Differentiation Syndrome in Acute Leukemia: APL and Beyond
Abstract
:Simple Summary
Abstract
1. Introduction
2. Differentiation Syndrome in APL
2.1. Pathogenesis
2.2. Grading and Clinical Manifestations
2.3. Timing and Laboratory Findings of DS
2.4. The Role of Imaging
2.5. Prevention, Treatment, and Management of DS
3. Differentiation Syndrome with Novel Therapeutics for Acute Myeloid Leukemia
3.1. IDH Inhibitors
3.2. FLT3 Inhibitors
3.3. Menin Inhibitors
3.4. Other targeted therapies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Jimenez, J.J.; Chale, R.S.; Abad, A.C.; Schally, A.V. Acute promyelocytic leukemia (APL): A review of the literature. Oncotarget 2020, 11, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Kakizuka, A.; Miller, W.H., Jr.; Umesono, K.; Warrell, R.P., Jr.; Frankel, S.R.; Murty, V.V.; Dmitrovsky, E.; Evans, R.M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991, 66, 663–674. [Google Scholar] [CrossRef]
- Tallman, M.S.; Altman, J.K. Curative strategies in acute promyelocytic leukemia. Hematol. Am. Soc. Hematol. Educ. Program. 2008, 2008, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.; Weil, M.; Boiron, M.; Jacquillat, C.; Flandrin, G.; Gemon, M.F. Acute promyelocytic leukemia: Results of treatment by daunorubicin. Blood 1973, 41, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Abaza, Y.; Kantarjian, H.; Garcia-Manero, G.; Estey, E.; Borthakur, G.; Jabbour, E.; Faderl, S.; O’brien, S.; Wierda, W.; Pierce, S.; et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 2017, 129, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Iland, H.J.; Collins, M.; Bradstock, K.; Supple, S.G.; Catalano, A.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Campbell, L.J.; et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: A non-randomised phase 2 trial. Lancet Haematol. 2015, 2, e357–e366. [Google Scholar] [CrossRef]
- Lancet, J.E.; Moseley, A.; Komrokji, R.S.; Coutre, S.E.; DeAngelo, D.J.; Tallman, M.S.; Litzow, M.; Litzow, M.; Appelbaum, F.R. ATRA, Arsenic Trioxide (ATO), and Gemtuzumab Ozogamicin (GO) Is Safe and Highly Effective in Patients with Previously Untreated High-Risk Acute Promyelocytic Leukemia (APL): Final Results of the SWOG/Alliance/ECOG S0535 Trial. Blood 2016, 128, 896. [Google Scholar] [CrossRef]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef]
- Estey, E.; Garcia-Manero, G.; Ferrajoli, A.; Faderl, S.; Verstovsek, S.; Jones, D.; Kantarjian, H. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006, 107, 3469–3473. [Google Scholar] [CrossRef]
- Frankel, S.R.; Eardley, A.; Lauwers, G.; Weiss, M.; Warrell, R.P., Jr. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann. Intern Med. 1992, 117, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Chastang, C.; Chevret, S.; Sanz, M.; Dombret, H.; Archimbaud, E.; Fey, M.; Rayon, C.; Huguet, F.; Sotto, J.J.; et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 1999, 94, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- De Botton, S.; Dombret, H.; Sanz, M.; Miguel, J.S.; Caillot, D.; Zittoun, R.; Gardembas, M.; Stamatoulas, A.; Condé, E.; Guerci, A.; et al. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 1998, 92, 2712–2718. [Google Scholar] [CrossRef]
- Gasparovic, L.; Weiler, S.; Higi, L.; Burden, A.M. Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature. J. Clin. Med. 2020, 9, 3342. [Google Scholar] [CrossRef]
- Montesinos, P.; Bergua, J.M.; Vellenga, E.; Rayón, C.; Parody, R.; De La Serna, J.; León, A.; Esteve, J.; Milone, G.; Debén, G.; et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors. Blood 2009, 113, 775–783. [Google Scholar] [CrossRef]
- Mandelli, F.; Diverio, D.; Avvisati, G.; Luciano, A.; Barbui, T.; Bernasconi, C.; Broccia, G.; Cerri, R.; Falda, M.; Fioritoni, G.; et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood 1997, 90, 1014–1021. [Google Scholar]
