Acute Promyelocytic Leukemia: Review of Complications Related to All-Trans Retinoic Acid and Arsenic Trioxide Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Liver Toxicity
3. QT Prolongation
4. Differentiation Syndrome
5. Neurological Toxicities
6. Musculoskeletal Toxicities
7. Skin Toxicities
8. Other (Rare) Toxicities
9. Infectious Complications
10. Late-Onset Side Effects
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Kantarjian, H.; Wang, H.; Cortes, J.; Ravandi, F. Acute promyelocytic leukemia: A population-based study on incidence and survival in the United States, 1975–2008. Cancer 2012, 118, 5811–5818. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.-J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef]
- Antman, K.H. Introduction: The history of arsenic trioxide in cancer therapy. Oncologist 2001, 6 (Suppl. S2), 1–2. [Google Scholar] [CrossRef]
- Aronson, S.M. Arsenic and old myths. RI Med. 1994, 77, 233–234. [Google Scholar]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic acid and arsenic trioxide for acute promyelocyticleukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Chen, G.Q.; Ni, J.H.; Li, X.S.; Xiong, S.M.; Qiu, Q.Y.; Zhu, J.; Tang, W.; Sun, G.L.; Yang, K.Q.; et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997, 89, 3354–3360. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Kantarjian, H.; Ravandi, F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021, 11, 123. [Google Scholar] [CrossRef]
- Bernard, J.; Weil, M.; Boiron, M.; Jacquillat, C.; Flandrin, G.; Gemon, M.-F. Acute promyelocytic leukemia: Results of treatment by daunorubicin. Blood 1973, 41, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988, 72, 567–572. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Ma, Y.-F.; Yu, K.; Ouyang, G.-F.; Pei, R.-Z.; Xu, W.-Q.; Hu, H.-X.; Mo, S.-P.; Lan, J.-P.; Shen, J.-P.; et al. Early Death and Survival of Patients With Acute Promyelocytic Leukemia in ATRA Plus Arsenic Era:A Population-Based Study. Front. Oncol. 2021, 11, 762653. [Google Scholar] [CrossRef] [PubMed]
- Soignet, S.L.; Frankel, S.R.; Douer, D.; Tallman, M.S.; Kantarjian, H.; Calleja, E.; Stone, R.M.; Kalaycio, M.; Scheinberg, D.A.; Steinherz, P.; et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J. Clin. Oncol. 2001, 19, 3852–3860. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.-F.; Wu, C.-F.; Xu, F.; Shen, Z.-X.; Zhu, Y.-M.; Li, J.-M.; Tang, W.; Zhao, W.-L.; Wu, W.; et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2009, 106, 3342–3347. [Google Scholar] [CrossRef]
- Bakhshaiesh, T.O.; Armat, M.; Shanehbandi, D.; Sharifi, S.; Baradaran, B.; Hejazi, M.S.; Samadi, N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5191–5197. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Platzbecker, U.; Avvisati, G.; Cicconi, L.; Thiede, C.; Paoloni, F.; Vignetti, M.; Ferrara, F.; Divona, M.; Albano, F.; Efficace, F.; et al. Improved Outcomes with Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non–High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial. J. Clin. Oncol. 2017, 35, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Gong, S.; Li, G.-H.; Yao, Y.-Z.; Zheng, Y.-S.; Lu, X.-H.; Wei, S.-H.; Qin, W.-W.; Liu, H.-B.; Wang, M.-C.; et al. An effective and chemotherapy-free strategy of all-trans retinoic acid and arsenic trioxide for acute promyelocytic leukemia in all risk groups (APL15trial). Blood Cancer J. 2022, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Iland, H.J.; Bradstock, K.; Supple, S.G.; Catalano, A.; Collins, M.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Hugman, A.; et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012, 120, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Iland, H.J.; Collins, M.; Bradstock, K.; Supple, S.G.; Catalano, A.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Campbell, L.J.; et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: A non-randomised phase 2 trial. Lancet Haematol. 2015, 2, e357–e366. [Google Scholar] [CrossRef] [PubMed]
- Estey, E.; Garcia-Manero, G.; Ferrajoli, A.; Faderl, S.; Verstovsek, S.; Jones, D.; Kantarjian, H. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006, 107, 3469–3473. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, H.-M.; Li, Y.; Liu, Q.-F.; Hu, Y.; Zhou, J.-F.; Jin, J.; Hu, J.-D.; Liu, T.; Wu, D.-P.; et al. Arsenic trioxide replacing or reducing chemotherapy in consolidation therapy for acute promyelocytic leukemia (APL2012 trial). Proc. Natl. Acad. Sci. USA 2021, 118, e2020382118. [Google Scholar] [CrossRef]
