Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy for Published Articles
2.2. Descriptive Epidemiology
3. Genetic Predisposition
4. Birth Defects
5. Prior Cancer and Cancer Treatments
6. Medical Ionizing Radiation
7. Ultraviolet (UV) Light
8. Organ Transplantation
9. Medications in Childhood
9.1. Human Growth Hormone
9.2. Immunomodulatory Medications
10. Diet
10.1. Breast Feeding
10.2. Childhood Diet
11. Body Mass Index
12. Infections
12.1. Carcinogenic Viruses
12.2. Exposure to Common Infections in Childhood
13. Vaccinations
14. Allergies
15. Limitations
16. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; The IICC-3 Contributors. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef] [PubMed]
- United States Cancer Statistics—Incidence: 1999—2017, WONDER Online Database. United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2020. Available online: http://wonder.cdc.gov/cancer-v2017.html (accessed on 29 June 2021).
- Stiller, C.A. Epidemiology and genetics of childhood cancer. Oncogene 2004, 23, 6429–6444. [Google Scholar] [CrossRef]
- Rees, J.R.; Weiss, J.E.; Riddle, B.L.; Craver, K.; Zens, M.S.; Celaya, M.O.; Peacock, J.L. Pediatric Cancer By Race, Ethnicity and Region in the United States. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; Li, J.; Henley, S.J.; Wilson, R.J.; Lunsford, N.B.; Tai, E.; Van Dyne, E.A. Geographic Variation in Pediatric Cancer Incidence—United States, 2003–2014. Morb. Mortal. Wkly. Rep. 2018, 67, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.T.; Erdmann, F.; Newton, R.; Steliarova-Foucher, E.; Schuz, J.; Roman, E. Childhood cancer: Estimating regional and global incidence. Cancer Epidemiol. 2021, 71 Pt B, 101662. [Google Scholar] [CrossRef]
- Siegel, D.A.; King, J.B.; Lupo, P.J.; Durbin, E.B.; Tai, E.; Mills, K.; Van Dyne, E.; Buchanan Lunsford, N.; Henley, S.J.; Wilson, R.J. Counts, incidence rates, and trends of pediatric cancer in the United States, 2003–2019. J. Natl. Cancer Inst. 2023, 115, 1337–1354. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.S.; Wang, R.; Enders, C.; Prado, I.; Wiemels, J.L.; Ma, X.; Metayer, C. Socioeconomic status and childhood central nervous system tumors in California. Cancer Causes Control 2021, 32, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Gradel, K.O.; Kaerlev, L. Antibiotic use from conception to diagnosis of child leukaemia as compared to the background population: A nested case-control study. Pediatr. Blood Cancer 2015, 62, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Grabas, M.R.; Kjaer, S.K.; Frederiksen, M.H.; Winther, J.F.; Erdmann, F.; Dehlendorff, C.; Hargreave, M. Incidence and time trends of childhood cancer in Denmark, 1943–2014. Acta Oncol. 2020, 59, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Kroll, M.E.; Carpenter, L.M.; Murphy, M.F.; Stiller, C.A. Effects of changes in diagnosis and registration on time trends in recorded childhood cancer incidence in Great Britain. Br. J. Cancer 2012, 107, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- SEER*Explorer. Available online: https://seer.cancer.gov/explorer (accessed on 24 February 2024).
