Factors Impacting Microwave Ablation Zone Sizes: A Retrospective Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Facciorusso, A.; Di Maso, M.; Muscatiello, N. Microwave Ablation versus Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Int. J. Hyperth. 2016, 32, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kim, C. Understanding the Nuances of Microwave Ablation for More Accurate Post-Treatment Assessment. Future Oncol. 2018, 14, 1755–1764. [Google Scholar] [CrossRef]
- Ryan, M.J.; Willatt, J.; Majdalany, B.S.; Kielar, A.Z.; Chong, S.; Ruma, J.A.; Pandya, A. Ablation Techniques for Primary and Metastatic Liver Tumors. World J. Hepatol. 2016, 8, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, S.J.S.; Heerink, W.J.; de Jong, K.P. Liver Microwave Ablation: A Systematic Review of Various FDA-Approved Systems. Eur. Radiol. 2019, 29, 4026–4035. [Google Scholar] [CrossRef] [PubMed]
- Winokur, R.S.; Du, J.Y.; Pua, B.B.; Talenfeld, A.D.; Sista, A.K.; Schiffman, M.A.; Trost, D.W.; Madoff, D.C. Characterization of in Vivo Ablation Zones Following Percutaneous Microwave Ablation of the Liver with Two Commercially Available Devices: Are Manufacturer Published Reference Values Useful? J. Vasc. Interv. Radiol. 2014, 25, 1939–1946.e1. [Google Scholar] [CrossRef] [PubMed]
- Huber, T.C.; Miller, G.; Patrie, J.; Angle, J.F. Relationship of Antenna Work and Ablation Cavity Volume Following Percutaneous Microwave Ablation of Hepatic Tumors. J. Vasc. Interv. Radiol. 2021, 32, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, S.J.S.; De Jong, J.E.; Pennings, J.P.; De Haas, R.J.; De Jong, K.P.; Ruiter, S.J.S.; De Jong, J.E.; Pennings, J.P.; De Haas, R.J.; De Jong, K.P. Comparison of Two 2.45 GHz Microwave Ablation Devices with Respect to Ablation Zone Volume in Relation to Applied Energy in Patients with Malignant Liver Tumours. Cancers 2022, 14, 5570. [Google Scholar] [CrossRef]
- Paolucci, I.; Ruiter, S.J.S.; Freedman, J.; Candinas, D.; de Jong, K.P.; Weber, S.; Tinguely, P. Volumetric Analyses of Ablation Dimensions in Microwave Ablation for Colorectal Liver Metastases. Int. J. Hyperth. 2022, 39, 639–648. [Google Scholar] [CrossRef]
- Poch, F.G.M.; Geyer, B.; Neizert, C.A.; Gemeinhardt, O.; Niehues, S.M.; Vahldiek, J.L.; Frericks, B.; Lehmann, K.S. Periportal Fields Cause Stronger Cooling Effects than Veins in Hepatic Microwave Ablation: An in Vivo Porcine Study. Acta Radiol. 2021, 62, 322–328. [Google Scholar] [CrossRef]
- Deshazer, G.; Merck, D.; Hagmann, M.; Dupuy, D.E.; Prakash, P. Physical Modeling of Microwave Ablation Zone Clinical Margin Variance. Med. Phys. 2016, 43, 1764–1776. [Google Scholar] [CrossRef]
- Tucci, C.; Trujillo, M.; Berjano, E.; Iasiello, M.; Andreozzi, A.; Vanoli, G.P. Mathematical Modeling of Microwave Liver Ablation with a Variable-Porosity Medium Approach. Comput. Methods Programs Biomed. 2022, 214, 106569. [Google Scholar] [CrossRef]
- Cafarchio, A.; Iasiello, M.; Vanoli, G.P.; Andreozzi, A. Microwave Ablation Modeling with AMICA Antenna: Validation by Means a Numerical Analysis. Comput. Biol. Med. 2023, 167, 107669. [Google Scholar] [CrossRef]