- Abaza, Y.; Kantarjian, H.; Garcia-Manero, G.; Estey, E.; Borthakur, G.; Jabbour, E.; Faderl, S.; O’brien, S.; Wierda, W.; Pierce, S.; et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 2017, 129, 1275–1283. [Google Scholar] [CrossRef]
- Kayser, S.; Schlenk, R.F.; Lebon, D.; Carre, M.; Götze, K.S.; Stölzel, F.; Berceanu, A.; Schäfer-Eckart, K.; Peterlin, P.; Hicheri, Y.; et al. Characteristics and outcome of patients with low-/intermediate-risk acute promyelocytic leukemia treated with arsenic trioxide: An international collaborative study. Haematologica 2021, 106, 3100–3106. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Zhang, F.; Zhang, Q.; Wei, H.; Xiu, R.; Zhao, Y.; Sui, M. Clinical Indicators of Hepatotoxicity in Newly Diagnosed Acute Promyelocytic Leukemia Patients Undergoing Arsenic Trioxide Treatment. Biol. Trace Elem. Res. 2023, 202, 122–132. [Google Scholar] [CrossRef]
- Mathews, V.; Desire, S.; George, B.; Lakshmi, K.M.; Rao, J.G.; Viswabandya, A.; Bajel, A.; Srivastava, V.M.; Srivastava, A.; Chandy, M. Hepatotoxicity profile of single agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia, its impact on clinical outcome and the effect of genetic polymorphisms on the incidence of hepatotoxicity. Leukemia 2006, 20, 881–883. [Google Scholar] [CrossRef]
- Hao, L.; Zhao, J.; Wang, X.; Wang, H.; Wang, H.; Xu, G. Hepatotoxicity from arsenic trioxide for pediatric acute promyelocytic leukemia. J. Pediatr. Hematol. Oncol. 2013, 35, e67–e70. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; LoCoco, F.; Martín, G.; Avvisati, G.; Rayón, C.; Barbui, T.; Díaz-Mediavilla, J.; Fioritoni, G.; González, J.D.; Liso, V.; et al. Definition of relapse riskand role of nonanthracyclinedrugs for consolidation in patientswith acute promyelocyticleukemia: A jointstudy of the PETHEMA and GIMEMA cooperative groups. Blood 2000, 96, 1247–1253. [Google Scholar]
- Zhang, J.-Y.; Sun, G.-B.; Wang, M.; Liao, P.; Du, Y.-Y.; Yang, K.; Sun, X.-B. Arsenic trioxide triggered calcium homeostasis imbalance and induced endoplasmic reticulum stress-mediated apoptosis in adult rat ventricular myocytes. Toxicol. Res. 2016, 5, 682–688. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Lin, L.; Lu, J.; Zhao, Q.; Dong, Z.; Hai, X. Sacubitril/valsartan protects against arsenic trioxide induced cardiotoxicity in vivo and in vitro. Toxicol. Res. 2022, 11, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Haybar, H.; Shahrabi, S.; Rezaeeyan, H.; Jodat, H.; Saki, N. Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. J. Cell. Physiol. 2019, 234, 14500–14506. [Google Scholar] [CrossRef] [PubMed]
- Roboz, G.J.; Ritchie, E.K.; Carlin, R.F.; Samuel, M.; Gale, L.; Provenzano-Gober, J.L.; Curcio, T.J.; Feldman, E.J.; Kligfield, P.D. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J. Clin. Oncol. 2014, 32, 3723–3728. [Google Scholar] [CrossRef]
- Trinkley, K.E.; Page, R.L.; Lien, H.; Yamanouye, K.; Tisdale, J.E. QT interval prolongation and the risk of torsades de pointes: Essentials for clinicians. Curr. Med. Res. Opin. 2013, 29, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Azanza, J.R.; Mensa, J.; Barberán, J.; Vázquez, L.; de Oteyza, J.P.; Kwon, M.; Yáñez, L.; Aguado, J.M.; Gracian, A.C.; Solano, C.; et al. Recommendations on the use of azole antifungals in hematology-oncology patients. Rev. Espanola Quimioter. 2023, 36, 236–258. [Google Scholar] [CrossRef]
- Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875–1891. [Google Scholar] [CrossRef]
- Zeitjian, V.; Moazez, C.; Arslan, W.; Saririan, M. QT Independent Ventricular Tachycardia Induced by Arsenic Trioxide. Case Rep. Cardiol. 2019, 2019, 9870283. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, M.; Hostetter, T.H.; Chen, H.; Lin, L.; Hai, X. Effect of renal impairment on arsenic accumulation, methylation capacity, and safety in acute promyelocytic leukemia (APL) patients treated with arsenic trioxide. Expert Rev. Clin. Pharmacol. 2021, 14, 1173–1182. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Survivorship (Version 1.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/survivorship.pdf (accessed on 9 March 2024).