- Lupo, P.J.; Spector, L.G. Cancer progress and priorities: Childhood cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Alejandro Sweet-Cordero, E.; Biegel, J.A. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019, 363, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Stanulla, M.; Cave, H. Genetic predisposition to acute lymphoblastic leukemia: Overview on behalf of the I-BFM ALL Host Genetic Variation Working Group. Eur. J. Med. Genet. 2016, 59, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Spector, L.G.; Pankratz, N.; Marcotte, E.L. Genetic and nongenetic risk factors for childhood cancer. Pediatr. Clin. N. Am. 2015, 62, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Walsh, M.F.; Wu, G.; Edmonson, M.N.; Gruber, T.A.; Easton, J.; Hedges, D.; Ma, X.; Zhou, X.; Yergeau, D.A.; et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. J. Med. 2015, 373, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Jongmans, M.C.; Cave, H.; Wimmer, K.; Behjati, S.; Guerrini-Rousseau, L.; Milde, T.; Pajtler, K.W.; Golmard, L.; Gauthier-Villars, M.; et al. Predisposition to cancer in children and adolescents. Lancet Child. Adolesc. Health 2021, 5, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Valdez, J.M.; Nichols, K.E.; Kesserwan, C. Li-Fraumeni syndrome: A paradigm for the understanding of hereditary cancer predisposition. Br. J. Haematol. 2017, 176, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S. Prevalence and penetrance of Li-Fraumeni cancer predisposition syndrome. Curr. Opin. Syst. 2017, 1, 48–53. [Google Scholar] [CrossRef]
- Bloom, M.; Maciaszek, J.L.; Clark, M.E.; Pui, C.H.; Nichols, K.E. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert. Rev. Hematol. 2020, 13, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Adel Fahmideh, M.; Cote, D.J.; Muskens, I.S.; Schraw, J.M.; Scheurer, M.E.; Bondy, M.L. Risk factors for childhood and adult primary brain tumors. Neuro-Oncol. 2019, 21, 1357–1375. [Google Scholar] [CrossRef] [PubMed]
- Asnafi, A.A.; Behzad, M.M.; Ghanavat, M.; Shahjahani, M.; Saki, N. Singe nucleotide polymorphisms in osteosarcoma: Pathogenic effect and prognostic significance. Exp. Mol. Pathol. 2019, 106, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; He, Q.; Wang, X.; Li, M.; Zhu, L. Association of genetic polymorphisms with osteosarcoma risk: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 8317–8328. [Google Scholar] [PubMed]
- Brisson, G.D.; Alves, L.R.; Pombo-de-Oliveira, M.S. Genetic susceptibility in childhood acute leukaemias: A systematic review. Ecancermedicalscience 2015, 9, 539. [Google Scholar] [CrossRef]
- Liu, Z.; Thiele, C.J. Molecular genetics of neuroblastoma. In Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Contemporary Endocrinology; Pacak, K., Taïeb, D., Eds.; Humana Press: Cham, Switzerland, 2017; pp. 83–125. [Google Scholar] [CrossRef]
- Anvar, Z.; Acurzio, B.; Roma, J.; Cerrato, F.; Verde, G. Origins of DNA methylation defects in Wilms tumors. Cancer Lett. 2019, 457, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Brioude, F.; Toutain, A.; Giabicani, E.; Cottereau, E.; Cormier-Daire, V.; Netchine, I. Overgrowth syndromes—Clinical and molecular aspects and tumour risk. Nat. Rev. Endocrinol. 2019, 15, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Gicquel, C.; Azzi, S.; Rossignol, S.; Demars, J.; Brioude, F.; Netchine, I.; Le Bouc, Y. Human fetal growth disorders and imprinting anomalies. In Hormones, Intrauterine Health and Programming. Research and Perspectives in Endocrine Interactions; Seckl, J., Christen, Y., Eds.; Springer: Cham, Switzerland, 2014; Volume 12, pp. 101–129. [Google Scholar] [CrossRef]