- Tallman, M.S.; Andersen, J.W.; A Schiffer, C.; Appelbaum, F.R.; Feusner, J.H.; Ogden, A.; Shepherd, L.; Rowe, J.M.; Francois, C.; Larson, R.S.; et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood 2000, 95, 90–95. [Google Scholar]
- Powell, B.L.; Moser, B.; Stock, W.; Gallagher, R.E.; Willman, C.L.; Stone, R.M.; Rowe, J.M.; Coutre, S.; Feusner, J.H.; Gregory, J.; et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 2010, 116, 3751–3757. [Google Scholar] [CrossRef]
- Stahl, M.; Tallman, M.S. Differentiation syndrome in acute promyelocytic leukaemia. Br. J. Haematol. 2019, 187, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T.; Stein, E.M.; DiNardo, C.D.; Levis, M.J.; Montesinos, P.; de Botton, S. Differentiation syndrome with lower-intensity treatments for acute myeloid leukemia. Am. J. Hematol. 2021, 96, 735–746. [Google Scholar] [CrossRef]
- Norsworthy, K.J.; Mulkey, F.; Scott, E.C.; Ward, A.F.; Przepiorka, D.; Charlab, R.; Dorff, S.E.; Deisseroth, A.; Kazandjian, D.; Sridhara, R.; et al. Differentiation Syndrome with Ivosidenib and Enasidenib Treatment in Patients with Relapsed or Refractory IDH-Mutated AML: A U.S. Food and Drug Administration Systematic Analysis. Clin. Cancer Res. 2020, 26, 4280–4288. [Google Scholar] [CrossRef] [PubMed]
- FDA Warns That Symptoms of a Serious Condition Affecting the Blood Cells Are Not Being Recognized with the Leukemia Medicine Idhifa (Enasidenib). Press Release. 2018. Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-warns-symptoms-serious-condition-affecting-blood-cells-are-not-being-recognized-leukemia (accessed on 17 August 2023).
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2022, 12, 1062524. [Google Scholar] [CrossRef] [PubMed]
- Luesink, M.; Pennings, J.L.A.; Wissink, W.M.; Linssen, P.C.M.; Muus, P.; Pfundt, R.; de Witte, T.J.M.; van der Reijden, B.A.; Jansen, J.H. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: Triggering the differentiation syndrome. Blood 2009, 114, 5512–5521. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, M.; Kiyoi, H.; Ito, M.; Hirose, Y.; Ito, M.; Naoe, T. Retinoic acid syndrome in NOD/scid mice induced by injecting an acute promyelocytic leukemia cell line. Leukemia 2004, 18, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Shibakura, M.; Niiya, K.; Niiya, M.; Asaumi, N.; Yoshida, C.; Nakata, Y.; Tanimoto, M. Induction of CXC and CC chemokines by all-trans retinoic acid in acute promyelocytic leukemia cells. Leuk. Res. 2005, 29, 755–759. [Google Scholar] [CrossRef]
- Brown, D.C.; Tsuji, H.; Larson, R.S. All-trans retinoic acid regulates adhesion mechanism and transmigration of the acute promyelocytic leukaemia cell line NB-4 under physiologic flow. Br. J. Haematol. 1999, 107, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.S.; Brown, D.C.; Sklar, L.A. Retinoic acid induces aggregation of the acute promyelocytic leukemia cell line NB-4 by utilization of LFA-1 and ICAM-2. Blood 1997, 90, 2747–2756. [Google Scholar] [CrossRef]
- Taraboletti, G.; Borsotti, P.; Chirivi, R.G.S.; Vergani, V.; Falanga, A.; Barbui, T.; Giavazzi, R.; Rambaldi, A. Effect of all trans-retinoic acid (ATRA) on the adhesive and motility properties of acute promyelocytic leukemia cells. Int. J. Cancer 1997, 70, 72–77. [Google Scholar] [CrossRef]
- Marchetti, M.; Falanga, A.; Giovanelli, S.; Oldani, E.; Barbui, T. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Br. J. Haematol. 1996, 93, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Nicolls, M.R.; Terada, L.S.; Tuder, R.M.; Prindiville, S.A.; Schwarz, M.I. Diffuse alveolar hemorrhage with underlying pulmonary capillaritis in the retinoic acid syndrome. Am. J. Respir. Crit. Care Med. 1998, 158, 1302–1305. [Google Scholar] [CrossRef]