- Abedin, S.; Altman, J.K. Acute promyelocytic leukemia: Preventing early complications and late toxicities. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Tallman, M.S. Acute promyelocytic leukemia (APL): Remaining challenges towards a cure for all. Leuk. Lymphoma 2019, 60, 3107–3115. [Google Scholar] [CrossRef] [PubMed]
- De Botton, S.; Dombret, H.; Sanz, M.; Miguel, J.S.; Caillot, D.; Zittoun, R.; Gardembas, M.; Stamatoulas, A.; Condé, E.; Guerci, A.; et al. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. Blood 1998, 92, 2712–2718. [Google Scholar] [CrossRef]
- Montesinos, P.; Bergua, J.M.; Vellenga, E.; Rayón, C.; Parody, R.; De La Serna, J.; León, A.; Esteve, J.; Milone, G.; Debén, G.; et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors. Blood 2009, 113, 775–783. [Google Scholar] [CrossRef]
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2023, 12, 1062524. [Google Scholar] [CrossRef]
- Vahdat, L.; Maslak, P.; Miller, W.J.; Eardley, A.; Heller, G.; Scheinberg, D.; Warrell, R.P., Jr. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: Impact of leukocytosis, low-dose chemotherapy, PMN/RAR-alpha isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood 1994, 84, 3843–3849. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, R.; Ghédira, H.; Mnif, S.; Gouider, E.; Fenaux, P.; Meddeb, B. High body mass index is an independent predictor of differentiation syndrome in patients with acute promyelocytic leukemia. Leuk. Res. 2010, 34, 545–547. [Google Scholar] [CrossRef] [PubMed]
- LaBella, D.; Regan, S.; Konig, H.; Egan, D.N.; Bailey, N.A.; Mawad, R.; Gilbert, M.; Pagel, J.M.; Pu, J.J. The role of adjuvant chemotherapy in the management of acute promyelocytic leukemia differentiation syndrome. Front. Oncol. 2022, 12, 911745. [Google Scholar] [CrossRef] [PubMed]
- de Botton, S.; Chevret, S.; Coiteux, V.; Dombret, H.; Sanz, M.; Miguel, J.S.; Caillot, D.; Vekhoff, A.; Gardembas, M.; Stamatoulas, A.; et al. Early onset of chemotherapy can reduce the incidence of ATRA syndrome in newly diagnosed acute promyelocytic leukemia (APL) with low white blood cell counts: Results from APL 93 trial. Leukemia 2003, 17, 339–342. [Google Scholar] [CrossRef]
- Ravandi, F.; Estey, E.; Jones, D.; Faderl, S.; O’Brien, S.; Fiorentino, J.; Pierce, S.; Blamble, D.; Estrov, Z.; Wierda, W.; et al. Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J. Clin. Oncol. 2009, 27, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X.-Y.; Wang, B.-S.; Rong, Z.-X.; Qi, H.; Chen, H.-Z. The efficacy and safety of arsenic trioxide with or without all-trans retinoic acid for the treatment of acute promyelocytic leukemia: A meta-analysis. Leuk. Res. 2011, 35, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.I.; Liu, G.T.; Digre, K.B. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 2013, 81, 1159–1165. [Google Scholar] [CrossRef]
- Chen, J.; Wall, M. Epidemiology and risk factors for idiopathic intracranial hypertension. Int. Ophthalmol. Clin. 2014, 54, 1–11. [Google Scholar] [CrossRef]
- Burkett, J.G.; Ailani, J. An Up to Date Review of Pseudotumor Cerebri Syndrome. Curr. Neurol. Neurosci. Rep. 2018, 18, 33. [Google Scholar] [CrossRef]
- Anoop, T.; Jain, N.; Nair, S.; Narayanan, G. All-trans-retinoic acid-induced pseudotumor cerebri in acute promyelocytic leukemia. J. Neurosci. Rural Pract. 2014, 5, 273–275. [Google Scholar] [CrossRef]
- Zacholski, K.; Hambley, B.; Hickey, E.; Kashanian, S.; Li, A.; Baer, M.R.; Duong, V.H.; Newman, M.J.; DeZern, A.; Gojo, I.; et al. Arsenic trioxide dose capping to decrease toxicity in the treatment of acute promyelocytic leukemia. J. Oncol. Pharm. Pract. 2022, 28, 1340–1349. [Google Scholar] [CrossRef]
- Montesinos, P.; Vellenga, E.; Holowiecka, A.; Rayon, C.; Milone, G.; de la Serna, J.; Leon, A.; Bergua, J.; Rivas, C.; Gonzalez, J.; et al. Incidence, Outcome and Risk Factors of Pseudotumor Cerebri after All-Trans Retinoic Acid and Anthracycline-Based Chemotherapy in Patients with Acute Promyelocytic Leukemia. Blood 2008, 112, 2992. [Google Scholar] [CrossRef]