- Alencastro Veiga Cruzeiro, G.; Rota, C.; Hack, O.A.; Segal, R.; Filbin, M.G. Understanding the epigenetic landscape and cellular architecture of childhood brain tumors. Neurochem. Int. 2021, 144, 104940. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, C.; Fleming, A.; Ramaswamy, V. Advances in the molecular classification of pediatric brain tumors: A guide to the galaxy. J. Pathol. 2020, 251, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Ghantous, A.; Hernandez-Vargas, H.; Byrnes, G.; Dwyer, T.; Herceg, Z. Characterising the epigenome as a key component of the fetal exposome in evaluating in utero exposures and childhood cancer risk. Mutagenesis 2015, 30, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Lee, J.M.; Ahsan, K.; Padda, H.; Feng, Q.; Partap, S.; Fowler, S.A.; Druley, T.E. Pediatric cancer risk in association with birth defects: A systematic review. PLoS ONE 2017, 12, e0181246. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Schraw, J.M.; Desrosiers, T.A.; Nembhard, W.N.; Langlois, P.H.; Canfield, M.A.; Copeland, G.; Meyer, R.E.; Brown, A.L.; Chambers, T.M.; et al. Association Between Birth Defects and Cancer Risk Among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births. JAMA Oncol. 2019, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Adel Fahmideh, M.; Scheurer, M.E. Pediatric Brain Tumors: Descriptive Epidemiology, Risk Factors, and Future Directions. Cancer Epidemiol. Biomark. Prev. 2021, 30, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Demoor-Goldschmidt, C.; de Vathaire, F. Review of risk factors of secondary cancers among cancer survivors. Br. J. Radiol. 2019, 92, 20180390. [Google Scholar] [CrossRef] [PubMed]
- Neglia, J.P.; Friedman, D.L.; Yasui, Y.; Mertens, A.C.; Hammond, S.; Stovall, M.; Donaldson, S.S.; Meadows, A.T.; Robison, L.L. Second malignant neoplasms in five-year survivors of childhood cancer: Childhood cancer survivor study. J. Natl. Cancer Inst. 2001, 93, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, L.M.; Neglia, J.P.; Reulen, R.C.; Ronckers, C.M.; Van Leeuwen, F.E.; Morton, L.M.; Hodgson, D.C.; Yasui, Y.; Oeffinger, K.C.; Henderson, T.O. Risk, risk factors, and surveillance of subsequent malignant neoplasms in survivors of childhood cancer: A review. J. Clin. Oncol. 2018, 36, 2145–2152. [Google Scholar] [CrossRef]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; et al. Temporal Trends in Treatment and Subsequent Neoplasm Risk among 5-Year Survivors of Childhood Cancer, 1970–2015. JAMA 2017, 317, 814–824. [Google Scholar] [CrossRef] [PubMed]
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans. International Agency for Research on Cancer. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 24 February 2024).
- Waguespack, S.G. Thyroid Sequelae of Pediatric Cancer Therapy. Horm. Res. Paediatr. 2019, 91, 104–117. [Google Scholar] [CrossRef] [PubMed]
- The Effects on Populations of Exposure to Low Levels of Ionizing Radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations; Department of Health, Education, and Welfare, Division of Medical Sciences: Washington, DC, USA; National Academy of Sciences, National Research Council: Washington, DC, USA; Environmental Protection Agency: Washington, DC, USA, 1972.
- Ionizing Radiation Exposure of the Population of the United States: NCRP Report No. 160; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 2006.
- Health Care Utilisation: Diagnostic Exams. Available online: https://data.oecd.org/healthcare/computed-tomography-ct-exams.htm (accessed on 24 February 2024).
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Sir Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Abalo, K.D.; Rage, E.; Leuraud, K.; Richardson, D.B.; Le Pointe, H.D.; Laurier, D.; Bernier, M.O. Early life ionizing radiation exposure and cancer risks: Systematic review and meta-analysis. Pediatr. Radiol. 2021, 51, 45–56. [Google Scholar] [CrossRef]
- Mathews, J.D.; Forsythe, A.V.; Brady, Z.; Butler, M.W.; Goergen, S.K.; Byrnes, G.B.; Giles, G.G.; Wallace, A.B.; Anderson, P.R.; Guiver, T.A.; et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians. BMJ 2013, 346, f2360. [Google Scholar] [CrossRef] [PubMed]
- Berrington de Gonzalez, A.; Salotti, J.A.; McHugh, K.; Little, M.P.; Harbron, R.W.; Lee, C.; Ntowe, E.; Braganza, M.Z.; Parker, L.; Rajaraman, P.; et al. Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: Assessment of the impact of underlying conditions. Br. J. Cancer 2016, 114, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Miglioretti, D.L.; Johnson, E.; Williams, A.; Greenlee, R.T.; Weinmann, S.; Solberg, L.I.; Feigelson, H.S.; Roblin, D.; Flynn, M.J.; Vanneman, N.; et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013, 167, 700–707. [Google Scholar] [CrossRef]
