Chronic Lymphocytic Leukemia (CLL) with Borderline Immunoglobulin Heavy Chain Mutational Status, a Rare Subgroup of CLL with Variable Disease Course
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Outcome Measures
2.2. FISH Analysis
2.3. Karyotype Analysis
2.4. TP53 and NOTCH1 Mutation Analysis
2.5. IGHV Mutational Status Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shadman, M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review. JAMA 2023, 329, 918–932. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.; Kater, A.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- Thompson, P.A.; O’Brien, S.M.; Wierda, W.G.; Ferrajoli, A.; Stingo, F.; Smith, S.C.; Burger, J.A.; Estrov, Z.; Jain, N.; Kantarjian, H.M.; et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer 2015, 121, 3612–3621. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Kröber, A.; Bullinger, L.; Döhner, K.; Bentz, M.; Lichter, P. Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Cymbalista, F.; Ghia, P.; Jäger, U.; Pospisilova, S.; Rosenquist, R.; Schuh, A.; Stilgenbauer, S. TP53 aberrations in chronic lymphocytic leukemia: An overview of the clinical implications of improved diagnostics. Haematologica 2018, 103, 1956–1968. [Google Scholar] [CrossRef] [PubMed]
- Cherng, H.J.J.; Khwaja, R.; Kanagal-Shamanna, R.; Tang, G.; Burger, J.; Thompson, P.; Ferrajoli, A.; Estrov, Z.; Sasaki, K.; Sampath, D.; et al. TP53-altered CLL Treated with Firstline Bruton’s Tyrosine Kinase Inhibitor-based Therapy: A Retrospective Analysis. Am. J. Hematol. 2022, 97, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Rosati, E.; Baldoni, S.; De Falco, F.; Del Papa, B.; Dorillo, E.; Rompietti, C.; Albi, E.; Falzetti, F.; Di Ianni, M.; Sportoletti, P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front. Oncol. 2018, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.M.; Neuberger, M.S. Molecular Mechanisms of Antibody Somatic Hypermutation. Annu. Rev. Biochem. 2007, 76, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Gemenetzi, K.; Agathangelidis, A.; Zaragoza-Infante, L.; Sofou, E.; Papaioannou, M.; Chatzidimitriou, A.; Stamatopoulos, K. B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Front. Oncol. 2020, 10, 67. [Google Scholar] [CrossRef]
- Chatzouli, M.; Ntoufa, S.; Papakonstantinou, N.; Chartomatsidou, E.; Anagnostopoulos, A.; Kollia, P.; Ghia, P.; Muzio, M.; Stamatopoulos, K.; Belessi, C. Heterogeneous Functional Effects of Concomitant B Cell Receptor and TLR Stimulation in Chronic Lymphocytic Leukemia with Mutated versus Unmutated Ig Genes. J. Immunol. 2014, 192, 4518–4524. [Google Scholar] [CrossRef]
- Mockridge, C.I.; Potter, K.N.; Wheatley, I.; Neville, L.A.; Packham, G.; Stevenson, F.K. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 2007, 109, 4424–4431. [Google Scholar] [CrossRef] [PubMed]
- Severin, F.; Mouawad, N.; Ruggeri, E.; Visentin, A.; Martinello, L.; Pagnin, E.; Trimarco, V.; Pravato, S.; Angotzi, F.; Facco, M.; et al. Focal adhesion kinase activation by calcium-dependent calpain is involved in chronic lymphocytic leukaemia cell aggressiveness. Br. J. Haematol. 2023, 203, 224–236. [Google Scholar] [CrossRef]
- Eichhorst, B.; Fink, A.-M.; Bahlo, J.; Busch, R.; Kovacs, G.; Maurer, C.; Lange, E.; Köppler, H.; Kiehl, M.; Sökler, M.; et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): An international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016, 17, 928–942. [Google Scholar] [CrossRef]