- Atas, U.; AydinErsoy, M.; Iltar, U.; Yucel, O.K.; Turkoglu, E.B.; Salim, O. Papilledema and idiopathic intracranial hypertension due to the possible potentiation of ATRA by posaconazole in a case of acute promyelocytic leukemia. J. Oncol. Pharm. Pract. 2022, 28, 1474–1477. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.; Vishnu, P.; Dorer, R.K.; Aboulafia, D.M. All-Trans Retinoic Acid-Induced Pseudotumor Cerebri during Induction Therapy for Acute Promyelocytic Leukemia: A Case Report and Literature Review. Case Rep. Oncol. Med. 2012, 2012, 313057. [Google Scholar] [CrossRef]
- Smith, M.B.; Griffiths, E.A.; Thompson, J.E.; Wang, E.S.; Wetzler, M.; Freyer, C.W. High pseudotumor cerebri incidence in tretinoin and arsenic treated acute promyelocytic leukemia and the role of topiramate after acetazolamide failure. Leuk. Res. Rep. 2014, 3, 62–66. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, J.; Chen, L.; Zhou, W.; Li, X.; Wang, L.; Zhao, X.; Zhang, Y.; Zhao, H.; Wang, A.; et al. The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood 2016, 128, 1525–1528. [Google Scholar] [CrossRef] [PubMed]
- Loh, Z.; Ashby, M.; Van Veldhuizen, E.; Li, W.; Chee, A.; Aung, W.; Lavrukhina, Y.; Mason, G.; Pelly, T.; Nedumannil, R.; et al. Arsenic-induced neurotoxicity in patients with acute promyelocytic leukaemia. Br. J. Haematol. 2024, 1–8. [Google Scholar] [CrossRef]
- Efficace, F.; Platzbecker, U.; Breccia, M.; Cottone, F.; Carluccio, P.; Salutari, P.; Di Bona, E.; Borlenghi, E.; Autore, F.; Levato, L.; et al. Long-term quality of life of patients with acute promyelocytic leukemia treated with arsenic trioxide vs chemotherapy. Blood Adv. 2021, 5, 4370–4379. [Google Scholar] [CrossRef] [PubMed]
- van DerVliet, H.J.; Roberson, A.E.; Hogan, M.C.; Morales, C.E.; Crader, S.C.; Letendre, L.; Pruthi, R.K. All-trans-retinoic acid-inducedmyositis: A description of twopatients. Am. J. Hematol. 2000, 63, 94–98. [Google Scholar] [CrossRef]
- Fabbiano, F.; Magrin, S.; Cangialosi, C.; Felice, R.; Mirto, S.; Pitrolo, F. All-trans retinoic acid induced cardiac and skeletal myositis in induction therapy of acute promyelocytic leukaemia. Br. J. Haematol. 2005, 129, 444–445. [Google Scholar] [CrossRef]
- He, H.; An, R.; Hou, J.; Fu, W. Arsenic trioxide induced rhabdomyolysis, a rare but severe side effect, in an APL patient: A case report. Front. Med. 2017, 11, 284–286. [Google Scholar] [CrossRef]
- Kubiak, M.J.; Jillella, A.P.; Bradshaw, D.; Savage, N.M.; Kolhe, R.; Bryan, L.J.; Kota, V.K. Musculoskeletal Pain Syndrome in a Subset of APL Patients during Induction Therapy. Blood 2022, 140 (Suppl. S1), 8948–8949. [Google Scholar] [CrossRef]
- Yutsudo, Y.; Imoto, S.; Ozuru, R.; Kajimoto, K.; Itoi, H.; Koizumi, T.; Nishimura, R.; Nakagawa, T. Acute pancreatitis after all-trans retinoic acid therapy. Ann. Hematol. 1997, 74, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Zaloga, G.P.; Deal, J.; Spurling, T.; Richter, J.; Chernow, B. Unusual manifestations of arsenic intoxication. Am. J. Med. Sci. 1985, 289, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Connelly, S.; Zancosky, K.; Farah, K. Arsenic-induced pancreatitis. Case Rep. Gastrointest. Med. 2011, 2011, 758947. [Google Scholar] [CrossRef] [PubMed]
- Autore, F.; Chiusolo, P.; Sorà, F.; Giammarco, S.; Laurenti, L.; Innocenti, I.; Metafuni, E.; Piccirillo, N.; Pagano, L.; Sica, S. Efficacy and Tolerability of First Line Arsenic Trioxide in Combination With All-Trans Retinoic Acid in Patients With Acute Promyelocytic Leukemia: Real Life Experience. Front. Oncol. 2021, 11, 614721. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Stamouli, M.; Tumbarello, M.; Verga, L.; Candoni, A.; Cattaneo, C.; Nadali, G.; Mitra, M.E.; Mancini, V.; Nosari, A.; et al. Risk of invasive fungal infection in patients affected by acute promyelocytic leukaemia. A report by the SEIFEM-D registry. Br. J. Haematol. 2015, 170, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Glass, J.L.; Derkach, A.; Hilden, P.; King, A.; Seo, S.K.; Ahr, K.; Kishtagari, A.; Levine, R.L.; Tallman, M.S.; Douer, D. Arsenic trioxide therapy predisposes to herpes zoster reactivation despite minimally myelosuppressive therapy. Leuk. Res. 2021, 106, 106569. [Google Scholar] [CrossRef]
- Freyer, C.W.; Peterson, C.E.; Man, Y.; Przespolewski, A.; Baron, J.; Luger, S.M. Herpes zoster during arsenic trioxide therapy for acute promyelocytic leukemia. Leuk. Lymphoma 2021, 62, 696–702. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections (Version 2.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf (accessed on 9 March 2024).