- Lodwick, D.L.; Cooper, J.N.; Lawrence, A.E.; Kelleher, K.J.; Minneci, P.C.; Deans, K.J. Factors Affecting Emergency Department Computed Tomography Use in Children. J. Surg. Res. 2019, 241, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Tasian, G.E.; Pulido, J.E.; Keren, R.; Dick, A.W.; Setodji, C.M.; Hanley, J.M.; Madison, R.; Saigal, C.S.; Urologic Diseases in America Project. Use of and regional variation in initial CT imaging for kidney stones. Pediatrics 2014, 134, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, P.; Sadigh, G.; Hughes, D.; Rosenkrantz, A.B.; Hanna, T.; Duszak, R., Jr. Increasing Use, Geographic Variation, and Disparities in Emergency Department CT for Suspected Urolithiasis. J. Am. Coll. Radiol. 2019, 16, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, J.; Herring, A.; Harries, A.; Gonzales, R.; Alter, H. Computed tomography use among children presenting to emergency departments with abdominal pain. Pediatrics 2012, 130, e1069–e1075. [Google Scholar] [CrossRef] [PubMed]
- Mannix, R.; Bourgeois, F.T.; Schutzman, S.A.; Bernstein, A.; Lee, L.K. Neuroimaging for pediatric head trauma: Do patient and hospital characteristics influence who gets imaged? Acad. Emerg. Med. 2010, 17, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.R.; Rodean, J.; Hall, M.; Alpern, E.R.; Aronson, P.L.; Chaudhari, P.P.; Cohen, E.; Freedman, S.B.; Morse, R.B.; Peltz, A.; et al. Racial and Ethnic Differences in Emergency Department Diagnostic Imaging at US Children’s Hospitals, 2016–2019. JAMA Netw. Open 2021, 4, e2033710. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.R.; Wang, L.; Winger, D.G.; Mannix, R.C. Variation in Computed Tomography Imaging for Pediatric Injury-Related Emergency Visits. J. Pediatr. 2015, 167, 897–904.e893. [Google Scholar] [CrossRef] [PubMed]
- Natale, J.E.; Joseph, J.G.; Rogers, A.J.; Mahajan, P.; Cooper, A.; Wisner, D.H.; Miskin, M.L.; Hoyle, J.D., Jr.; Atabaki, S.M.; Dayan, P.S.; et al. Cranial computed tomography use among children with minor blunt head trauma: Association with race/ethnicity. Arch. Pediatr. Adolesc. Med. 2012, 166, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Nabaweesi, R.; Ramakrishnaiah, R.H.; Aitken, M.E.; Rettiganti, M.R.; Luo, C.; Maxson, R.T.; Glasier, C.M.; Kenney, P.J.; Robbins, J.M. Injured Children Receive Twice the Radiation Dose at Nonpediatric Trauma Centers Compared with Pediatric Trauma Centers. J. Am. Coll. Radiol. 2018, 15, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Stefan, A.I.; Piciu, A.; Mester, A.; Apostu, D.; Badan, M.; Badulescu, C.I. Pediatric thyroid cancer in Europe: An overdiagnosed condition? A literature review. Diagnostics 2020, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Whiteman, C.A.; Green, A.C. Childhood sun exposure as a risk factor for melanoma: A systematic review of epidemiologic studies. Cancer Causes Control 2001, 12, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Saiyed, F.K.; Hamilton, E.C.; Austin, M.T. Pediatric melanoma: Incidence, treatment, and prognosis. Pediatr. Health Med. Ther. 2017, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Diehl, K.; Lindwedel, K.S.; Mathes, S.; Gorig, T.; Gefeller, O. Tanning Bed Legislation for Minors: A Comprehensive International Comparison. Children 2022, 9, 768. [Google Scholar] [CrossRef] [PubMed]
- Strouse, J.J.; Fears, T.R.; Tucker, M.A.; Wayne, A.S. Pediatric melanoma: Risk factor and survival analysis of the surveillance, epidemiology and end results database. J. Clin. Oncol. 2005, 23, 4735–4741. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, K.Y.; Escobedo, L.A.; Wysong, A.; Heck, J.E.; Ritz, B.; Hamilton, A.S.; Milam, J.; Cockburn, M.G. High Birth Weight, Early UV Exposure, and Melanoma Risk in Children, Adolescents, and Young Adults. Epidemiology 2019, 30, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Yanik, E.L.; Smith, J.M.; Shiels, M.S.; Clarke, C.A.; Lynch, C.F.; Kahn, A.R.; Koch, L.; Pawlish, K.S.; Engels, E.A. Cancer Risk After Pediatric Solid Organ Transplantation. Pediatrics 2017, 139, e20163893. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.; Chanchlani, R.; Kitchlu, A. Malignancies after pediatric solid organ transplantation. Pediatr. Nephrol. 2021, 36, 2279–2291. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.H.; Coughlin, C.C.; Chanchlani, R.; Dharnidharka, V.R. Post-transplant malignancies in pediatric organ transplant recipients. Pediatr. Transpl. 2021, 25, e13884. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H.; on behalf of the Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society; et al. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Grimberg, A.; Waguespack, S.G.; Miller, B.S.; Sklar, C.A.; Meacham, L.R.; Patterson, B.C. Risk of neoplasia in pediatric patients receiving growth hormone therapy—A report from the pediatric endocrine society drug and therapeutics committee. J. Clin. Endocrinol. Metab. 2015, 100, 2192–2203. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, A.J.; Cooke, R.; Beckers, D.; Butler, G.; Carel, J.C.; Cianfarani, S.; Clayton, P.; Coste, J.; Deodati, A.; Ecosse, E.; et al. Risk of Meningioma in European Patients Treated with Growth Hormone in Childhood: Results from the SAGhE Cohort. J. Clin. Endocrinol. Metab. 2018, 104, 658–664. [Google Scholar] [CrossRef] [PubMed]
- FDA Drug Safety Communication: UPDATE on Tumor Necrosis Factor (TNF) Blockers and Risk for Pediatric Malignancy. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-update-tumor-necrosis-factor-tnf-blockers-and-risk-pediatric (accessed on 24 February 2024).
- FDA Drug Safety Communication: Safety Review Update on Reports of Hepatosplenic T-Cell Lymphoma in Adolescents and Young Adults Receiving Tumor Necrosis Factor (TNF) Blockers, Azathioprine and/or Mercaptopurine; United States Food and Drug Adminstration: Silver Spring, MD, USA, 2011. Available online: https://wayback.archive-it.org/7993/20161022203927/http://www.fda.gov/Drugs/DrugSafety/ucm250913.htm (accessed on 24 February 2024).
- Mannion, M.L.; Beukelman, T. Risk of malignancy associated with biologic agents in pediatric rheumatic disease. Curr. Opin. Rheumatol. 2014, 26, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Cron, R.Q.; Beukelman, T. Guilt by association—What is the true risk of malignancy in children treated with etanercept for JIA? Pediatr. Rheumatol. Online J. 2010, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Lehman, T.J. Should the Food and Drug Administration warning of malignancy in children receiving tumor necrosis factor alpha blockers change the way we treat children with juvenile idiopathic arthritis? Arthritis Rheum. 2010, 62, 2183–2184. [Google Scholar] [CrossRef] [PubMed]
- Dulai, P.S.; Thompson, K.D.; Blunt, H.B.; Dubinsky, M.C.; Siegel, C.A. Risks of serious infection or lymphoma with anti-tumor necrosisfactor therapy for pediatric inflammatory bowel disease: A systematic review. Clin. Gastroenterol. Hepatol. 2014, 12, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Simard, J.F.; Neovius, M.; Hagelberg, S.; Askling, J. Juvenile idiopathic arthritis and risk of cancer: A nationwide cohort study. Arthritis Rheum. 2010, 62, 3776–3782. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.; Richardson, M.; Marcotte, E.L.; Poynter, J.N.; Spector, L.G. Sex ratio among childhood cancers by single year of age. Pediatr. Blood Cancer 2019, 66, e27620. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, D.S.; Lewis, J.D.; Beaugerie, L.; Tierney, A.; Brensinger, C.M.; Gisbert, J.P.; Loftus, E.V., Jr.; Peyrin-Biroulet, L.; Blonski, W.C.; Van Domselaar, M.; et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: A meta-analysis. Clin. Gastroenterol. Hepatol. 2015, 13, 847–858.e4. [Google Scholar] [CrossRef]
- Kotlyar, D.S.; Blonski, W.; Diamond, R.H.; Wasik, M.; Lichtenstein, G.R. Hepatosplenic T-cell lymphoma in inflammatory bowel disease: A possible thiopurine-induced chromosomal abnormality. Am. J. Gastroenterol. 2010, 105, 2299–2301. [Google Scholar] [CrossRef]
- León-Cava, N. Quantifying the Benefits of Breastfeeding: A Summary of the Evidence Washington, D.C.: PAHO 2002. Available online: https://www3.paho.org/hq/dmdocuments/2011/benefitsLM.pdf (accessed on 24 February 2024).
