Low PRKAB2 Expression Is Associated with Poor Outcomes in Pediatric Adrenocortical Tumors, and Treatment with Rottlerin Increases the PRKAB2 Level and Inhibits Tumorigenic Aspects in the NCI-H295R Adrenocortical Cancer Cell Line
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Cell Line
2.3. Treatment with Rottlerin
2.4. RNA Extraction and Gene Expression by Real-Time PCR (RT-qPCR)
2.5. Cell Viability Assay
2.6. Clonogenic Assay
2.7. Transwell Assay
2.8. Hormone Measurement
2.9. Western Blotting
2.10. RNA Sequencing (RNAseq)
2.11. Statistical Analysis
3. Results
3.1. The PRKAB2 Gene Expression Profile in the Brazilian Cohort
3.2. Cell Viability
3.3. Transwell Assay
3.4. Clonogenic Assay
3.5. Rottlerin Upregulates PRKAB2 in NCI–H295R Cells
3.6. Rottlerin Modulates via AMPK/mTOR, Suppresses the Steroidogenic Factor, Reduces Hormone Biosynthesis, and Stimulates Autophagy in NCI-H295R Cells
3.7. Rottlerin Inhibits the Wnt/β-Catenin Pathway
3.8. Treatment with Rottlerin for 48 h Potently Inhibits SKP2 Protein Expression
3.9. Transcriptome Analysis after Treatment with Rottlerin
Rottlerin Stimulates Key Genes That Suppress the Hedgehog Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erickson, L.A. Challenges in Surgical Pathology of Adrenocortical Tumours. Histopathology 2018, 72, 82–96. [Google Scholar] [CrossRef]
- Sakoda, A.; Mushtaq, I.; Levitt, G.; Sebire, N.J. Clinical and Histopathological Features of Adrenocortical Neoplasms in Children: Retrospective Review from a Single Specialist Center. J. Pediatr. Surg. 2014, 49, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, R.; Ribeiro, R.C.; DeLacerda, L. Childhood Adrenocortical Tumors. J. Clin. Endocrinol. Metab. 1997, 82, 2027–2031. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galindo, C.; Figueiredo, B.C.; Zambetti, G.P.; Ribeiro, R.C. Biology, Clinical Characteristics, and Management of Adrenocortical Tumors in Children. Pediatr. Blood Cancer 2005, 45, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Ilanchezhian, M.; Varghese, D.G.; Glod, J.W.; Reilly, K.M.; Widemann, B.C.; Pommier, Y.; Kaplan, R.N.; Del Rivero, J. Pediatric Adrenocortical Carcinoma. Front. Endocrinol. 2022, 13, 961650. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, A.O.; Şenocak, M.E.; Tanyel, F.C.; Büyükpamukçu, N. Adrenocortical Tumors in Children. J. Pediatr. Surg. 2001, 36, 549–554. [Google Scholar] [CrossRef]
- Melo-Leite, A.F.; Elias, P.C.; Teixeira, S.R.; Tucci, S., Jr.; Barros, G.E.; Antonini, S.R.; Muglia, V.F.; Elias, J., Jr. Adrenocortical Neoplasms in Adulthood and Childhood: Distinct Presentation. Review of the Clinical, Pathological, and Imaging Characteristics. J. Pediatr. Endocrinol. Metab. 2017, 30, 253–276. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Figueiredo, B. Childhood adrenocortical tumours. Eur. J. Cancer 2004, 40, 1117–1126. [Google Scholar] [CrossRef]
- Rodriguez-Galindo, C.; Krailo, M.D.; Pinto, E.M.; Pashankar, F.; Weldon, C.B.; Huang, L.; Caran, E.M.; Hicks, J.; McCarville, M.B.; Malkin, D.; et al. Treatment of Pediatric Adrenocortical Carcinoma with Surgery, Retroperitoneal Lymph Node Dissection, and Chemotherapy: The Children’s Oncology Group ARAR0332 Protocol. J. Clin. Oncol. 2021, 39, 2463–2473. [Google Scholar] [CrossRef]
- Pinto, E.M.; Zambetti, G.P.; Rodriguez-Galindo, C. Pediatric adrenocortical tumours. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101448. [Google Scholar] [CrossRef] [PubMed]