- Montesinos, P.; González, J.D.; Rayón, C.; de Lisa, E.; Amigo, M.L.; Ossenkoppele, G.J.; Peñarrubia, M.J.; Pérez-Encinas, M.; Bergua, J.; Debén, G.; et al. Therapy-related myeloid neoplasms in patients with acute promyelocytic leukemia treated with all-trans-retinoic Acid and anthracycline-based chemotherapy. J. Clin. Oncol. 2010, 28, 3872–3879. [Google Scholar] [CrossRef]
- Shetty, A.V.; Ravandi, F.; Alapati, N.; Borthakur, G.; Garcia-Manero, G.; Kadia, T.M.; Wierda, W.; Estrov, Z.; Pierce, S.; O’Brien, S.; et al. Survivorship in APL—Outcomes of acute promyelocytic leukemia (APL) patients after maintaining complete remission (CR) for at least 3 years. Blood 2014, 124, 954. [Google Scholar] [CrossRef]
- Yin, X.-J.; Wang, R.; Shen, H.-S.; Jin, J.; Zhu, H.-H. At What Point Are Long-Term (>5 Years) Survivors of APL Safe? A Study from the SEER Database. Cancers 2023, 15, 575. [Google Scholar] [CrossRef] [PubMed]
Study Details | Treatment Regimen | Cardiotoxicity | Liver Toxicity |
---|---|---|---|
APL0406 (2013) [5] Platzbecker et al. (2016) [15] prospective phase 3 multicentric RCT nonHR APL ATRA + ATO (n = 77) vs. ATRA + CHT (n = 79) Median age: 44.6 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) | Induction
Consolidation 2nd cons.: 2% (ATRA-ATO) vs. 0% (ATRA + CHT) 3rd cons.: 1.5% (ATRA + ATO) vs. 0% (ATRA + CHT) (p = 0.23) | Induction and Consolidation
|
AML17; Burnett et al. (2015) [14] phase 3 multicentric RCT ATRA/ATO ± GO (n = 116) vs. ATRA + CHT (n = 119) LR (n = 86) and HR (n = 30) APL Median age: 47 yrs | Induction ATRA 45 mg/m2/d + ATO 0.3 mg/kg D1–5 W1and 0.25 mg/kg twice weekly W2–8 C1 ± GO 6 mg/m2 (HR pts + 7 nonHR pts) Consolidation ATRA (2 wks on, 2 wks off schedule × 5 cycles) + ATO 0.3 mg/kg D1–5 W1 and 0.25 mg/kg twice weekly W2–4 of C2–5 | Induction
Consolidation CV events (grade 3): 3% ATRA + ATO vs. 0% ATRA + CHT post-C2: CV toxicity: 11% vs. 0% (p = 0.001) | Induction grade 3 elevated ALT: 20% (ATRA + ATO) vs. 8% (ATRA + CHT); Consolidation DILI: similar in ATRA + ATO vs. ATRA + CHT |
APML4; Iland et al. (2012) [17,18] non-randomized phase 2 multicentric trial n = 124 pts (HR: n = 23) Median age: 44 yrs | Induction ATRA 45 mg/m2/d D1–36 + IDA 6–12 mg/m2 D2,4,6,8 + ATO 0.15 mg/kg D9–36 Consolidation (2 cycles) ATO + ATRA Maintenance (2 yrs) ATRA + 6-MP + MTX | Induction
Consolidation conduction abnormalities: 1% | Induction grade 3–4 LFT abnormalities: 44% Consolidation grade 3–4 LFT abnormalities: 2% |
Estey et al. (2006) [19] non-randomized unicentric study (n = 44; HR: n = 19) Median age: 45 yrs | Induction ATRA 45 mg/m2 ATO 0.15 mg/kg/day (D10 of induction) + GO, IDA or GO + IDA (for HR) Consolidation ATO 0.15 mg/kg/d D1–5 W1–4, W9–12, W17–20, W25–28 + ATRA 45 mg/m2/d W1–2, W5–6, W9–10, W13–14, W17–18, W21–22, W25–26 |
ATO discontinued, replaced with GO |
|
APL2012; Chen et al. (2021) [20] phase 3 multicentric RCT (n = 382) LR/IR APL (cons.) (n = 262): ATRA + ATO vs. ATRA + AC HR APL (cons.) (n = 129): ATRA + ATO + AC vs. ATRA + AC + ARA-C Median age: 38 yrs | Induction (847 pts) ATO 0.16 mg/kg/d (max. 10 mg) + ATRA0.25 mg/m2/d ± HU (LR) or IDA/DNR (IR or HR) Consolidation (ATO—382 pts) LR (2 cycles): ATO × 28 days ATRA × 14 days IR (3 cycles) ATRA × 14 days ATO × 28 days HR pts ATRA × 14 days IDA/DNR × 3 days ARA-C × 7 days (2 cycles) ATRA × 14 days ARA-C 1 g/m2/12 h, 3 days (1 cycle) Maintenance ATRA/ATO ± MTX nonHR: 3 cycles HR: 5 cycles |
|
|
Abaza et al. (2017) [21] (n = 187) HR (n = 54) and LR (n = 133) APL Median age: 50 yrs | Induction ATRA 0.15 mg/kg/d ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) + GO 9 mg/m2 on D1 for HR pts + LR pts if WBC > 10 × 109/L during induction or IDA 12 mg/m2 if GO unavailable | QT prolongation: 7.5% | grade 3–4 DILI: 14% |