- Amitay, E.L.; Keinan-Boker, L. Breastfeeding and Childhood Leukemia Incidence: A Meta-analysis and Systematic Review. JAMA Pediatr. 2015, 169, e151025. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Sun, X.; Zhu, L.; Yan, Q.; Zheng, P.; Mao, Y.; Ye, D. Breastfeeding and the risk of childhood cancer: A systematic review and dose-response meta-analysis. BMC Med. 2021, 19, 90. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Danysh, H.E.; Skapek, S.X.; Hawkins, D.S.; Spector, L.G.; Zhou, R.; Okcu, M.F.; Papworth, K.; Erhardt, E.B.; Grufferman, S. Maternal and birth characteristics and childhood rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer Causes Control 2014, 25, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Amitay, E.L.; Dubnov Raz, G.; Keinan-Boker, L. Breastfeeding, Other Early Life Exposures and Childhood Leukemia and Lymphoma. Nutr. Cancer 2016, 68, 968–977. [Google Scholar] [CrossRef]
- Dessypris, N.; Karalexi, M.A.; Ntouvelis, E.; Diamantaras, A.-A.; Papadakis, V.; Baka, M.; Hatzipantelis, E.; Kourti, M.; Moschovi, M.; Polychronopoulou, S.; et al. Association of maternal and index child’s diet with subsequent leukemia risk: A systematic review and meta analysis. Cancer Epidemiol. 2017, 47, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Specht, I.O.; Huybrechts, I.; Frederiksen, P.; Steliarova-Foucher, E.; Chajes, V.; Heitmann, B.L. Can legal restrictions of prenatal exposure to industrial trans-fatty acids reduce risk of childhood hematopoietic neoplasms? A population-based study. Eur. J. Clin. Nutr. 2019, 73, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Dushnicky, M.J.; Nazarali, S.; Mir, A.; Portwine, C.; Samaan, M.C. Is there a causal relationship between childhood obesity and acute lymphoblastic leukemia? A review. Cancers 2020, 12, 3082. [Google Scholar] [CrossRef]
- Saenz, A.M.; Stapleton, S.; Hernandez, R.G.; Hale, G.A.; Goldenberg, N.A.; Schwartz, S.; Amankwah, E.K. Body Mass Index at Pediatric Leukemia Diagnosis and the Risks of Relapse and Mortality: Findings from a Single Institution and Meta-analysis. J. Obes. 2018, 2018, 7048078. [Google Scholar] [CrossRef] [PubMed]
- Moormann, A.M.; Snider, C.J.; Chelimo, K. The company malaria keeps: How co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Curr. Opin. Infect. Dis. 2011, 24, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Jayajanani, S.; Jayashri, P. Burkitt’s lymphoma-A review on epidemiology, clinical presentation, diagnosis and its management. Indian J. Public Health Res. Dev. 2019, 10, 3485–3849. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Jarrett, R.F. Epidemiology of Hodgkin lymphoma. In Hodgkin Lymphoma. Hematologic Malignancies; Engert, A., Younes, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–23. [Google Scholar] [CrossRef]
- Levin, L.I.; Chang, E.T.; Ambinder, R.F.; Lennette, E.T.; Rubertone, M.V.; Mann, R.B.; Borowitz, M.; Weir, E.G.; Abbondanzo, S.L.; Mueller, N.E. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 2012, 120, 3750–3755. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Meehan, M.T.; Burrows, S.R.; Doolan, D.L.; Miles, J.J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2022, 148, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Gnanashanmugam, D.; Rakhmanina, N.; Crawford, K.W.; Nesheim, S.; Ruel, T.; Birkhead, G.S.; Chakraborty, R.; Lawrence, R.; Jean-Philippe, P.; Jayashankar, L.; et al. Eliminating perinatal HIV in the United States: Mission possible? AIDS 2019, 33, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Naidu, G.; Davies, M.A.; Bohlius, J. HIV-associated malignancies in children. Curr. Opin. HIV AIDS 2017, 12, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 2006, 6, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. In utero origins of childhood leukaemia. Early Hum. Dev. 2005, 81, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-N.; Lin, C.