Erdheim–Chester Disease: Investigating the Correlation between Targeted Treatment Therapy and Disease Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen Aubart, F.; Emile, J.-F.; Carrat, F.; Charlotte, F.; Benameur, N.; Donadieu, J.; Maksud, P.; Idbaih, A.; Barete, S.; Hoang-Xuan, K.; et al. Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study). Blood 2017, 130, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Goyal, G.; Heaney, M.; Collin, M.; Cohen-Aubart, F.; Vaglio, A.; Durham, B.; Hershkovitz-Rokah, O.; Girschikofsky, M.; Jacobsen, E.; Toyama, K.; et al. Erdheim-Chester disease: Consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood 2020, 135, 1929–1945. [Google Scholar] [CrossRef] [PubMed]
- Melloul, S.; Hélias-Rodzewicz, Z.; Cohen-Aubart, F.; Charlotte, F.; Fraitag, S.; Terrones, N.; Riller, Q.; Chazal, T.; Héritier, S.; Moreau, A.; et al. Highly sensitive methods are required to detect mutations in histiocytoses. Haematologica 2018, 104, e97–e99. [Google Scholar] [CrossRef] [PubMed]
- Haroche, J.; Cohen-Aubart, F.; Emile, J.-F.; Arnaud, L.; Maksud, P.; Charlotte, F.; Cluzel, P.; Drier, A.; Hervier, B.; Benameur, N.; et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 2013, 121, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Proano, L.; Cruz, C.; Tenemaza, M.; Monteros, G.; Hassen, G.; Baskar, A.; Argudo, J.; Duenas, J.; Fabara, S. Vemurafenib in the Treatment of Erdheim Chester Disease: A Systematic Review. Cureus 2022, 14, e25935. [Google Scholar] [CrossRef] [PubMed]
- Haroche, J.; Cohen-Aubart, F.; Amoura, Z. Erdheim-Chester disease. Blood 2020, 135, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Veras, J.; O’brien, K.; Boyd, L.; Dave, R.; Durham, B.; Xi, L.; Malayeri, A.; Chen, M.; Gardner, P.; Enriquez, J.; et al. The clinical spectrum of Erdheim-Chester disease: An observational cohort study. Blood Adv. 2017, 1, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Vaglio, A.; Diamond, E.L. Erdheim-Chester disease: The “targeted” revolution. Blood 2017, 130, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, L.; Hervier, B.; Néel, A.; Hamidou, M.; Kahn, J.; Wechsler, B.; Pérez-Pastor, G.; Blomberg, B.; Fuzibet, J.; Dubourguet, F.; et al. CNS involvement and treatment with interferon-α are independent prognostic factors in Erdheim-Chester disease: A multicenter survival analysis of 53 patients. Blood 2011, 117, 2778–2782. [Google Scholar] [CrossRef]
- Diamond, E.L.; Dagna, L.; Hyman, D.M.; Cavalli, G.; Janku, F.; Estrada-Veras, J.; Ferrarini, M.; Abdel-Wahab, O.; Heaney, M.L.; Scheel, P.J.; et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood 2014, 124, 483–492. [Google Scholar] [CrossRef]
- Chetritt, J.; Paradis, V.; Dargere, D.; Adle-Biassette, H.; Maurage, C.A.; Mussini, J.M.; Vital, A.; Wechsler, J.; Bedossa, P. Chester-Erdheim disease: A neoplastic disorder. Hum. Pathol. 1999, 30, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Haroche, J.; Charlotte, F.; Arnaud, L.; von Deimling, A.; Hélias-Rodzewicz, Z.; Hervier, B.; Cohen-Aubart, F.; Launay, D.; Lesot, A.; Mokhtari, K.; et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 2012, 120, 2700–2703. [Google Scholar] [CrossRef] [PubMed]
- Diamond, E.L.; Durham, B.H.; Haroche, J.; Yao, Z.; Ma, J.; Parikh, S.A.; Wang, Z.; Choi, J.; Kim, E.; Cohen-Aubart, F.; et al. Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discov. 2016, 6, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Emile, J.-F.; Diamond, E.L.; Hélias-Rodzewicz, Z.; Cohen-Aubart, F.; Charlotte, F.; Hyman, D.M.; Kim, E.; Rampal, R.; Patel, M.; Ganzel, C.; et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 2014, 124, 3016–3019. [Google Scholar] [CrossRef] [PubMed]
- Hervier, B.; Haroche, J.; Arnaud, L.; Charlotte, F.; Donadieu, J.; Néel, A.; Lifermann, F.; Villabona, C.; Graffin, B.; Hermine, O.; et al. Association of both Langerhans cell histiocytosis and Erdheim-Chester disease linked to the BRAFV600E mutation. Blood 2014, 124, 1119–1126. [Google Scholar] [CrossRef]
- Gianfreda, D.; Nicastro, M.; Galetti, M.; Alberici, F.; Corradi, D.; Becchi, G.; Baldari, G.; De Filippo, M.; Ferretti, S.; Moroni, G.; et al. Sirolimus plus prednisone for Erdheim-Chester disease: An open-label trial. Blood 2015, 126, 1163–1171. [Google Scholar] [CrossRef]
- O, J.H.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. Faculty opinions recommendation of New Response Evaluation Criteria in solid tumours: Revised RECIST guideline (version 1.1). Fac. Opin.–Post-Publ. Peer Rev. Biomed. Lit. 2015. [Google Scholar] [CrossRef]
- Bartoli, L.; Angeli, F.; Stefanizzi, A.; Fabrizio, M.; Paolisso, P.; Bergamaschi, L.; Broccoli, A.; Zinzani, P.L.; Galiè, N.; Rucci, P.; et al. Genetics and clinical phenotype of Erdheim–Chester disease: A case report of constrictive pericarditis and a systematic review of the literature. Front. Cardiovasc. Med. 2022, 9, 876294. [Google Scholar] [CrossRef]