Kayser et al. (2021) [22] prospective, real-world data non-HR APL (n = 154) Median age: 53 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d (8 pts IDA 12 mg/m2; 2 pts ARA-C 100 mg/day, 2 days) Consolidation ATRA + ATO (4 cycles) | CV events (incl. QT prolongation): 3.90% | DILI: 13.64% |
Study Details | Treatment Regimen | Other Toxicities |
---|---|---|
APL0406 (2013) [5] Platzbecker et al. (2016) [15] prospective phase 3 multicentric RCT nonHR APL ATRA + ATO (n = 77) vs. ATRA + CHT (n = 79) Median age: 44.6 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) | Induction GI toxicity: 2% ATRA + ATO vs. 18.2% ATRA + CHT (p < 0.001) Hypertriglyceridemia: 22% ATRA + ATO vs. 22% ATRA + CHT (p = 0.76) Hypercholesterolemia: 10% ATRA + ATO vs. 8.7% ATRA + CHT (p = 0.55) Infections: 23% ATRA + ATO vs. 55% ATRA + CHT (p < 0.001) Consolidation Infections: 3% ATRA + ATO vs. 38% ATRA + CHT (p < 0.001) H1N1 viral pneumonia-related death (n = 1) with ATRA + ATO Hypercholesterolemia: 14% ATRA + ATO vs. 9% ATRA + CHT (p = 0.27) |
AML17; Burnett et al. (2015) [14] phase 3 multicentric RCT ATRA/ATO ± GO (n = 116) vs. ATRA + CHT (n = 119) LR (n = 86) and HR (n = 30) APL Median age: 47 yrs | Induction ATRA 45 mg/m2/d + ATO 0.3 mg/kg D1–5 W1 and 0.25 mg/kg twice weekly W2–8 C1 ± GO 6 mg/m2 (HR pts + 7 non HR pts) Consolidation ATRA (2 wks on, 2 wks off schedule × 5 cycles) + ATO 0.3 mg/kg D1–5 W1 and 0.25 mg/kg twice weekly W2–4 of C2–5 | Induction grade 3 elevated creatinine: 1% ATRA + ATO vs. 0% ATRA + CHT grade 3 diarrhea: 1% ATRA + ATO vs. 6% ATRA + CHT |
APML4; Iland et al. (2012) [17,18] non-randomized phase 2 multicentric trial n = 124 pts (HR: n = 23) Median age: 44 yrs | Induction ATRA 45 mg/m2/d D1–36 + IDA 6–12 mg/m2 D2,4,6,8 + ATO 0.15 mg/kg D9–36 Consolidation (2 cycles) ATO + ATRA Maintenance (2 yrs) ATRA + 6-MP + MTX | Induction grade 3–4 skin reactions: 4%;
grade 3–4 infection:76% (n = 2 pts underwent induction only); Consolidation grade 3–4 dermatological complications: 1%; grade 3–4 GI toxicity: 3%;
|
APL2012; Chen et al. (2021) [20] phase 3 multicentric RCT (n = 382) LR/IR APL (cons.) (n = 262): ATRA + ATO vs. ATRA + AC HR APL (cons.) (n = 129): ATRA + ATO + AC vs. ATRA + AC + ARA-C Median age: 38 yrs | Induction (847 pts) ATO 0.16 mg/kg/d (max. 10 mg) + ATRA0.25 mg/m2/d ± HU (LR) or IDA/DNR (IR or HR) Consolidation (ATO—382 pts) LR (2 cycles): ATO × 28 days ATRA × 14 days IR (3 cycles) ATRA × 14 days ATO × 28 days HR pts ATRA × 14 days IDA/DNR × 3 days ARA-C × 7 days (2 cycles) ATRA × 14 days ARA-C 1 g/m2/12 h, 3 days (1 cycle) Maintenance ATRA/ATO ± MTX nonHR: 3 cycles HR: 5 cycles | rash: 8.3% (1st cons.) vs. 2.7% (3rd cons.) elevated creatinine: 2.3% (1st cons.) grade 3–4 hypertriglyceridemia: 13% (1st cons.) vs. 11.1% (3rd cons.) incidence of skin toxicity, elevated creatinine levels, and hypertriglyceridemia similar between the two pts subgroups; grade 3–4 infections more frequent in non-ATO arm, irrespective of APL risk |
Abaza et al. (2017) [21] (n = 187) HR (n = 54) and LR (n = 133) APL Median age: 50 yrs | Induction ATRA 0.15 mg/kg/d ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) + GO 9 mg/m2 on D1 for HR pts + LR pts if WBC > 10 × 109/L during induction or IDA 12 mg/m2 if GO unavailable | grade 3–4 infections: 23.5% |
Kayser et al. (2021) [22] prospective, real-world data non-HR APL (n = 154) Median age: 53 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d (8 pts IDA 12 mg/m2; 2 pts ARA-C 100 mg/day, 2 days) Consolidation ATRA + ATO (4 cycles) | Infections: 20.13% |
Study Details | Treatment Regimen | ED | DS |
---|---|---|---|