- Mmsc, A.V.; Nehs, M.; Kilbridge, K. Treatment of Adrenocortical Carcinoma Anand. Surg. Pathol. 2019, 12, 997–1006. [Google Scholar] [CrossRef]
- Monteiro, N.M.L.; de Sá Rodrigues, K.E.; Vidigal, P.V.T.; de Oliveira, B.M. Carcinoma Adrenal Em Crianças: Estudo Longitudinal Em Minas Gerais, Brasil. Rev. Paul. Pediatr. 2019, 37, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.; Snowden, M.A.; Carling, D. Identification of a Novel AMP-Activated Protein Kinase β Subunit Isoform That Is Highly Expressed in Skeletal Muscle. J. Biol. Chem. 1998, 273, 12443–12450. [Google Scholar] [CrossRef] [PubMed]
- Gschwendt, M.; Müller, H.J.; Kielbassa, K.; Zang, R.; Kittstein, W.; Rincke, G.; Marks, F. Rottlerin, a Novel Protein Kinase Inhibitor. Biochem. Biophys. Res. Commun. 1994, 199, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Soltoff, S.P. Rottlerin Is a Mitochondrial Uncoupler That Decreases Cellular ATP Levels and Indirectly Blocks Protein Kinase Cδ Tyrosine Phosphorylation. J. Biol. Chem. 2001, 276, 37986–37992. [Google Scholar] [CrossRef]
- Ishaq, M.; Mahajan, P.; Jan, S.; Jain, S.K.; Tiwari, H.; Sandey, J.; Bharate, S.; Nargotra, A.; Hussain, S. Rottlerin Is a Pan Phosphodiesterase Inhibitor and Can Induce Neurodi Ff Erentiation in IMR-32 Human Neuroblastoma Cells. Eur. J. Pharmacol. 2019, 857, 172448. [Google Scholar] [CrossRef]
- Bazuine, M.; Van Der Zon, G.C.M.; Van De Ven, R.; Van Den Broek, P.J.A.; Maassen, J.A. Rottlerin Inhibits Multiple Steps Involved in Insulin-Induced Glucose Uptake in 3T3-L1 Adipocytes. Biochem. Pharmacol. 2004, 68, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.; Pereira, S.S.; Pignatelli, D. Modulation of Autophagy in Adrenal Tumors. Front. Endocrinol. 2022, 13, 937367. [Google Scholar] [CrossRef] [PubMed]
- Leal, L.F.; Mermejo, L.M.; Ramalho, L.Z.; Martinelli, C.E.; Yunes, J.A.; Seidinger, A.L.; Mastellaro, M.J.; Cardinalli, I.A.; Brandalise, S.R.; Moreira, A.C.; et al. Wnt/β-Catenin Pathway Deregulation in Childhood Adrenocortical Tumors. J. Clin. Endocrinol. Metab. 2011, 96, 3106–3114. [Google Scholar] [CrossRef]
- Gomes, D.C.; Leal, L.F.; Mermejo, L.M.; Scrideli, C.A.; Martinelli, C.E.; Fragoso, M.C.B.V.; Latronico, A.C.; Tone, L.G.; Tucci, S.; Yunes, J.A.; et al. Sonic Hedgehog Signaling Is Active in Human Adrenal Cortex Development and Deregulated in Adrenocortical Tumors. J. Clin. Endocrinol. Metab. 2014, 99, 1209–1216. [Google Scholar] [CrossRef]
- Lira, R.C.P.; Fedatto, P.F.; Antonio, D.S.M.; Leal, L.F.; Martinelli, C.E.; De Castro, M.; Tucci, S.; Neder, L.; Ramalho, L.; Seidinger, A.L.; et al. IGF2 and IGF1R in Pediatric Adrenocortical Tumors: Roles in Metastasis and Steroidogenesis. Endocr. Relat. Cancer 2016, 23, 481–493. [Google Scholar] [CrossRef]
- Wasserman, J.D.; Novokmet, A.; Eichler-Jonsson, C.; Ribeiro, R.C.; Rodriguez-Galindo, C.; Zambetti, G.P.; Malkin, D. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: A children’s oncology group study. J. Clin. Oncol. 2015, 33, 602–609. [Google Scholar] [CrossRef]
- Abduch, R.H.; Bueno, A.C.; Leal, L.F.; Cavalcanti, M.M.; Gomes, D.C.; Brandalise, S.R.; Masterallo, M.J.; Yunes, J.A.; Martinelli, C.E., Jr.; Tone, L.G.; et al. Unraveling the expression of the oncogene YAP1, a Wnt/beta-catenin target, in adrenocortical tumors and its association with poor outcome in pediatric patients. Oncotarget 2016, 7, 84634–84644. [Google Scholar] [CrossRef]
