nodules. |
Petousis et al., 2019 [23] | USA | Retrospective study | ML and DBN | NLST | - | - | - | Cross-validation | The proposed model reduced the FPR while maintaining TPR, and improved early prediction of cancer cases. |
Huang et al., 2019 [24] | USA | Retrospective study | DL | NLST and PanCan | 88% | 60% | - | External validation | DL scores could be used for early detection of cancer cases. |
Cui et al., 2020 [25] | China | Retrospective study | DL | LUNA | 90% | 85% | - | External validation | The DL system had better identification sensitivity and performance than that of the experts. |
Chauvie et al., 2020 [26] | Italy | Retrospective study | Neural network | - | 90% | 100% | 100% | Cross-validation | The utilization of visual analysis along with NN could help experts to reduce the number of false positive cases. |
Tam et al., 2021 [27] | UK | Retrospective study | DNN | NHS Cancer Registry Database | 80% | 93% | 87% | - | The proposed AI resulted in a reduction in radiologist errors and improved clinician reporting performance. |
Schwyzer et al., 2020 [28] | Switzerland | Retrospective study | DL | - | For BSREM 69.2% For OSEM 66.7% | For BSREM 84.5% For OSEM 79.0% | - | Cross-validation | AI performed substantially better on images with BSREM than OSEM. |
Teramoto et al., 2010 [29] | Japan | Retrospective study | CNN | - | 90.1% | - | - | Cross-validation | CNN technique can be very effective for the early detection of pulmonary nodules in PET/CT images. |
Kirienko et al., 2018 [30] | Italy | Retrospective study | CNN | Independent dataset | - | 67% | 69% | Cross-validation | CNNs can be used as a reliable tool to assist in the staging of lung cancer patients. |
Sibille et al., 2020 [31] | US and Germany | Retrospective study | Deep CNN | Independent dataset | 81.0% | 97.3% | - | Independent internal validation | CNN achieved high diagnostic performance when both PET and CT images were utilized. |
Toney et al., 2014 [32] | USA | Prospective study | ANN | Independent dataset | - | - | 99.2% | - | ANNs can provide more accurate and consistent assessment of nodal stage in lung cancer patients. |
Scott et al., 2019 [33] | USA | Retrospective study | ANN | Independent dataset | 100% | 93.1% | - | External validation | ANNs have potential to improve diagnostic certainty and can be useful to help direct clinical and imaging follow-up. |
Hyun et al., 2019 [34] | Korea | Retrospective study | RF, NN, NBS, LL, SVM | Independent dataset | SVM 52.6% RF 52.6% NN 52.6% NBS 52.6% LL 52.6% | - | SVM 67.1% RF 67.1% NN 67.1% NBS 67.1% LL 67.1% | Internal validation | An ML approach with PET-based radiomics aids in early detection of lung cancer. |
Jayasurya et al., 2010 [35] | Belgium and the Netherlands | Retrospective study | BN | Independent dataset | - | - | - | External validation | BN models are better at handling missing data as compared to SVM models and are more suitable for the medical domain. |
Luo et al., 2018 [36] | USA | Retrospective study | BN | Independent dataset | - | - | - | Cross-validation | The proposed BN model is stable and can identify hierarchical relationships among biophysical features for the prediction of lung cancer. |
Chamberlin et al., 2021 [37] | USA, Europe, and Asia | Retrospective study | CNN | Independent data set | 100% | 70.8% | - | Internal validation | AI software strongly agrees with expert radiologist determination of detection of both lung nodules and CACV. |
Hsu et al., 2020 [6] | Taiwan | Retrospective study | ANN | Hospital-based cancer registry | 75.0% | 85.0% | - | Cross-validation | This study reported that ANN had better sensitivity for the detection of lung cancer than Lung-RADS. |
Duan et al., 2020 [38] | China | Retrospective study | Decision tree C5.0, ANN, SVM | - | C5.0-1 61.8% SVM 59.2% ANN 81.5% | C5.0-1 73.4% SVM 68.7% ANN 65.6% | - | - | These AI models can be utilized for the on-site screening and clinical diagnosis of the high-risk population. |
Silva et al., 2017 [39] | Brazil | Retrospective study | Deep CNN | LIDC-IDRI | 94.6% | 95.1% | 94.7% | Internal validation | The proposed DL models demonstrated promising performance and avoided the need for feature extraction and selection steps. |
Trajanovski et al., 2021 [40] | USA | Retrospective study | CNN | Kaggle, NLST, and UCM | 93% | - | - | External validation | The proposed DL had a better sensitivity of 93% and can be used for the screening of lung cancer. |
Chen et al., 2022 [41] | China | Retrospective study | CNN | Self-built data from hospital | 94.1% | 77.7% | 87.1% | External validation | The DL-based AI film reading system has higher sensitivity for the diagnosis of NSCLC than radiologists. |
Coruch et al., 2021 [42] | Turkey | Retrospective study | CNN | Hospital records | 92.2% | 58.7% | 75.2% | Cross-validation | The performance of the observers in evaluating the risk of malignancy was slightly higher than the performance of fusion AI algorithms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanan, M.; Alharbi, H.; Alotaibi, N.; Almasuood, L.; Aljoaid, S.; Alharbi, T.; Albraik, L.; Alothman, W.; Aljohani, H.; Alzahrani, A.; et al. AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 674. https://doi.org/10.3390/cancers16030674
Kanan M, Alharbi H, Alotaibi N, Almasuood L, Aljoaid S, Alharbi T, Albraik L, Alothman W, Aljohani H, Alzahrani A, et al. AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(3):674. https://doi.org/10.3390/cancers16030674
Chicago/Turabian StyleKanan, Mohammed, Hajar Alharbi, Nawaf Alotaibi, Lubna Almasuood, Shahad Aljoaid, Tuqa Alharbi, Leen Albraik, Wojod Alothman, Hadeel Aljohani, Aghnar Alzahrani, and et al. 2024. "AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis" Cancers 16, no. 3: 674. https://doi.org/10.3390/cancers16030674
APA StyleKanan, M., Alharbi, H., Alotaibi, N., Almasuood, L., Aljoaid, S., Alharbi, T., Albraik, L., Alothman, W., Aljohani, H., Alzahrani, A., Alqahtani, S., Kalantan, R., Althomali, R., Alameen, M., & Mufti, A. (2024). AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis. Cancers, 16(3), 674. https://doi.org/10.3390/cancers16030674