APL0406 (2013) [5] Platzbecker et al. (2016) [15] prospective phase 3 multicentric RCT nonHR APL ATRA + ATO (n = 77) vs. ATRA + CHT (n = 79) Median age: 44.6 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) | ATRA + ATO: 0% vs. ATRA + CHT: 5.06% | Prophylaxis prednisone 0.5 mg/kg/d D1 to end of induction Incidence all grades: ATRA + ATO 19% vs. ATRA + CHT 16%, (p = 0.62) severe grade: ATRA + ATO6% vs. 6% ATRA + CHT (p = 0.99) Treatment ATRA, ATO, or both temporarily discontinued + DXM 10 mg/12 h 3 days minimum Mortality: 0% |
AML17; Burnett et al. (2015) [14] phase 3 multicentric RCT ATRA/ATO ± GO (n = 116) vs. ATRA + CHT (n = 119) LR (n = 86) and HR (n = 30) APL Median age: 47 yrs | Induction ATRA 45 mg/m2/d + ATO 0.3 mg/kg D1–5 W1and 0.25 mg/kg twice weekly W2–8 C1 ± GO 6 mg/m2 (HR pts + 7 nonHR pts) Consolidation ATRA (2 wks on, 2 wks off schedule × 5 cycles) + ATO 0.3 mg/kg D1–5 W1 and 0.25 mg/kg twice weekly W2–4 of C2–5 | similar 30-day mortality (p = 0.56) ATRA + ATO: 4% vs. ATRA + CHT: 6% | Prophylaxis none Incidence LR: 26.74%, HR: 23.33% Treatment DXM 10 mg/12 h ATRA/ATO temporarily discontinued Mortality: 0% |
APML4; Iland et al. (2012) [17,18] non-randomized phase2 multicentric trial n = 124 pts (HR: n = 23) Median age: 44 yrs | Induction ATRA 45 mg/m2/d D1–36 + IDA 6–12 mg/m2 D2,4,6,8 + ATO 0.15 mg/kg D9–36 Consolidation (2 cycles) ATO + ATRA Maintenance (2 yrs) ATRA + 6-MP + MTX | ED: 3% causes: myocardial ischemia + cardiac arrest (n = 1), ICH (n = 2), cerebral edema (n = 1) | Prophylaxis prednisone 1 mg/kg/d PO (≥10 days) Incidence grade 3–4: 14% Mortality: 0% |
Estey et al. (2006) [19] non-randomized unicentric study (n = 44; HR: n = 19) Median age: 45 yrs | Induction ATRA 45 mg/m2 ATO 0.15 mg/kg/day (D10 of induction) + GO, IDA or GO + IDA (for HR) Consolidation ATO 0.15 mg/kg/d D1–5 W1–4, W9–12, W17–20, W25–28 + ATRA 45 mg/m2/d W1–2, W5–6, W9–10, W13–14, W17–18, W21–22, W25–26 | ED: 11.37% causes: ICH, pulmonary hemorrhage, stroke | Incidence 20% (LR: 12%; HR: 15.79%) Treatment methylprednisolone 45 mg/d × 7 days Mortality: 0% |
APL2012; Chen et al. (2021) [20] phase 3 multicentric RCT (n = 382) LR/IR APL (cons.) (n = 262): ATRA + ATO vs. ATRA + AC HR APL (cons.) (n = 129): ATRA + ATO + AC vs. ATRA + AC + ARA-C Median age: 38 yrs | Induction (847 pts) ATO 0.16 mg/kg/d (max. 10 mg) + ATRA0.25 mg/m2/d ± HU (LR) or IDA/DNR (IR or HR) Consolidation (ATO—382 pts) LR (2 cycles): ATO × 28 days ATRA × 14 days IR (3 cycles) ATRA × 14 days ATO × 28 days HR pts ATRA × 14 days IDA/DNR × 3 days ARA-C × 7 days (2 cycles) ATRA × 14 days ARA-C 1 g/m2/12 h, 3 days (1 cycle) Maintenance ATRA/ATO ± MTX nonHR: 3 cycles HR: 5 cycles | ED: 4% causes: CNS and pulmonary hemorrhage (n = 20), severe infections (n = 8), stroke (n = 3), DS and pulmonary infections (n = 2), unknown (n = 1) | Treatment moderate DS or less: DXM 5–10 mg/d severe DS: ATRA/ATO discontinued + DXM ≤ 20 mg/d until WBC < 10.000/uL and no symptoms/signs of DS for 3 days Mortality: 0.24% (2/847 pts) |
Abaza et al. (2017) [21] (n = 187) HR (n = 54) and LR (n = 133) APL Median age: 50 yrs | Induction ATRA 0.15 mg/kg/d ATO 45 mg/m2/d Consolidation ATRA + ATO (4 cycles) + GO 9 mg/m2 on D1 for HR pts + LRptsif WBC > 10 × 109/L during induction or IDA 12 mg/m2 if GOunavailable | ED: 4% Causes: infections, hemorrhage, multiorgan failure | Prophylaxis methylprednisolone 50 mg/d × 5 days, then rapid tapering from D6 Incidence:11% Treatment: corticosteroids Mortality: 0% |
Kayser et al. (2021) [22] prospective, real-world data non-HR APL (n = 154) Median age: 53 yrs | Induction ATRA 0.15 mg/kg/d + ATO 45 mg/m2/d (8 pts IDA 12 mg/m2; 2 pts ARA-C 100 mg/day, 2 days) Consolidation ATRA + ATO (4 cycles) | ED: 1% Causes: ARF (n = 1), ischemic cardiomyopathy (n = 1) | Prophylaxis prednisone 0.5 mg/kg/d D1 to end of induction Incidence: 4.55% |