- Kakkar, N.; Dhameja, N.; Jasmina Das, A.; Radotra, B.D.; Varma, S. ATRA syndrome with extensive organ infiltration. Am. J. Hematol. 2002, 71, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Sanz, M.A. The differentiation syndrome in patients with acute promyelocytic leukemia: Experience of the pethema group and review of the literature. Mediterr. J. Hematol. Infect. Dis. 2011, 3, e2011059. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.P.; Asimakopoulos, J.V.; Plata, E.; Kelepesis, G.; Petevi, K.; Koutsi, C.; Papageorgiou, L.; Tsaftaridis, P.; Angelopoulou, M.K.; Konstantopoulos, K.; et al. Recurrent acute myopericarditis without effusion during ATRA induction and ATO salvage of APL: A variant form of the differentiation syndrome? Leuk. Lymphoma 2016, 58, 1–4. [Google Scholar] [CrossRef] [PubMed]
- De, D.; Nath, U.K.; Chakrabarti, P. Pancreatitis in Acute Promyelocytic Leukemia: Drug-induced or Differentiation Syndrome? Indian J. Med. Paediatr. Oncol. 2017, 38, 371–373. [Google Scholar] [CrossRef]
- Gim, Y.; Kim, H.J. Ocular Symptom Can Be the First Presentation of Differentiation Syndrome in Acute Promyelocytic Leukemia. Korean J. Ophthalmol. 2021, 35, 94–96. [Google Scholar] [CrossRef]
- Newman, A.R.; Leung, B.; Richards, A.; Campbell, T.G.; Wellwood, J.; Imrie, F.R. Two cases of differentiation syndrome with ocular manifestations in patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and arsenic trioxide. Am. J. Ophthalmol. Case Rep. 2018, 9, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Tam, E.K.; Ness, S.; Peeler, C.E. Exudative hemorrhagic retinopathy related to all-trans retinoic acid differentiation syndrome in a patient with acute promyelocytic leukemia. Int. J. Ophthalmol. 2021, 14, 323–325. [Google Scholar] [CrossRef]
- Yan, H.; He, D.; Huang, W.; Chen, F.; He, J.; Cai, Z.; Zhao, Y. Differentiation Syndrome with Severe Abdominal Pain During Induction Treatment of Acute Promyelocytic Leukemia: A Case Report. J. Pain Res. 2021, 14, 1981–1984. [Google Scholar] [CrossRef]
- Alyami, B.; Alharbi, A.A.; Patel, B. A Rare Case of Acute Pericarditis as a Primary Presentation of Differentiation Syndrome. Cureus 2022, 14, e24213. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.-S.; Jung, C.-S.; Jung, S.-W.; Lee, Y.-J.; Rheu, J.-K.; Jo, J.-R.; Lee, N.-H. Reversible Symptomatic Myocarditis Induced by All-Trans Retinoic Acid Administration during Induction Treatment of Acute Promyelocytic Leukemia: Rare Cardiac Manifestation as a Retinoic Acid Syndrome. J. Cardiovasc. Ultrasound 2011, 19, 95–98. [Google Scholar] [CrossRef]
- Shenoy, S.M.; Di Vitantonio, T.; Plitt, A.; Perez-Johnston, R.; Gutierrez, J.; Knorr, D.A.; Stein, E.M.; Liu, J.E.; Feldman, S. Differentiation syndrome-induced Myopericarditis in the induction therapy of acute Promyelocytic leukemia: A case report. Cardio-Oncology 2021, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, S.D.; Tantiworawik, A.; Lambert Maberley, D.A. All-trans retinoic Acid differentiation syndrome chorioretinopathy: A case of multifocal serous neurosensory detachments in a patient with acute promyelocytic leukemia treated with all-trans retinoic Acid. Retin Cases Brief Rep. 2013, 7, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Avvisati, G.; Coco, F.L.; Diverio, D.; Falda, M.; Ferrara, F.; Lazzarino, M.; Russo, D.; Petti, M.; Mandelli, F. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: A Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood 1996, 88, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, L.; Maslak, P.; Miller, W.J.; Eardley, A.; Heller, G.; Scheinberg, D.; Warrell, R.J. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: Impact of leukocytosis, low-dose chemotherapy, PMN/RAR-alpha isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood 1994, 84, 3843–3849. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Kim, H.-J.; Min, G.J.; Park, S.-S.; Jeon, Y.-W.; Lee, S.-E.; Cho, B.-S.; Eom, K.-S.; Kim, Y.-J.; Lee, S.; et al. Progressive hyperleukocytosis is a relevant predictive marker for differentiation syndrome, early death, and subsequent relapse in acute promyelocytic leukemia. Sci. Rep. 2019, 9, 11935. [Google Scholar] [CrossRef]