- Rotbain, E.C.; Frederiksen, H.; Hjalgrim, H.; Rostgaard, K.; Egholm, G.J.; Zahedi, B.; Poulsen, C.B.; Enggaard, L.; da Cunha-Bang, C.; Niemann, C.U. IGHV mutational status and outcome for patients with chronic lymphocytic leukemia upon treatment: A Danish nationwide population-based study. Haematologica 2020, 105, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Mauro, F.R.; Catania, G.; Fresa, A.; Vitale, C.; Sanna, A.; Mattiello, V.; Cibien, F.; Sportoletti, P.; Gentile, M.; et al. Obinutuzumab plus chlorambucil versus ibrutinib in previously untreated chronic lymphocytic leukemia patients without TP53 disruptions: A real-life CLL campus study. Front. Oncol. 2022, 12, 1033413. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Bazinet, A.; Wierda, W.G.; Tam, C.S.; O’brien, S.M.; Saha, S.; Peterson, C.B.; Plunkett, W.; Keating, M.J. Sustained remissions in CLL after frontline FCR treatment with very-long-term follow-up. Blood 2023, 142, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Smolej, L.; Vodárek, P.; Écsiová, D.; Šimkovič, M. Chemoimmunotherapy in the First-Line Treatment of Chronic Lymphocytic Leukaemia: Dead Yet, or Alive and Kicking? Cancers 2021, 13, 3134. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’brien, S.; Barrientos, J.C.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib–rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): A randomised, controlled, phase 3 trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): A randomised, controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Gemenetzi, K.; Psomopoulos, F.; Carriles, A.A.; Gounari, M.; Minici, C.; Plevova, K.; Sutton, L.-A.; Tsagiopoulou, M.; Baliakas, P.; Pasentsis, K.; et al. Higher-order immunoglobulin repertoire restrictions in CLL: The illustrative case of stereotyped subsets 2 and 169. Blood 2021, 137, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, S.; Agathangelidis, A.; Schneider, C.; Bahlo, J.; Robrecht, S.; Tausch, E.; Bloehdorn, J.; Hoechstetter, M.; Fischer, K.; Eichhorst, B.; et al. Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: Analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica 2020, 105, 2598–2607. [Google Scholar] [CrossRef]
- Langerak, A.W.; Davi, F.; Stamatopoulos, K. Immunoglobulin heavy variable somatic hyper mutation status in chronic lymphocytic leukaemia: On the threshold of a new era? Br. J. Haematol. 2020, 189, 809–810. [Google Scholar] [CrossRef]
- Raponi, S.; Ilari, C.; Della Starza, I.; Cappelli, L.V.; Cafforio, L.; Piciocchi, A.; Arena, V.; Mariglia, P.; Mauro, F.R.; Gentile, M.; et al. Redefining the prognostic likelihood of chronic lymphocytic leukaemia patients with borderline percentage of immunoglobulin variable heavy chain region mutations. Br. J. Haematol. 2020, 189, 853–859. [Google Scholar] [CrossRef]
- Nadeu, F.; Royo, R.; Clot, G.; Duran-Ferrer, M.; Navarro, A.; Martín, S.; Lu, J.; Zenz, T.; Baumann, T.; Jares, P.; et al. IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood 2021, 137, 2935–2946. [Google Scholar] [CrossRef]
- Maity, P.C.; Bilal, M.; Koning, M.T.; Young, M.; van Bergen, C.A.M.; Renna, V.; Nicolò, A.; Datta, M.; Gentner-Göbel, E.; Barendse, R.S.; et al. IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 4320–4327. [Google Scholar] [CrossRef] [PubMed]