- DeRan, M.; Yang, J.; Shen, C.H.; Peters, E.C.; Fitamant, J.; Chan, P.; Hsieh, M.; Zhu, S.; Asara, J.M.; Zheng, B.; et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 2014, 9, 495–503. [Google Scholar] [CrossRef]
- Soltoff, S.P. Rottlerin: An Inappropriate and Ineffective Inhibitor of PKCδ. Trends Pharmacol. Sci. 2007, 28, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Doghman, M.; El Wakil, A.; Cardinaud, B.; Thomas, E.; Wang, J.; Zhao, W.; Peralta-Del Valle, M.H.C.; Figueiredo, B.C.; Zambetti, G.P.; Lalli, E. Regulation of IGF—MTOR Signalling by MiRNA in Childhood Adrenocortical Tumors. Cancer Res. 2010, 70, OR20–OR24. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.C.; Elias, L.L. Pituitary-adrenal responses to corticotropin-releasing hormone in different degrees of adrenal 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1992, 74, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.M.; Kiseljak-vassiliades, K.; Hantel, C.; Affairs, V.; Colorado, A. Contemporary Preclinical Human Models of Adrenocortical Carcinoma. Curr. Opin. Endocr. Metab. Res. 2020, 8, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Michalkiewicz, E.; Sandrini, R.; Figueiredo, B.; Miranda, E.C.M.; Caran, E.; Oliveira-Filho, A.G.; Marques, R.; Pianovski, M.A.D.; Lacerda, L.; Cristofani, L.M.; et al. Clinical and Outcome Characteristics of Children with Adrenocortical Tumors: A Report From the International Pediatric Adrenocortical Tumor Registry. J. Clin. Oncol. 2021, 22, 838–845. [Google Scholar] [CrossRef]
- Cieslikowski, W.A.; Haber, T.; Krajnak, S.; Anic, K.; Hasenburg, A.; Mager, R.; Thüroff, J.W.; Brenner, W. Co-administration of tyrosine kinase inhibitors with rottlerin in metastatic prostate cancer cells. EXCLI J. 2021, 20, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Alers, S.; Loffler, A.S.; Wesselborg, S.; Stork, B. Role of AMPK-MTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. Mol. Cell. Biol. 2012, 32, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Høyer-Hansen, M.; Jäättelä, M. AMP-Activated Protein Kinase: A Universal Regulator of Autophagy? Autophagy 2007, 3, 381–383. [Google Scholar] [CrossRef]
- Maioli, E.; Torricelli, C.; Valacchi, G. Rottlerin and Cancer: Novel Evidence and Mechanisms. Sci. World J. 2012, 2012, 350826. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Huang, D.; Lu, N.; Luo, L. Role of the LKB1/AMPK Pathway in Tumor Invasion and Metastasis of Cancer Cells (Review). Oncol. Rep. 2015, 34, 2821–2826. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Saha, A.K.; Xiang, X.; Ruderman, N.B. AMPK, the Metabolic Syndrome and Cancer. Trends Pharmacol. Sci. 2005, 26, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK Signalings: Interplay and Implication in Targeted Cancer Therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- Duan, C.; Fang, Y.; Sun, J.; Li, Z.; Wang, Q.; Bai, J.; Peng, H.; Liang, J.; Gao, Z. Science of the Total Environment Effects of Fast Food Packaging Plasticizers and Their Metabolites on Steroid Hormone Synthesis in H295R Cells. Sci. Total Environ. 2020, 726, 138500. [Google Scholar] [CrossRef]
- Hurup, C.; Michelle, M.; Bjarne, L.K.B. Atorvastatin Decreases Steroid Production in H295R Cells and in Major Endocrine Tissues of Male Rats. Arch. Toxicol. 2018, 92, 1703–1715. [Google Scholar] [CrossRef]
- Lua, W.; Lina, C.; Lia, Y. Rottlerin Induces Wnt Co-Receptor LRP6 Degradation and Suppresses Both Wnt/β-Catenin and MTORC1 Signaling in Prostate and Breast Cancer Cells. Mol. Cell. Biochem. 2014, 26, 1303–1309. [Google Scholar] [CrossRef]