- Cardinale, L.; Asteggiano, F.; Moretti, F.; Torre, F.; Ulisciani, S.; Fava, C.; Rege-Cambrin, G. Pathophysiology, clinical features and radiological findings of differentiation syndrome/all-trans-retinoic acid syndrome. World J. Radiol. 2014, 6, 583–588. [Google Scholar] [CrossRef]
- Sarasúa, L.G.; Ventura-Díaz, S.; Ayala-Carbonero, A.M.; Gambí-Pisonero, E.; de la Cruz, A.S.-T.; Pérez-Lamas, L.; Mirambeaux-Villanova, R.M.; Chinea-Rodríguez, A. Síndrome de diferenciación en paciente con leucemia promielocítica aguda: Importancia de la TC de tórax. Arch. Bronconeumol. 2019, 56, 326–327. [Google Scholar] [CrossRef]
- Islam, M.U.; Burney, I.A.; Khurshid, M. Retinoic acid syndrome—Radiological features. Acta Radiol. 1997, 38, 340. [Google Scholar] [CrossRef]
- Jung, J.I.; Choi, J.E.; Hahn, S.T.; Min, C.K.; Kim, C.C.; Park, S.H. Radiologic features of all-trans-retinoic acid syndrome. AJR Am. J. Roentgenol. 2002, 178, 475–480. [Google Scholar] [CrossRef]
- Davis, B.A.; Cervi, P.; Amin, Z.; Moshi, G.; Shaw, P.; Porter, J. Retinoic acid syndrome: Pulmonary computed tomography (CT) findings. Leuk. Lymphoma 1996, 23, 113–117. [Google Scholar] [CrossRef]
- Karunakaran, P.; Yanamandra, U.; Nampoothiri, R.V.; Khadwal, A.; Prakash, G.; Lad, D.; Sinha, A.; Naseem, S.; Varma, N.; Varma, S.; et al. Early detection of differentiation syndrome by chest ultrasound in acute promyelocytic leukaemia. Br. J. Haematol. 2018, 184, 672–673. [Google Scholar] [CrossRef]
- Wiley, J.S.; Firkin, F.C. Reduction of pulmonary toxicity by prednisolone prophylaxis during all-trans retinoic acid treatment of acute promyelocytic leukemia. Australian Leukaemia Study Group. Leukemia 1995, 9, 774–778. [Google Scholar]
- Sanz, M.A.; Martín, G.; Rayón, C.; Esteve, J.; González, M.; Díaz-Mediavilla, J.; Bolufer, P.; Barragán, E.; Terol, M.J.; González, J.D.; et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood 1999, 94, 3015–3021. [Google Scholar] [PubMed]
- Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; de la Serna, J.; Milone, G.; de Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.M.; et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: Further improvements in treatment outcome. Blood 2010, 115, 5137–5146. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Martín, G.; González, M.; León, A.; Rayón, C.; Rivas, C.; Colomer, D.; Amutio, E.; Capote, F.J.; Milone, G.A.; et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: A multicenter study by the PETHEMA group. Blood 2003, 103, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Estey, E.; Jones, D.; Faderl, S.; O’Brien, S.; Fiorentino, J.; Pierce, S.; Blamble, D.; Estrov, Z.; Wierda, W.; et al. Effective Treatment of Acute Promyelocytic Leukemia With All-Trans-Retinoic Acid, Arsenic Trioxide, and Gemtuzumab Ozogamicin. J. Clin. Oncol. 2009, 27, 504–510. [Google Scholar] [CrossRef]
- Norsworthy, K.J.; Altman, J.K. Optimal treatment strategies for high-risk acute promyelocytic leukemia. Curr. Opin. Hematol. 2016, 23, 127–136. [Google Scholar] [CrossRef]
- Kutny, M.A.; Alonzo, T.A.; Abla, O.; Rajpurkar, M.; Gerbing, R.B.; Wang, Y.-C.; Hirsch, B.A.; Raimondi, S.; Kahwash, S.; Hardy, K.K.; et al. Assessment of Arsenic Trioxide and All-trans Retinoic Acid for the Treatment of Pediatric Acute Promyelocytic Leukemia. JAMA Oncol. 2021, 8, 79–87. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, Y.; Chen, Y.; Guo, Y.; Yang, W.; Chen, X.; Wang, S.; Liu, X.; Ruan, M.; Zhang, J.; et al. Role of cytarabine in paediatric acute promyelocytic leukemia treated with the combination of all-trans retinoic acid and arsenic trioxide: A randomized controlled trial. BMC Cancer 2018, 18, 374. [Google Scholar] [CrossRef]
- Testi, A.M.; Pession, A.; Diverio, D.; Grimwade, D.; Gibson, B.; de Azevedo, A.C.; Moran, L.; Leverger, G.; Elitzur, S.; Hasle, H.; et al. Risk-adapted treatment of acute promyelocytic leukemia: Results from the International Consortium for Childhood APL. Blood 2018, 132, 405–412. [Google Scholar] [CrossRef]