- Heerink, W.J.; Solouki, A.M.; Vliegenthart, R.; Ruiter, S.J.S.; Sieders, E.; Oudkerk, M.; de Jong, K.P. The Relationship between Applied Energy and Ablation Zone Volume in Patients with Hepatocellular Carcinoma and Colorectal Liver Metastasis. Eur. Radiol. 2018, 28, 3228–3236. [Google Scholar] [CrossRef]
- Singh, S.; Repaka, R.; Al-Jumaily, A. Sensitivity Analysis of Critical Parameters Affecting the Efficacy of Microwave Ablation Using Taguchi Method. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21581. [Google Scholar] [CrossRef]
- Hines-Peralta, A.U.; Pirani, N.; Clegg, P.; Cronin, N.; Ryan, T.P.; Liu, Z.; Goldberg, S.N. Microwave Ablation: Results with a 2.45-GHz Applicator in Ex Vivo Bovine and in Vivo Porcine Liver. Radiology 2006, 239, 94–102. [Google Scholar] [CrossRef]
- Bedoya, M.; Del Rio, A.M.; Chiang, J.; Brace, C.L. Microwave Ablation Energy Delivery: Influence of Power Pulsing on Ablation Results in an Ex Vivo and in Vivo Liver Model. Med. Phys. 2014, 41, 123301. [Google Scholar] [CrossRef] [PubMed]
- Amabile, C.; Ahmed, M.; Solbiati, L.; Meloni, M.F.; Solbiati, M.; Cassarino, S.; Tosoratti, N.; Nissenbaum, Y.; Ierace, T.; Goldberg, S.N. Microwave Ablation of Primary and Secondary Liver Tumours: Ex Vivo, in Vivo, and Clinical Characterisation. Int. J. Hyperth. 2017, 33, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Boyce, C.J.; Pickhardt, P.J.; Kim, D.H.; Taylor, A.J.; Winter, T.C.; Bruce, R.J.; Lindstrom, M.J.; Hinshaw, J.L. Hepatic Steatosis (Fatty Liver Disease) in Asymptomatic Adults Identified by Unenhanced Low-Dose CT. Am. J. Roentgenol. 2010, 194, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Filippiadis, D.K.; Binkert, C.; Pellerin, O.; Hoffmann, R.T.; Krajina, A.; Pereira, P.L. Cirse Quality Assurance Document and Standards for Classification of Complications: The Cirse Classification System. Cardiovasc. Interv. Radiol. 2017, 40, 1141–1146. [Google Scholar] [CrossRef]
- Hui, T.C.H.; Brace, C.L.; Hinshaw, J.L.; Quek, L.H.H.; Huang, I.K.H.; Kwan, J.; Lim, G.H.T.; Lee, F.T.; Pua, U. Microwave Ablation of the Liver in a Live Porcine Model: The Impact of Power, Time and Total Energy on Ablation Zone Size and Shape. Int. J. Hyperth. 2020, 37, 668–676. [Google Scholar] [CrossRef]
- Harari, C.M.; Magagna, M.; Bedoya, M.; Lee, F.T.; Lubner, M.G.; Louis Hinshaw, J.; Ziemlewicz, T.; Brace, C.L. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems. Radiology 2016, 278, 95–103. [Google Scholar] [CrossRef]
- Van Beers, B.E.; Leconte, I.; Materne, R.; Smith, A.M.; Jamart, J.; Horsmans, Y. Hepatic Perfusion Parameters in Chronic Liver Disease. Am. J. Roentgenol. 2001, 176, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Murakami, T.; Dono, K.; Hori, M.; Kim, T.; Kudo, M.; Marubashi, S.; Miyamoto, A.; Takeda, Y.; Nagano, H.; et al. Assessment of the Severity of Liver Disease and Fibrotic Change: The Usefulness of Hepatic CT Perfusion Imaging. Oncol. Rep. 2006, 16, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Liu, Z.; Humphries, S.; Goldberg, S.N. Computer Modeling of the Combined Effects of Perfusion, Electrical Conductivity, and Thermal Conductivity on Tissue Heating Patterns in Radiofrequency Tumor Ablation. Int. J. Hyperth. 