- Hermida, M.A.; Dinesh Kumar, J.; Leslie, N.R. GSK3 and Its Interactions with the PI3K/AKT/MTOR Signalling Network. Adv. Biol. Regul. 2017, 65, 5–15. [Google Scholar] [CrossRef]
- Iino, K.; Mitobe, Y.; Ikeda, K.; Takayama, K.I.; Suzuki, T.; Kawabata, H.; Suzuki, Y.; Horie-Inoue, K.; Inoue, S. RNA-Binding Protein NONO Promotes Breast Cancer Proliferation by Post-Transcriptional Regulation of SKP2 and E2F8. Cancer Sci. 2020, 111, 148–159. [Google Scholar] [CrossRef]
- Maimaitirexiati, G.; Tian, P.; Maimaiti, H.; Ding, L.; Ma, C.; Li, Y.; Wang, J.; Yan, Q.; Li, R. Expression and Correlation Analysis of Skp2 and CBX7 in Cervical Cancer. J. Clin. Pathol. 2021, 75, 851–856. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, L.; Liu, W.; Liu, L.; Gao, F.; Li, W.; Liu, H. Skp2 Stabilizes Mcl-1 and Confers Radioresistance in Colorectal Cancer. Cell Death Dis. 2022, 13, 249. [Google Scholar] [CrossRef]
- Delloye-Bourgeois, C.; Gibert, B.; Rama, N.; Delcros, J.G.; Gadot, N.; Scoazec, J.Y.; Krauss, R.; Bernet, A.; Mehlen, P. Sonic Hedgehog Promotes Tumor Cell Survival by Inhibiting CDON Pro-Apoptotic Activity. PLoS Biol. 2013, 11, e1001623. [Google Scholar] [CrossRef]
- Lorea, C.F.; Moreno, D.A.; Borges, K.S.; Martinelli, C.E., Jr.; Antonini, S.R.; de Castro, M.; Tucci, S., Jr.; Neder, L.; Ramalho, L.N.; Cardinalli, I.; et al. Expression profile of apoptosis-related genes in childhood adrenocortical tumors: Low level of expression of BCL2 and TNF genes suggests a poor prognosis. Eur. J. Endocrinol. 2012, 167, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.Q.; Azevedo, M.F.; Xekouki, P.; Bimpaki, E.I.; Horvath, A.; Collins, M.T.; Karaviti, L.P.; Jeha, G.S.; Bhattacharyya, N.; Cheadle, C.; et al. Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations. J. Clin. Endocrinol. Metab. 2012, 97, E687–E693. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Wang, M.Q.; Liu, L.Y.; You, H.Y.; Wu, X.H.; Liu, Y.Y.; Wang, Y.J.; Lu, L.; Xiao, W.; Wei, L.B. Calycosin Inhibited Autophagy and Oxidative Stress in Chronic Kidney Disease Skeletal Muscle Atrophy by Regulating AMPK/SKP2/CARM1 Signalling Pathway. J. Cell. Mol. Med. 2020, 24, 11084–11099. [Google Scholar] [CrossRef] [PubMed]
- Akhshi, T.; Trimble, W.S. A Non-Canonical Hedgehog Pathway Initiates Ciliogenesis and Autophagy. J. Cell Biol. 2021, 220, e202004179. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, R.; Carpino, G.; Petrungaro, S.; Mammola, C.L.; Tomaipitinca, L.; Filippini, A.; Facchiano, A.; Ziparo, E.; Giampietri, C. Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 4629495. [Google Scholar] [CrossRef]
- Pereira, S.S.; Monteiro, M.P.; Costa, M.M.; Ferreira, J.; Alves, M.G.; Oliveira, P.F.; Jarak, I.; Pignatelli, D. MAPK/ERK Pathway Inhibition Is a Promising Treatment Target for Adrenocortical Tumors. J. Cell. Biochem. 2018, 120, 894–906. [Google Scholar] [CrossRef]
- Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-Treated Cancer Cells Modulate Macrophage Polarization through AMPK-NF-ΚB Signaling. Oncotarget 2017, 8, 20706–20718. [Google Scholar] [CrossRef]