- Pei, R.; Cao, J.; Ma, J.; Zhang, P.; Liu, X.; Du, X.; Chen, D.; Sha, K.; Chen, L.; Li, S.; et al. Long term curative effects of sequential therapy with all-trans retinoic acid, arsenious oxide and chemotherapy on patients with acute promyelocytic leukemia. Hematology 2012, 17, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Iland, H.J.; Bradstock, K.; Supple, S.G.; Catalano, A.; Collins, M.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Hugman, A.; et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012, 120, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-H.; Wu, D.-P.; Jin, J.; Li, J.-Y.; Ma, J.; Wang, J.-X.; Jiang, H.; Chen, S.-J.; Huang, X.-J. Oral Tetra-Arsenic Tetra-Sulfide Formula Versus Intravenous Arsenic Trioxide As First-Line Treatment of Acute Promyelocytic Leukemia: A Multicenter Randomized Controlled Trial. J. Clin. Oncol. 2013, 31, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Montesinos, P.; Vellenga, E.; Rayón, C.; de la Serna, J.; Parody, R.; Bergua, J.M.; León, A.; Negri, S.; González, M.; et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: Long-term outcome of the LPA 99 multicenter study by the PETHEMA Group. Blood 2008, 112, 3130–3134. [Google Scholar] [CrossRef]
- Sanz, M.A.; Montesinos, P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood 2014, 123, 2777–2782. [Google Scholar] [CrossRef]
- de la Serna, J.; Montesinos, P.; Vellenga, E.; Rayón, C.; Parody, R.; León, A.; Esteve, J.; Bergua, J.M.; Milone, G.; Debén, G.; et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 2008, 111, 3395–3402. [Google Scholar] [CrossRef]
- Ben Salah, M.; Bchir, M.; Berred, R.; Kharrat, R.; Aissaoui, L.; Ben Abdennebi, Y.; Ben Neji, H.; Meddeb, B. P491: Predictive factors of differentiation syndrome in patients with acute promyelocytic leukemia. HemaSphere 2022, 6, 390–391. [Google Scholar] [CrossRef]
- Röllig, C.; Ehninger, G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood 2015, 125, 3246–3252. [Google Scholar] [CrossRef]
- Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875–1891. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.-J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef]
- Di Micco, L.; Mirenghi, F.; Morelli, E.; De Simone, E. Acute kidney failure in differentiation syndrome: A possible complication during therapy with differentiating agents for acute promyelocytic leukemia. A case report. G. Ital. Nefrol. 2019, 36, 2019-vol4. [Google Scholar] [PubMed]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib inIDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Servier Laboratories. TIBSOVO® (Ivosidenib) Prescribing Information; Servier Laboratories: Boston, MA, USA, 2022. [Google Scholar]
- Stein, E.M.; DiNardo, C.D.; Fathi, A.T.; Pollyea, D.A.; Stone, R.M.; Altman, J.K.; Roboz, G.J.; Patel, M.R.; Collins, R.; Flinn, I.W.; et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 2019, 133, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T.; DiNardo, C.D.; Kline, I.; Kenvin, L.; Gupta, I.; Attar, E.C.; Stein, E.M.; de Botton, S.; for the AG221-C-001 Study Investigators. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2. JAMA Oncol. 2018, 4, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Bristol Myers Squibb. IDHIFA®(Enasidenib) Prescribing Information; Bristol Myers Squibb: Washington, DC, USA, 2017; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209606s000lbl.pdf (accessed on 17 August 2023).
- Venugopal, S.; Watts, J.M. Olutasidenib: From bench to bedside. Blood Adv. 2023, 7, 4358–4365. [Google Scholar] [CrossRef] [PubMed]
- de Botton, S.; Fenaux, P.; Yee, K.W.; Récher, C.; Wei, A.H.; Montesinos, P.; Taussig, D.C.; Pigneux, A.; Braun, T.; Curti, A.; et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML. Blood Adv. 2023, 7, 3117–3127. [Google Scholar] [CrossRef]
- Rigel Pharmaceuticals, Inc. REZLIDHIA™ (Olutasidenib) Prescribing Information; Rigel Pharmaceuticals, Inc.: San Francisco, CA, USA, 2022; Available online: https://www.rezlidhia.com/ (accessed on 17 August 2023).