- Haroun, F.; Millado, K.; Tabbara, I. Erdheim–Chester Disease: Comprehensive Review of Molecular Profiling and Therapeutic Advances. Anticancer Res. 2017, 37, 2777–2783. [Google Scholar] [CrossRef]
- Haroche, J.; Cohen-Aubart, F.; Emile, J.; Maksud, P.; Drier, A.; Tolédano, D.; Barete, S.; Charlotte, F.; Cluzel, P.; Donadieu, J.; et al. Reproducible and Sustained Efficacy of Targeted Therapy with Vemurafenib in Patients with BRAFV600E-Mutated Erdheim-Chester Disease. J. Clin. Oncol. 2015, 33, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Diamond, E.L.; Subbiah, V.; Lockhart, A.; Blay, J.; Puzanov, I.; Chau, I.; Raje, N.; Wolf, J.; Erinjeri, J.; Torrisi, J.; et al. Vemurafenib for BRAF V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncol. 2018, 4, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.; Chau, I.; Blay, J.; Wolf, J.; Raje, N.; Diamond, E.; Hollebecque, A.; et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, M.L.M.; Neefjes, J.; Spaapen, R.M. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol. Immunol. 2021, 136, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Papo, M.; Cohen-Aubart, F.; Trefond, L.; Bauvois, A.; Amoura, Z.; Emile, J.F.; Haroche, J. Systemic Histiocytosis (Langerhans Cell Histiocytosis, Erdheim-Chester Disease, Destombes-Rosai-Dorfman Disease): From Oncogenic Mutations to Inflammatory Disorders. Curr. Oncol. Rep. 2019, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Emile, J.-F.; Abla, O.; Fraitag, S.; Horne, A.; Haroche, J.; Donadieu, J.; Requena-Caballero, L.; Jordan, M.B.; Abdel-Wahab, O.; Allen, C.E.; et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 2016, 127, 2672–2681. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Ginhoux, F.; Jakubzick, C.; Naik, S.H.; Onai, N.; Schraml, B.U.; Segura, E.; Tussiwand, R.; Yona, S. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014, 14, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Razanamahery, J.; Samson, M.; Guy, J.; Racine, J.; Row, C.; Greigert, H.; Nicolas, B.; Francois, S.; Emile, J.-F.; Cohen-Aubart, F.; et al. Specific blood monocyte distribution in histiocytoses correlates with vascular involvement and disease activity. Haematologica 2023, 108, 3444–3448. [Google Scholar] [CrossRef]
- Reynolds, S.B.; Wilcox, S.; Li, Q.; Ahmed, A.Z. Investigating the correlation between small molecular inhibitor utilization, peripheral blood monocytes, and treatment outcomes in Rosai Dorfman disease. Ann. Hematol. 2024, 103, 37–59. [Google Scholar] [CrossRef]
- Referenced with Permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Guideline Name V.X.202X. © National Comprehensive Cancer Network, Inc. 202X. All Rights Reserved. To View the Most Recent and Complete Version of the Guideline. Available online: https://www.nccn.org/ (accessed on 6 March 2024).
Response Assessment Tool | Most Utilized in | Stable Disease (SD) | Partial Response (PR) | Complete Response (CR) | Progressive Disease (PD) |
---|---|---|---|---|---|
Clinical | Localized ECD | Grossly unchanged by serial physical examination and/or serial photoimaging or laboratory values | Grossly regressed by serial physical examination and/or serial photoimaging | Grossly resolved by serial physical examination and/or serial photoimaging | Grossly enlarged from prior baseline by examination and/or serial photoimaging |
PERCIST [17] | Disseminated disease by PET | Not meeting other criteria | >30% decrease (minimum 0.8 units) in SUL peak | Normalization of all lesions to an SUL equal to surrounding tissue and mean in liver | >30% increase (minimum 0.8 units) in SUL peak or >75% TLG increase in the 5 highest metabolically active lesions |
RECIST 1.1 [18] | Disseminated, visceral disease or neurologic disease by CT and/or MRI | Not meeting other criteria | Sum ≥30% decrease in diameter of target lesion | Complete disappearance of any target lesions | Sum ≥20% increase in diameter of target lesion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilcox, S.R.; Reynolds, S.B.; Ahmed, A.Z. Erdheim–Chester Disease: Investigating the Correlation between Targeted Treatment Therapy and Disease Outcomes. Cancers 2024, 16, 1299. https://doi.org/10.3390/cancers16071299
Wilcox SR, Reynolds SB, Ahmed AZ. Erdheim–Chester Disease: Investigating the Correlation between Targeted Treatment Therapy and Disease Outcomes. Cancers. 2024; 16(7):1299. https://doi.org/10.3390/cancers16071299
Chicago/Turabian StyleWilcox, Sabrina R., Samuel B. Reynolds, and Asra Z. Ahmed. 2024. "Erdheim–Chester Disease: Investigating the Correlation between Targeted Treatment Therapy and Disease Outcomes" Cancers 16, no. 7: 1299. https://doi.org/10.3390/cancers16071299
APA StyleWilcox, S. R., Reynolds, S. B., & Ahmed, A. Z. (2024). Erdheim–Chester Disease: Investigating the Correlation between Targeted Treatment Therapy and Disease Outcomes. Cancers, 16(7), 1299. https://doi.org/10.3390/cancers16071299