-L.; Lin, M.-C.; Lai, C.-H.; Lin, H.-H.; Yang, C.-H.; Sung, F.-C.; Kao, C.-H. Risk of leukaemia in children infected with enterovirus: A nationwide, retrospective, population-based, Taiwanese-registry, cohort study. Lancet Oncol. 2015, 16, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Rudant, J.; Orsi, L.; Monnereau, A.; Patte, C.; Pacquement, H.; Landman-Parker, J.; Bergeron, C.; Robert, A.; Michel, G.; Lambilliotte, A.; et al. Childhood Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and factors related to the immune system: The Escale Study (SFCE). Int. J. Cancer 2011, 129, 2236–2247. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Zhou, R.; Skapek, S.X.; Hawkins, D.S.; Spector, L.G.; Scheurer, M.E.; Fatih Okcu, M.; Melin, B.; Papworth, K.; Erhardt, E.B.; et al. Allergies, atopy, immune-related factors and childhood rhabdomyosarcoma: A report from the Children’s Oncology Group. Int. J. Cancer 2014, 134, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Cullen, J.; Barnholtz-Sloan, J.S.; Ostrom, Q.T.; Langer, C.E.; Turner, M.C.; McKean-Cowdin, R.; Fisher, J.L.; Lupo, P.J.; Partap, S.; et al. Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2716–2736. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, L. Evidence for an infective cause of childhood leukaemia: Comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet 1988, 2, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-H.; You, S.-L.; Chen, C.-J.; Liu, C.-J.; Lai, M.-W.; Wu, T.-C.; Wu, S.-F.; Lee, C.-M.; Yang, S.-S.; Chu, H.-C.; et al. Long-term Effects of Hepatitis B Immunization of Infants in Preventing Liver Cancer. Gastroenterology 2016, 151, 472–480.e471. [Google Scholar] [CrossRef] [PubMed]
- Marron, M.; Brackmann, L.K.; Kuhse, P.; Christianson, L.; Langner, I.; Haug, U.; Ahrens, W. Vaccination and the Risk of Childhood Cancer-A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 610843. [Google Scholar] [CrossRef]
- Sankaran, H.; Danysh, H.E.; Scheurer, M.E.; Okcu, M.F.; Skapek, S.X.; Hawkins, D.S.; Spector, L.G.; Erhardt, E.B.; Grufferman, S.; Lupo, P.J. The Role of Childhood Infections and Immunizations on Childhood Rhabdomyosarcoma: A Report from the Children’s Oncology Group. Pediatr. Blood Cancer 2016, 63, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.D.; Francis, S.S.; Ma, X.; McKean-Cowdin, R.; Selvin, S.; Whitehead, T.P.; Barcellos, L.F.; Kang, A.Y.; Morimoto, L.; Moore, T.B.; et al. Allergies and Childhood Acute Lymphoblastic Leukemia: A Case-Control Study and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
Paper 1 Child Factors | Paper 2 Parental and Pregnancy Factors | Paper 3 Environmental Factors |
---|---|---|
Genetic predisposition | Alcohol | Outdoor pollution |
Birth defects | Smoking | Indoor pollution |
Prior cancer and associated treatments | Diet and vitamins | Occupational exposures: |
Medical ionizing radiation | Caffeine | - Benzene |
Ultraviolet (UV) light | Maternal age | - Diesel |
Organ transplantation | Maternal diabetes | - Agricultural animals |
Medications in childhood | Maternal obesity | - Agricultural pesticides |
Diet and breastfeeding | Birth and obstetric history | - Other |
Body mass index | Birth weight | Ionizing radiation: |
Infections | Gestational age | - Nuclear power plants |
Vaccinations | Multiple gestation | - Radon |
Allergies | Birth order | Non-ionizing radiation |
Cesarean section and instrumental delivery | ||
Assistive reproductive technologies | ||
Medications during pregnancy | ||
Medical ionizing radiation |
Exposure | Notes |
---|---|
Strong evidence of association with childhood cancer | |
Genetics | Germline cancer predisposition genes are strongly associated with an increased risk of multiple childhood cancers. There is also increasing research into the impact of more common genetic variants and epigenetics. |