- Levis, M. Midostaurin approved for FLT3-mutated AML. Blood 2017, 129, 3403–3406. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- McMahon, C.M.; Canaani, J.; Rea, B.; Sargent, R.L.; Qualtieri, J.N.; Watt, C.D.; Morrissette, J.J.D.; Carroll, M.; Perl, A.E. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 2019, 3, 1581–1585. [Google Scholar] [CrossRef]
- Pulte, E.D.; Norsworthy, K.J.; Wang, Y.; Xu, Q.; Qosa, H.; Gudi, R.; Przepiorka, D.; Fu, W.; Okusanya, O.O.; Goldberg, K.B.; et al. FDA Approval Summary: Gilteritinib for Relapsed or Refractory Acute Myeloid Leukemia with a FLT3 Mutation. Clin. Cancer Res. 2021, 27, 3515–3521. [Google Scholar] [CrossRef]
- Astellas Pharma, Inc. XOSPATA® (Gilteritinib) Prescribining Information; Astellas Pharma, Inc.: Northbrook, IL, USA, 2019; Available online: https://astellas.us/docs/xospata.pdf (accessed on 17 August 2023).
- Daichii Sankyo Basking. VANFLYTA®(Quizartinib) Prescribing Information; Daichii Sankyo Basking: Ridge, NJ, USA, 2023; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216993s000lbl.pdf (accessed on 17 August 2023).
- Issa, G.C.; Aldoss, I.; DiPersio, J.; Cuglievan, B.; Stone, R.; Arellano, M.; Thirman, M.J.; Patel, M.R.; Dickens, D.S.; Shenoy, S.; et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 2023, 615, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Im, A.P.; Sehgal, A.R.; Carroll, M.P.; Smith, B.D.; Tefferi, A.; E Johnson, D.; Boyiadzis, M. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: Associations with prognosis and potential treatment strategies. Leukemia 2014, 28, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Travins, J.; DeLaBarre, B.; Penard-Lacronique, V.; Schalm, S.; Hansen, E.; Straley, K.; Kernytsky, A.; Liu, W.; Gliser, C.; et al. Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation. Science 2013, 340, 622–626. [Google Scholar] [CrossRef]
- Ravandi, F.; Kantarjian, H.; Faderl, S.; Garcia-Manero, G.; O’brien, S.; Koller, C.; Pierce, S.; Brandt, M.; Kennedy, D.; Cortes, J.; et al. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk. Res. 2010, 34, 752–756. [Google Scholar] [CrossRef]
- E Nybakken, G.; Canaani, J.; Roy, D.; Morrissette, J.D.; Watt, C.D.; Shah, N.P.; Smith, C.C.; Bagg, A.; Carroll, M.; E Perl, A. Quizartinib elicits differential responses that correlate with karyotype and genotype of the leukemic clone. Leukemia 2015, 30, 1422–1425. [Google Scholar] [CrossRef]
- Alkassis, S.; Rizwan, A.; Daoud, L.; Chi, J. Midostaurin-induced Sweet syndrome in a patient with FLT3-ITD-positive AML. BMJ Case Rep. 2021, 14, e243615. [Google Scholar] [CrossRef]
- Yasin, H.; Laytem, T.; Sutamtewagul, G.; Ayyappan, S. A Rare Case of Midostaurin-Associated Sweet’s Syndrome. Case Rep. Hematol. 2022, 2022, 1099005. [Google Scholar] [CrossRef]
- Fathi, A.T.; Le, L.; Hasserjian, R.P.; Sadrzadeh, H.; Levis, M.; Chen, Y.-B. FLT3 inhibitor-induced neutrophilic dermatosis. Blood 2013, 122, 239–242. [Google Scholar] [CrossRef]
- Varadarajan, N.; Boni, A.; Elder, D.E.; Bagg, A.; Micheletti, R.; Perl, A.E.; Rosenbach, M. FLT3Inhibitor–Associated Neutrophilic Dermatoses. JAMA Dermatol. 2016, 152, 480–482. [Google Scholar] [CrossRef]
- Sexauer, A.; Perl, A.; Yang, X.; Borowitz, M.; Gocke, C.; Rajkhowa, T.; Thiede, C.; Frattini, M.; Nybakken, G.E.; Pratz, K.; et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood 2012, 120, 4205–4214. [Google Scholar] [CrossRef]
- Dugan, J.; Jain, N.; Irons, C.; Sharma, P.; Sediqe, S.; Hejal, R. Differentiation syndrome after gilteritinib: A tricky mimicker of sepsis. Chest 2021, 160, A877. [Google Scholar] [CrossRef]
- Cortes, J.; Perl, A.E.; Döhner, H.; Kantarjian, H.; Martinelli, G.; Kovacsovics, T.; Rousselot, P.; Steffen, B.; Dombret, H.; Estey, E.; et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: An open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018, 19, 889–903. [Google Scholar] [CrossRef] [PubMed]
- E Cortes, J.; Khaled, S.; Martinelli, G.; E Perl, A.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; A Jonas, B.; et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, M.M. Midostaurin for the treatment of acute myeloid leukemia. Future Oncol. 2017, 13, 1853–1871. [Google Scholar] [CrossRef]
- DiNardo, K.W.; LeBlanc, T.W.; Chen, H. Novel agents and regimens in acute myeloid leukemia: Latest updates from 2022 ASH Annual Meeting. J. Hematol. Oncol. 2023, 16, 17. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Issa, G.C.; Ravandi, F.; DiNardo, C.D.; Jabbour, E.; Kantarjian, H.M.; Andreeff, M. Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021, 35, 2482–2495. [Google Scholar] [CrossRef]
- Fiskus, W.; Boettcher, S.; Daver, N.; Mill, C.P.; Sasaki, K.; Birdwell, C.E.; Davis, J.A.; Takahashi, K.; Kadia, T.M.; DiNardo, C.D.; et al. Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer J. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Kura Oncology Press. Kura Oncology Provides Update on Phase 1b Study of ko-539 in Acute Myeloid Leukemia; Kura Oncology Press: San Diego, CA, USA, 2021; Available online: https://bit.ly/3HJKG4N (accessed on 17 August 2023).