2008, 24, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ahmed, M.; Weinstein, Y.; Yi, M.; Mahajan, R.L.; Goldberg, N.S. Characterization of the RF Ablation-Induced “Oven Effect”: The Importance of Background Tissue Thermal Conductivity on Tissue Heating. Int. J. Hyperth. 2006, 22, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, T.; Goldberg, S.N.; Lazzaroni, S.; Meloni, F.; Solbiati, L.; Gazelle, G.S. Small Hepatocellular Carcinoma: Treatment with Radio-Frequency Ablation versus Ethanol Injection. Radiology 1999, 210, 655–661. [Google Scholar] [CrossRef]
- Shyn, P.B.; Bird, J.R.; Koch, R.M.; Tatli, S.; Levesque, V.M.; Catalano, P.J.; Silverman, S.G. Hepatic Microwave Ablation Zone Size: Correlation with Total Energy, Net Energy, and Manufacturer-Provided Chart Predictions. J. Vasc. Interv. Radiol. 2016, 27, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Urbonas, T.; Anderson, E.M.; Gordon-Weeks, A.N.; Kabir, S.I.; Soonawalla, Z.; Silva, M.A.; Gleeson, F.V.; Reddy, S. Factors Predicting Ablation Site Recurrence Following Percutaneous Microwave Ablation of Colorectal Hepatic Metastases. HPB 2019, 21, 1175–1184. [Google Scholar] [CrossRef]
- Shady, W.; Petre, E.N.; Do, K.G.; Gonen, M.; Yarmohammadi, H.; Brown, K.T.; Kemeny, N.E.; D’Angelica, M.; Kingham, P.T.; Solomon, S.B.; et al. Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control. J. Vasc. Interv. Radiol. 2018, 29, 268–275.e1. [Google Scholar] [CrossRef]
- Dou, J.-P.; Yu, J.; Yang, X.-H.; Cheng, Z.-G.; Han, Z.-Y.; Liu, F.-Y.; Yu, X.-L.; Liang, P. Outcomes of Microwave Ablation for Hepatocellular Carcinoma Adjacent to Large Vessels: A Propensity Score Analysis. Oncotarget 2017, 8, 28758. [Google Scholar] [CrossRef]
- Livraghi, T.; Meloni, F.; Solbiati, L.; Zanus, G. Complications of Microwave Ablation for Liver Tumors: Results of a Multicenter Study. Cardiovasc. Interv. Radiol. 2012, 35, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Erxleben, C.; Niehues, S.M.; Geyer, B.; Poch, F.; Bressem, K.K.; Lehmann, K.S.; Vahldiek, J.L. CT-Based Quantification of Short-Term Tissue Shrinkage Following Hepatic Microwave Ablation in an in Vivo Porcine Liver Model. Acta Radiol. 2021, 62, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Siripongsakun, S.; Bahrami, S.; Raman, S.S.; Sayre, J.; Lu, D.S. Microwave Ablation of Liver Tumors: Degree of Tissue Contraction as Compared to RF Ablation. Abdom. Radiol. 2016, 41, 659–666. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | HCC (n = 19) | Metastasis (n = 19) | p Value | |
---|---|---|---|---|
Age (years) | 70.2 ± 9.0 | 64.2 ± 9.5 | 0.06 | |
Tumour size (cm) | 1.72 ± 0.39 | 1.21 ± 0.50 | 0.001 | |
Sex (male) | 13 (68.4%) | 11 (57.9%) | 0.737 | |
Tumour type | HCC | 19 (100%) | ||
CCC | 1 (5.3%) | |||
CRC | 7 (36.8%) | |||
PDAC | 6 (31.6%) | |||
PNET | 2 (10.5%) | |||
GNET | 1 (5.3%) | |||
UC | 1 (5.3%) | |||
NSCLC | 1 (5.3%) | |||
Hypervascular tumour | 19 (100%) | 6 (31.6%) | <0.001 | |
Previous local therapy for other lesions | 12 (63.2%) | 11 (57.9%) | 1 | |
Previous systemic therapy | 1 (5.3%) | 17 (89.5%) | <0.001 | |