- Stamatopoulos, B.; Smith, T.; Crompot, E.; Pieters, K.; Clifford, R.; Mraz, M.; Robbe, P.; Burns, A.; Timbs, A.; Bruce, D.; et al. The Light Chain IgLV3-21 Defines a New Poor Prognostic Subgroup in Chronic Lymphocytic Leukemia: Results of a Multicenter Study. Clin. Cancer Res. 2018, 24, 5048–5057. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, T.; Agathangelidis, A.; Chatzidimitriou, A.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Updates of the ERIC recommendations on how to report the results from immunoglobulin heavy variable gene analysis in chronic lymphocytic leukemia. Leukemia 2024, 38, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: The 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Davis, Z.; Forconi, F.; Parker, A.; Gardiner, A.; Thomas, P.; Catovsky, D.; Rose-Zerilli, M.; Strefford, J.C.; Oscier, D. The outcome of Chronic lymphocytic leukaemia patients with 97% IGHV gene identity to germline is distinct from cases with <97% identity and similar to those with 98% identity. Br. J. Haematol. 2016, 173, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; González, G.M.N.; Kanagal-Shamanna, R.; Rozovski, U.; Sarwari, N.; Tam, C.; Wierda, W.G.; Thompson, P.A.; Jain, N.; Luthra, R.; et al. The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab. Br. J. Haematol. 2018, 180, 33–40. [Google Scholar] [CrossRef]
- Shi, K.; Sun, Q.; Qiao, C.; Zhu, H.; Wang, L.; Wu, J.; Wang, L.; Fu, J.; Young, K.H.; Fan, L.; et al. 98% IGHV gene identity is the optimal cutoff to dichotomize the prognosis of Chinese patients with chronic lymphocytic leukemia. Cancer Med. 2020, 9, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Facco, M.; Gurrieri, C.; Pagnin, E.; Martini, V.; Imbergamo, S.; Frezzato, F.; Trimarco, V.; Severin, F.; Raggi, F.; et al. Prognostic and Predictive Effect of IGHV Mutational Status and Load in Chronic Lymphocytic Leukemia: Focus on FCR and BR Treatments. Clin. Lymphoma Myeloma Leuk. 2019, 19, 678–685.e4. [Google Scholar] [CrossRef]
- Visentin, A.; Facco, M.; Frezzato, F.; Castelli, M.; Trimarco, V.; Martini, V.; Gattazzo, C.; Severin, F.; Chiodin, G.; Martines, A.; et al. Integrated CLL Scoring System, a New and Simple Index to Predict Time to Treatment and Overall Survival in Patients with Chronic Lymphocytic Leukemia. Clin. Lymphoma Myeloma Leuk. 2015, 15, 612–620.e5. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Fais, F.; Ghiotto, F.; Hashimoto, S.; Sellars, B.; Valetto, A.; Allen, S.L.; Schulman, P.; Vinciguerra, V.P.; Rai, K.; Rassenti, L.Z.; et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J. Clin. Investig. 1998, 102, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; James, M.R.; Benner, A.; Weilguni, T.; Bentz, M.; Fischer, K.; Hunstein, W.; Lichter, P. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997, 89, 2516–2522. [Google Scholar] [CrossRef]
- Neilson, J.; Auer, R.; White, D.; Bienz, N.; Waters, J.; Whittaker, J.; Milligan, D.; Fegan, C. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997, 11, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, G.; Sinan, H.; Kourie, H.R.; Kattan, J.; Nasr, F.; el Karak, F.; Wakim, J.; Ghosn, M.; Chahine, G.; Farra, C.; et al. Genetic markers of chronic lymphocytic leukemia: A retrospective study of 312 patients from a reference center in Lebanon. Future Oncol. 2023, 19, 1979–1990. [Google Scholar] [CrossRef]
- Queirós, A.C.; Villamor, N.; Clot, G.; Martinez-Trillos, A.; Kulis, M.; Navarro, A.; Penas, E.M.M.; Jayne, S.; Majid, A.; Richter, J.; et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 2015, 29, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Kulis, M.; Martin-Subero, J.I. Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications. Br. J. Haematol. 2023, 200, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Oakes, C.C.; Seifert, M.; Assenov, Y.; Gu, L.; Przekopowitz, M.; Ruppert, A.S.; Wang, Q.; Imbusch, C.D.; Serva, A.; Koser, S.D.; et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 2016, 48, 253–264. [Google Scholar] [CrossRef] [PubMed]