Birth defects | Major birth defects and some chromosomal syndromes are strongly associated with an increased risk of multiple childhood cancers. |
Prior cancer and cancer treatments | Childhood cancer treatment is associated with a significant risk of developing a subsequent primary cancer. |
Medical ionizing radiation | There is a strong link between CT scans in childhood and an increased risk of childhood cancer, particularly leukemia and brain cancer. |
Ultraviolet light | Exposure to UV light in childhood is associated with a significant risk of melanoma in later life. Public health interventions to reduce indoor tanning by minors is associated with decreased cancer incidence. |
Organ transplantation | Immunosuppression after solid organ transplant is associated with a significantly increased risk for several childhood cancers. |
Vaccinations | Vaccination against certain carcinogenic viruses is strongly associated with a decreased childhood cancer risk. There is more limited evidence that childhood vaccinations (against non-carcinogenic viruses) more broadly may decrease cancer risk. |
Mixed evidence of association with childhood cancer | |
Diet and breastfeeding | Breastfeeding is associated with a lower risk of leukemia, and possibly rhabdomyosarcoma, but evidence is lacking for other cancer types. There was some evidence for decreased leukemia risk associated with improved diet quality and a higher cancer risk associated with lower diet quality. |
Infections | Certain carcinogenic viruses (e.g., Epstein–Barr virus) are strongly associated with childhood cancer. There is limited evidence that exposure to common childhood infections may decrease childhood cancer risk. |
Allergies | Rhabdomyosarcoma is less common in children with allergies, but the evidence on associations between allergies and other childhood cancer risk is mixed. |
Weak or no evidence of association with childhood cancer | |
Medications in childhood | Human growth hormone was not associated with a significantly increased risk of a first childhood cancer, although the risk may be different when used in childhood cancer survivors. Studies evaluating immunomodulatory agents and childhood cancer risk have been methodologically challenged and while it seems underlying inflammatory conditions may be associated with an increased risk for childhood cancer, the role of medications is not clearly established. |
Body mass index | There was too little research to draw conclusions on the impact of childhood obesity on childhood cancer risk. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, A.M.; Emeny, R.T.; Bagley, P.J.; Blunt, H.B.; Butow, M.E.; Morgan, A.; Alford-Teaster, J.A.; Titus, L.; Walston, R.R., III; Rees, J.R. Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors. Cancers 2024, 16, 1297. https://doi.org/10.3390/cancers16071297
Ricci AM, Emeny RT, Bagley PJ, Blunt HB, Butow ME, Morgan A, Alford-Teaster JA, Titus L, Walston RR III, Rees JR. Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors. Cancers. 2024; 16(7):1297. https://doi.org/10.3390/cancers16071297
Chicago/Turabian StyleRicci, Angela M., Rebecca T. Emeny, Pamela J. Bagley, Heather B. Blunt, Mary E. Butow, Alexandra Morgan, Jennifer A. Alford-Teaster, Linda Titus, Raymond R. Walston, III, and Judy R. Rees. 2024. "Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors" Cancers 16, no. 7: 1297. https://doi.org/10.3390/cancers16071297
APA StyleRicci, A. M., Emeny, R. T., Bagley, P. J., Blunt, H. B., Butow, M. E., Morgan, A., Alford-Teaster, J. A., Titus, L., Walston, R. R., III, & Rees, J. R. (2024). Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors. Cancers, 16(7), 1297. https://doi.org/10.3390/cancers16071297