Cirrhosis | 19 (100%) | 1 (5.3%) | <0.001 | |
Steatosis | 3 (15.8%) | 2 (10.5%) | 1 | |
Portal vein hypertension | 12 (63.2%) | 0 (0%) | <0.001 | |
Perivascular location | 10 (52.6%) | 14 (73.7%) | 0.313 | |
Pericapsular location | 11 (57.9%) | 5 (26.3%) | 0.078 | |
Ablation in the ‘surgical mode’ | 3 (15.8%) | 6 (31.6%) | 0.447 |
Groups | Volume (mL) | Length (cm) | Long Width (cm) | Short Width (cm) | Sphericity Index |
---|---|---|---|---|---|
Total (n = 38) | 14.3 ± 8.5 | 3.6 ± 0.6 | 2.7 ± 0.5 | 2.5 ± 0.5 | 0.52 ± 0.12 |
‘Standard mode’ (n = 29) | 13.9 ± 8.8 | 3.6 ± 0.6 | 2.7 ± 0.6 | 2.5 ± 0.5 | 0.53 ± 0.12 |
‘Surgical mode’ (n = 9) | 15.6 ± 7.8 | 3.9 ± 0.5 | 2.7 ± 0.5 | 2.6 ± 0.5 | 0.47 ± 0.13 |
p value | 0.60 | 0.13 | 0.82 | 0.59 | 0.19 |
HCC (n = 19) | 17.8 ± 9.9 | 3.9 ± 0.6 | 2.9 ± 0.5 | 2.7 ± 0.5 | 0.54 ± 0.11 |
Metastasis (n = 19) | 10.1 ± 5.1 | 3.4 ± 0.5 | 2.5 ± 0.5 | 2.3 ± 0.4 | 0.5 ± 0.13 |
p value | 0.01 | 0.017 | 0.007 | 0.006 | 0.25 |
Perivascular (n = 24) | 11.7 ± 6.1 | 3.4 ± 0.5 | 2.6 ± 0.5 | 2.3 ± 0.5 | 0.51 ± 0.14 |
Non-perivascular (n = 14) | 18.7 ± 10.4 | 4.0 ± 0.7 | 2.9 ± 0.5 | 2.8 ± 0.4 | 0.53 ± 0.10 |
p value | 0.012 | 0.005 | 0.042 | 0.003 | 0.68 |
Heat-sink-effect (n = 20) | 11.6 ± 6.4 | 3.4 ± 0.5 | 2.6 ± 0.6 | 2.3 ± 0.5 | 0.50 ± 0.15 |
No heat-sink-effect (n = 18) | 17.3 ± 9.6 | 3.9 ± 0.7 | 2.9 ± 0.5 | 2.8 ± 0.4 | 0.54 ± 0.09 |
p value | 0.037 | 0.033 | 0.069 | 0.004 | 0.32 |
Subcapsular (n = 16) | 16.6 ± 9.5 | 3.8 ± 0.7 | 2.9 ± 0.4 | 2.7 ± 0.4 | 0.55 ± 0.11 |
Non-subcapsular (n = 22) | 12.3 ± 7.5 | 3.5 ± 0.6 | 2.6 ± 0.6 | 2.4 ± 0.6 | 0.50 ± 0.13 |
p value | 0.15 | 0.19 | 0.08 | 0.06 | 0.27 |
AZ Size | Groups | HCC | Metastasis |
---|---|---|---|
n | Non-perivascular | 9 | 5 |
Perivascular | 10 | 14 | |
Volume (mL) | Non-perivascular | 21.7 ± 11.9 | 13.3 ± 2.7 |
Perivascular | 14.2 ± 6.2 | 9.9 ± 5.5 | |
Length (cm) | Non-perivascular | 4.2 ± 0.7 | 3.6 ± 0.4 |
Perivascular | 3.6 ± 0.4 | 3.3 ± 0.5 | |
Long Width (cm) | Non-perivascular | 3.1 ± 0.5 | 2.6 ± 0.1 |
Perivascular | 2.8 ± 0.5 | 2.4 ± 0.5 | |
Short Width (cm) | Non-perivascular | 3.0 ± 0.5 | 2.6 ± 0.1 |
Perivascular | 2.6 ± 0.5 | 2.2 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathy, R.M.; Giannakis, A.; Franke, M.; Winiger, A.; Kauczor, H.-U.; Chang, D.-H. Factors Impacting Microwave Ablation Zone Sizes: A Retrospective Analysis. Cancers 2024, 16, 1279. https://doi.org/10.3390/cancers16071279
Mathy RM, Giannakis A, Franke M, Winiger A, Kauczor H-U, Chang D-H. Factors Impacting Microwave Ablation Zone Sizes: A Retrospective Analysis. Cancers. 2024; 16(7):1279. https://doi.org/10.3390/cancers16071279
Chicago/Turabian StyleMathy, René Michael, Athanasios Giannakis, Mareike Franke, Alain Winiger, Hans-Ulrich Kauczor, and De-Hua Chang. 2024. "Factors Impacting Microwave Ablation Zone Sizes: A Retrospective Analysis" Cancers 16, no. 7: 1279. https://doi.org/10.3390/cancers16071279
APA StyleMathy, R. M., Giannakis, A., Franke, M., Winiger, A., Kauczor, H. -U., & Chang, D. -H. (2024). Factors Impacting Microwave Ablation Zone Sizes: A Retrospective Analysis. Cancers, 16(7), 1279. https://doi.org/10.3390/cancers16071279