Author | Year | Country | APL pts | Treatment Regimen | Neurological Toxicities (incl. PTC) |
---|---|---|---|---|---|
Iland [18] | 2015 | Australia | 124 | Induction: ATRA + DNR + ATO Maintenance: ATRA + 6MP + MTX | Headache (n = 1, grade 3) during maintenance |
Wang [47] | 2011 | Multicentric | 348 | ATRA + ATO vs. ATO | Headache 15.79% vs. 6.30%; RR = 1.96 95% CI 0.95–4.07 |
Wang [47] | 2011 | Multicentric | 348 | ATRA + ATO vs. ATO | Neuropathy 0% vs. 5.51%; RR = 0.32, 95% CI 0.04–2.24 |
Iland [17] | 2012 | Australia | 124 | ATRA + ATO + IDA | Grade 3/4 dizziness, mood alteration, musculoskeletal pain, or seizure Induction: 7 (6%) Consolidation 1:2 (2%) Consolidation 2:0 (0%) |
Iland [17] | 2012 | Australia | 124 | ATRA + ATO + IDA | Grade 3/4 headache Induction: 4 (3%) Consolidation 1:2 (2%) Consolidation 2:0 (0%) |
Soignet [11] | 2001 | USA | 40 | ATO in relapsed APL | Headache n = 24, 60%; grade 4: n = 1, 3% Insomnia n = 17, 43%; grade 4: n = 1, 3% |
Platzbecker [15] | 2017 | Multicentric | 276 | ATRA + ATO vs. ATRA + chemotherapy (induction and consolidation) | Neurotoxicity rates (all grades; mainly reversible peripheral nerve neuropathy):
|
Estey [19] | 2006 | USA | 25 | ATRA + ATO vs. ATRA + chemotherapy | Peripheral neuropathy all grades (n = 3; 12%); severe (n = 1, 4%) (ATO discontinued, replaced with GO) |
Loh [58] | 2024 | Australia | 487 | ATO-based therapy | Any grade neurotoxicity—23%: peripheral neuropathy:91% (grade 4: n = 1) encephalopathy:3% (grade 4: n = 2) seizures: 3% tremor: 2% ataxia: 3% |
Author | Year | Country | APL pts | Treatment Regimen | Musculoskeletal Toxicities |
---|---|---|---|---|---|
Wang [47] | 2011 | Multicentric | 348 | ATRA + ATO vs. ATO | Bone pain 5.85% vs. 1.57%; RR = 2.50, 95% CI 0.57–10.87 |
Efficace [59] | 2021 | Multicentric | 162 | ATRA + ATO vs. ATRA + chemotherapy | Less (overall) pain reported in ATRA + ATO subgroup |
Efficace [59] | 2021 | Multicentric | 161 | ATRA + ATO (n = 83) vs. ATRA + chemotherapy (n = 78) | Long-term evaluation of comorbidities: Backpain: 30.1% vs. 28.2% Osteoarthritis/degenerative arthritis: 15.7% vs. 20.5% |
Iland [17] | 2012 | Australia | 124 | ATRA + ATO + IDA | Grade 3/4 dizziness, mood alteration, musculoskeletal pain, or seizure
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiaur, A.; Doran, C.; Gaman, M.-A.; Ionescu, B.; Tatic, A.; Cirstea, M.; Stancioaica, M.C.; Hirjan, R.; Coriu, D. Acute Promyelocytic Leukemia: Review of Complications Related to All-Trans Retinoic Acid and Arsenic Trioxide Therapy. Cancers 2024, 16, 1160. https://doi.org/10.3390/cancers16061160
Ghiaur A, Doran C, Gaman M-A, Ionescu B, Tatic A, Cirstea M, Stancioaica MC, Hirjan R, Coriu D. Acute Promyelocytic Leukemia: Review of Complications Related to All-Trans Retinoic Acid and Arsenic Trioxide Therapy. Cancers. 2024; 16(6):1160. https://doi.org/10.3390/cancers16061160
Chicago/Turabian StyleGhiaur, Alexandra, Cristina Doran, Mihnea-Alexandru Gaman, Bogdan Ionescu, Aurelia Tatic, Mihaela Cirstea, Maria Camelia Stancioaica, Roxana Hirjan, and Daniel Coriu. 2024. "Acute Promyelocytic Leukemia: Review of Complications Related to All-Trans Retinoic Acid and Arsenic Trioxide Therapy" Cancers 16, no. 6: 1160. https://doi.org/10.3390/cancers16061160
APA StyleGhiaur, A., Doran, C., Gaman, M. -A., Ionescu, B., Tatic, A., Cirstea, M., Stancioaica, M. C., Hirjan, R., & Coriu, D. (2024). Acute Promyelocytic Leukemia: Review of Complications Related to All-Trans Retinoic Acid and Arsenic Trioxide Therapy. Cancers, 16(6), 1160. https://doi.org/10.3390/cancers16061160