- Hanmandlu, A.; Cuenca, J.; Wegner, R.; Botdorf, J.; Nates, J.; Reddy, D.R. 359: Fatal differentiation syndrome secondary to menin inhibitors: A case series. Crit. Care Med. 2023, 51, 165. [Google Scholar] [CrossRef]
- Kura Oncology Press. Kura Oncology Receives FDA Authorization to Proceed with Phase 1b Study of Ko-539 in Acute Myeloid Leukemia; Kura Oncology Press: San Diego, CA, USA, 2022; Available online: https://bit.ly/3qWSzNP (accessed on 17 August 2023).
- Khalaf, D.; Al-Jehani, F. Pseudo differentiation syndrome. Mediterr J. Hematol. Infect Dis. 2011, 3, e2011061. [Google Scholar] [CrossRef]
- Blum, W.; Blum, K.A.; Kefauver, C.; Moran, M.; Chan, K.; Byrd, J.C.; Cataland, S.; Grever, M.R.; Marcucci, G. Decitabine-Induced Differentiation Syndrome in a Patient with Acute Myeloid Leukemia: A Case Report. Blood 2004, 104, 4528. [Google Scholar] [CrossRef]
- Laufer, C.B.; Roberts, O. Differentiation syndrome in acute myeloid leukemia after treatment with azacitidine. Eur. J. Haematol. 2015, 95, 484–485. [Google Scholar] [CrossRef]
- Otsuka Pharmaceuticals Co., Ltd. DACOGEN® (Decitabine) Prescribing Information; Otsuka Pharmaceuticals Co., Ltd.: Princeton, NJ, USA, 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021790s021lbl.pdf (accessed on 17 August 2023).
- Foghorn Therapeutics Provides Further Update on FHD-286 Phase I Study in Relapsed/Refractory AML/MDS. Press Release. 2022. Available online: https://ir.foghorntx.com/news-releases/news-release-details/foghorn-therapeutics-provides-further-update-fhd-286-phase-i/ (accessed on 17 August 2023).
- Foghorn Therapeutics Announces FDA Has Lifted Clinical Hold on Phase 1 Study of FHD-286 in Relapsed and/or Refractory AML/MDS Patients. Press Release. 2023. Available online: https://ir.foghorntx.com/news-releases/news-release-details/foghorn-therapeutics-announces-fda-has-lifted-clinical-hold (accessed on 5 June 2023).