M-IGHV (n = 350; 53.6%) | BL-IGHV (n = 30; 4.59%) | U-IGHV (n = 273; 41.8%) | p Values a | |
---|---|---|---|---|
Sex (%) | 0.33 | |||
F | 139 (39.7) | 15 (50) | 100 (36.6) | |
M | 211 (60.3) | 15 (50) | 173 (63.4) | |
Median age, years (IQR) | 0.26 | |||
62.9 (14.8) | 66.4 (16) | 65.2 (16.6) | ||
RAI stage (%) | <0.001 | |||
0-I | 284 (86.6) | 16 (61.5) | 182 (69.2) | |
II | 32 (9.8) | 7 (26.9) | 63 (24) | |
III | 9 (2.7) | 1 (3.9) | 3 (1.1) | |
IV | 3 (0.9) | 2 (7.7) | 15 (5.7) | |
Not reported | 22 (6.3) | 4 (13.3) | 10 (3.7) | |
BINET stage (%) | <0.001 | |||
A | 293 (90.4) | 16 (61.5) | 170 (67.2) | |
B | 20 (6.2) | 7 (26.9) | 65 (25.7) | |
C | 11 (3.4) | 3 (11.5) | 18 (7.1) | |
Not reported | 26 (7.4) | 4 (13.3) | 20 (7.3) | |
FISH (%) | ||||
del(11q) | 7 (2.4) | 3 (10.7) | 50 (21.7) | <0.001 |
del(13q) | 182 (62.8) | 16 (57.1) | 97 (42.2) | <0.001 |
+12 | 35 (12.1) | 1 (3.6) | 37 (16.1) | 0.12 |
Del(17p) | 12 (4.1) | 0 (0.0) | 33 (14.3) | <0.001 |
Not performed | 60 (17.1) | 2 (6.7) | 43 (15.8) | |
TP53 (%) | 0.01 | |||
Mutated | 7 (8.43) | 1 (6.7) | 27 (22.9) | |
Wild type | 76 (91.6) | 14 (93.3) | 91 (77.1) | |
Not performed | 267 (76.3) | 15 (50) | 155 (56.8) | |
NOTCH 1 (%) | 0.01 | |||
Mutated | 7 (8) | 1 (6.7) | 25 (22.1) | |
Wild type | 81 (92) | 14 (93.3) | 88 (77.9) | |
Not performed | 262 (74.9) | 15 (50) | 160 (58.6) | |
Karyotype (%) | <0.001 | |||
Normal | 63 (50.8) | 3 (17.6) | 32 (22.5) | |
<2 abnormalities | 41 (33.1) | 9 (52.9) | 70 (49.3) | |
CK | 13 (10.5) | 4 (23.5) | 15 (10.6) | |
High-CK | 7 (5.7) | 1 (5.9) | 25 (17.6) | |
Not performed | 226 | 13 | 131 | |
IGHV subset #2 | 9 (2.6) | 4 (12.9) | 2 (0.7) | 0.003 |
First line therapy(%) | 0.038 | |||
CIT | 112 (91.1) | 18 (81.8) | 171 (81) | |
Targeted | 11 (8.9) | 5 (16.7) | 40 (19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angotzi, F.; Cellini, A.; Ruocco, V.; Cavarretta, C.A.; Zatta, I.; Serafin, A.; Pravato, S.; Pagnin, E.; Bonaldi, L.; Frezzato, F.; et al. Chronic Lymphocytic Leukemia (CLL) with Borderline Immunoglobulin Heavy Chain Mutational Status, a Rare Subgroup of CLL with Variable Disease Course. Cancers 2024, 16, 1095. https://doi.org/10.3390/cancers16061095
Angotzi F, Cellini A, Ruocco V, Cavarretta CA, Zatta I, Serafin A, Pravato S, Pagnin E, Bonaldi L, Frezzato F, et al. Chronic Lymphocytic Leukemia (CLL) with Borderline Immunoglobulin Heavy Chain Mutational Status, a Rare Subgroup of CLL with Variable Disease Course. Cancers. 2024; 16(6):1095. https://doi.org/10.3390/cancers16061095
Chicago/Turabian StyleAngotzi, Francesco, Alessandro Cellini, Valeria Ruocco, Chiara Adele Cavarretta, Ivan Zatta, Andrea Serafin, Stefano Pravato, Elisa Pagnin, Laura Bonaldi, Federica Frezzato, and et al. 2024. "Chronic Lymphocytic Leukemia (CLL) with Borderline Immunoglobulin Heavy Chain Mutational Status, a Rare Subgroup of CLL with Variable Disease Course" Cancers 16, no. 6: 1095. https://doi.org/10.3390/cancers16061095
APA StyleAngotzi, F., Cellini, A., Ruocco, V., Cavarretta, C. A., Zatta, I., Serafin, A., Pravato, S., Pagnin, E., Bonaldi, L., Frezzato, F., Facco, M., Piazza, F., Trentin, L., & Visentin, A. (2024). Chronic Lymphocytic Leukemia (CLL) with Borderline Immunoglobulin Heavy Chain Mutational Status, a Rare Subgroup of CLL with Variable Disease Course. Cancers, 16(6), 1095. https://doi.org/10.3390/cancers16061095