- Xiang, H.; Lin, L.; Hu, X.; Zhu, H.; Li, H.; Zhang, R.; Hu, L.; Liu, W.; Zhao, Y.; Shu, Y.; et al. AMPK Activation Attenuates Inflammatory Pain through Inhibiting NF-κB Activation and IL-1 β Expression. J. Neuroinflamm. 2019, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wang, Y.; Wang, X.; Ai, Z.; Li, T.; Pu, X.; Yang, X.; Yao, Y.; He, J.; Cheng, S.Y.; et al. AMPK Attenuates SHH Subgroup Medulloblastoma Growth and Metastasis by Inhibiting NF-ΚB Activation. Cell Biosci. 2023, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The Role of AMPK in Cancer Metabolism and Its Impact on the Immunomodulation of the Tumor Microenvironment. Front. Immunol. 2023, 14, 1114582. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Rainey, W.E. Human adrenocortical carcinoma cell lines. Mol. Cell. Endocrinol. 2012, 351, 58–65. [Google Scholar] [CrossRef] [PubMed]
Variables | n | 5y-EFS (%) | p-Value | 5y-OS (%) | p-Value |
---|---|---|---|---|---|
Age | 63 | 0.032 | 0.006 | ||
<4 years | 45 | 82.2% | 91.1% | ||
>4 years | 18 | 55.6% | 61.1% | ||
Gender | 63 | 0.228 | 0.503 | ||
Male | 13 | 61.5% | 76.9% | ||
Female | 50 | 78.6% | 84% | ||
Size | 63 | 0.001 | <0.001 | ||
<200 cm³ | 50 | 84.0% | 92% | ||
>200 cm³ | 13 | 38.5% | 46.2% | ||
Weight * | 62 | 0.001 | <0.001 | ||
<100 g | 40 | 87.5% | 97.5% | ||
>100 g | 22 | 50.0% | 54.5% | ||
p. R337h | 63 | 0.267 | 0.150 | ||
Present | 54 | 72.2% | 79.6% | ||
Absent | 9 | 88.9% | 100% | ||
Modified Sandrini | 63 | ||||
I | 38 | 89.5% | <0.001 | 94.4% | <0.001 |
II | 14 | 64.3 | 71.4% | ||
III | 3 | 100% | 100% | ||
IV | 8 | 12.5% | 25% | ||
Metastasis | 63 | <0.001 | <0.001 | ||
Present | 7 | 14.6% | 28.6% | ||
Absent | 56 | 82.1% | 89.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, A.E.T.; Veronez, L.C.; Nagano, L.F.P.; Correa, C.A.P.; Baroni, M.; Ramos, M.S.; Queiroz, R.d.G.d.P.; Fernandes Molina, C.A.; Yunes, J.A.; Brandalise, S.R.; et al. Low PRKAB2 Expression Is Associated with Poor Outcomes in Pediatric Adrenocortical Tumors, and Treatment with Rottlerin Increases the PRKAB2 Level and Inhibits Tumorigenic Aspects in the NCI-H295R Adrenocortical Cancer Cell Line. Cancers 2024, 16, 1094. https://doi.org/10.3390/cancers16061094
Xavier AET, Veronez LC, Nagano LFP, Correa CAP, Baroni M, Ramos MS, Queiroz RdGdP, Fernandes Molina CA, Yunes JA, Brandalise SR, et al. Low PRKAB2 Expression Is Associated with Poor Outcomes in Pediatric Adrenocortical Tumors, and Treatment with Rottlerin Increases the PRKAB2 Level and Inhibits Tumorigenic Aspects in the NCI-H295R Adrenocortical Cancer Cell Line. Cancers. 2024; 16(6):1094. https://doi.org/10.3390/cancers16061094
Chicago/Turabian StyleXavier, Alcides Euzebio Tavares, Luciana Chain Veronez, Luís Fernando Peinado Nagano, Carolina Alves Pereira Correa, Mirela Baroni, Milena Silva Ramos, Rosane de Gomes de Paula Queiroz, Carlos Augusto Fernandes Molina, José Andres Yunes, Silvia Regina Brandalise, and et al. 2024. "Low PRKAB2 Expression Is Associated with Poor Outcomes in Pediatric Adrenocortical Tumors, and Treatment with Rottlerin Increases the PRKAB2 Level and Inhibits Tumorigenic Aspects in the NCI-H295R Adrenocortical Cancer Cell Line" Cancers 16, no. 6: 1094. https://doi.org/10.3390/cancers16061094
APA StyleXavier, A. E. T., Veronez, L. C., Nagano, L. F. P., Correa, C. A. P., Baroni, M., Ramos, M. S., Queiroz, R. d. G. d. P., Fernandes Molina, C. A., Yunes, J. A., Brandalise, S. R., Antonini, S. A. R., Tone, L. G., Valera, E. T., & Scrideli, C. A. (2024). Low PRKAB2 Expression Is Associated with Poor Outcomes in Pediatric Adrenocortical Tumors, and Treatment with Rottlerin Increases the PRKAB2 Level and Inhibits Tumorigenic Aspects in the NCI-H295R Adrenocortical Cancer Cell Line. Cancers, 16(6), 1094. https://doi.org/10.3390/cancers16061094