- Salamero, O.; Montesinos, P.; Willekens, C.; Pérez-Simón, J.A.; Pigneux, A.; Récher, C.; Popat, R.; Carpio, C.; Molinero, C.; Mascaró, C.; et al. First-in-Human Phase I Study of Iadademstat (ORY-1001): A First-in-Class Lysine-Specific Histone Demethylase 1A Inhibitor, in Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2020, 38, 4260–4273. [Google Scholar] [CrossRef] [PubMed]
- Jillella, A.P.; Kota, V.K. The global problem of early deaths in acute promyelocytic leukemia: A strategy to decrease induction mortality in the most curable leukemia. Blood Rev. 2018, 32, 89–95. [Google Scholar] [CrossRef] [PubMed]
Symptom | Reported Rates in DS [11,13,15,17] |
---|---|
Dyspnea | 84–100% |
Unexplained Fever | 74–100% |
Pulmonary Infiltrates | 52–100% |
Weight Gain | 50–100% |
Effusions | 36–100% |
Hypotension | 12–55% |
Acute Kidney Injury | 11–66% |
Induction Regimen | Prophylactic Corticosteroid | Dose | Duration | Patients Treated | Incidence of DS | |
---|---|---|---|---|---|---|
Sanz et al., 1999 (LPA96) [54] n = 123 | ATRA + Ida | Dexamethasone | 10 mg BID | Not Reported | WBC > 5 × 109/L | 6% (7/123) |
Sanz et al., 2004 (LPA99) [56] n = 426 | ATRA + Ida | Prednisone | 0.5 mg/kg daily | 15 days | All patients | 4% (18/426) |
Powell et al., 2010 (C9710) [18] n = 481 | ATRA + Dauno + AraC | None | N/A | N/A | N/A | 37% (177/481) |
Ravandi et al., 2009 [57] n = 82 | ATRA + ATO ± GO | Methylprednisolone | 20–50 mg daily | 5–10 days | All patients | 16% (13/82) |
Sanz et al., 2010 (LPA2005) [55] n = 402 | AIDA | Prednisone | 0.5 mg/kg daily | 15 days | WBC > 5 × 109/L | 29% (106/372 evaluable for DS) |
Pei et al., 2012 [62] n = 73 | ATRA + ATO ± HHT | None | N/A | N/A | N/A | 5% (4/73) |
LoCoco et al., 2013 (APL0406) [9] n = 162 | ATRA + ATO vs. ATRA + Ida | Prednisone | 0.5 mg/kg daily | Entire Induction | All patients | 19% (ATRA + ATO; 15/77) 16% ATRA + Ida; 13/79) |
Zhu et al., 2013 (APL07) [64] n = 231 | ATRA + oral arsenic ± MTZ vs. ATRA + ATO ± MTZ | None | N/A | N/A | N/A | 22% (51/231) |
Burnett et al., 2015 (AML17) [6] n = 235 | ATRA + ATO ± GO vs. ATRA + Ida | None | N/A | N/A | N/A | 23% (55/235) |
Iland et al., 2015 (APML4) [63] n = 124 | ATRA + Ida + ATO | Prednisone | 1 mg/kg daily | ≥10 days | All patients | 14% (17/124) |
Zhang et al., 2018 (CCAPL2010) [60] n = 66 * | ATRA + ATO | None | N/A | N/A | N/A | 14% (9/66) |
Testi et al., 2018 (ICC-APL-01) [61] n = 258 * | ATRA + Ida | Dexamethasone | 5 mg/m2 | 5 days | WBC > 10 × 109/L | 11% |
Kutny et al., 2022 (AAML1331) [59] n = 154 * | ATRA + ATO ± Ida | Dexamethasone | 2.5 mg/m2 BID | 14 days | WBC > 10 × 109/L | 27% (41/154) |
Drug | Approved Indication(s) (Excerpted) | Reported Rates of DS | Median Day of Onset of DS (Range) |
---|---|---|---|
Ivosidenib [21,73,74] | ND-AML ≥ 75 years or comorbidities and R/R AML with IDH1 mutation | 19–25% | 20–29 (1–78) |
Enasidenib [21,75,76,77] | R/R AML with IDH2 mutation | 6–19% | 19–30 (7–150) |
Olutasidenib [78,79,80] | R/R AML with IDH1 mutation | 14–16% | 17.5 (1–561) |
Midostaurin [81,82] | Combination with chemo in ND-AML with FLT3 mutation | NR | N/A |
Gilteritinib [83,84,85] | R/R AML with FLT3 mutation | 1–3% | NR (2–75) |
Quizartinib [86] | Combination with chemo in ND-AML with FLT3-ITD mutation | 5% (R/R setting) | NR |
Revumenib [87] | Not approved | 16% | 18 (5–41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woods, A.C.; Norsworthy, K.J. Differentiation Syndrome in Acute Leukemia: APL and Beyond. Cancers 2023, 15, 4767. https://doi.org/10.3390/cancers15194767
Woods AC, Norsworthy KJ. Differentiation Syndrome in Acute Leukemia: APL and Beyond. Cancers. 2023; 15(19):4767. https://doi.org/10.3390/cancers15194767
Chicago/Turabian StyleWoods, Ashley C., and Kelly J. Norsworthy. 2023. "Differentiation Syndrome in Acute Leukemia: APL and Beyond" Cancers 15, no. 19: 4767. https://doi.org/10.3390/cancers15194767
APA StyleWoods, A. C., & Norsworthy, K. J. (2023). Differentiation Syndrome in Acute Leukemia: APL and Beyond. Cancers, 15(19), 4767. https://doi.org/10.3390/cancers15194767