Salvage Androgen Deprivation Therapy as Potential Treatment for Recurrence after Robot-Assisted Radical Prostatectomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef] [PubMed]
- Kano, H.; Kadono, Y.; Kadomoto, S.; Iwamoto, H.; Yaegashi, H.; Iijima, M.; Kawaguchi, S.; Nohara, T.; Shigehara, K.; Izumi, K.; et al. Similar Recurrence Rate Between Gleason Score of Six at Positive Margin and Negative Margin After Radical Prostatectomy. Anticancer. Res. 2021, 41, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Humphreys, E.B.; Mangold, L.A.; Eisenberger, M.; Dorey, F.J.; Walsh, P.C.; Partin, A.W. Death in patients with recurrent prostate cancer after radical prostatectomy: Prostate-specific antigen doubling time subgroups and their associated contributions to all-cause mortality. J. Clin. Oncol. 2007, 25, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, B.; Ai, Q.; Zhang, Y.; Lv, X.; Li, H.; Ma, X.; Zhang, X. Long-term cancer control outcomes of robot-assisted radical prostatectomy for prostate cancer treatment: A meta-analysis. Int. Urol. Nephrol. 2017, 49, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Trock, B.J.; Han, M.; Freedland, S.J.; Humphreys, E.B.; DeWeese, T.L.; Partin, A.W.; Walsh, P.C. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 2008, 299, 2760–2769. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Niwa, N.; Hagiwara, M.; Kosaka, T.; Takeda, T.; Yasumizu, Y.; Tanaka, N.; Morita, S.; Mizuno, R.; Shinojima, T.; et al. Long-term follow-up comparing salvage radiation therapy and androgen-deprivation therapy for biochemical recurrence after radical prostatectomy. Int. J. Clin. Oncol. 2021, 26, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Shipley, W.U.; Seiferheld, W.; Lukka, H.R.; Major, P.P.; Heney, N.M.; Grignon, D.J.; Sartor, O.; Patel, M.P.; Bahary, J.P.; Zietman, A.L.; et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N. Engl. J. Med. 2017, 376, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Ghadjar, P.; Aebersold, D.M.; Albrecht, C.; Böhmer, D.; Flentje, M.; Ganswindt, U.; Höcht, S.; Hölscher, T.; Sedlmayer, F.; Wenz, F.; et al. Use of androgen deprivation and salvage radiation therapy for patients with prostate cancer and biochemical recurrence after prostatectomy. Strahlenther. Onkol. 2018, 194, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Artibani, W.; Porcaro, A.B.; De Marco, V.; Cerruto, M.A.; Siracusano, S. Management of Biochemical Recurrence after Primary Curative Treatment for Prostate Cancer: A Review. Urol. Int. 2018, 100, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; de Almeida Luz, M.; De Giorgi, U.; Gleave, M.; Gotto, G.T.; Pieczonka, C.M.; Haas, G.P.; Kim, C.S.; Ramirez-Backhaus, M.; Rannikko, A.; et al. Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer. N. Engl. J. Med. 2023, 389, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Wang, C.J.; Yan, J.; Liauw, S.L.; Straka, C.; Pistenmaa, D.; Xie, X.J.; Lotan, Y.; Roehrborn, C.; Kim, D.N. Long-term Outcome of Prostate Cancer Patients Who Exhibit Biochemical Failure Despite Salvage Radiation Therapy After Radical Prostatectomy. Am. J. Clin. Oncol. 2017, 40, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Røder, M.A.; Brasso, K.; Christensen, I.J.; Johansen, J.; Langkilde, N.C.; Hvarness, H.; Carlsson, S.; Jakobsen, H.; Borre, M.; Iversen, P. Survival after radical prostatectomy for clinically localised prostate cancer: A population-based study. BJU Int. 2014, 113, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Kim, J.; Kim, W.J. How can we best manage biochemical failure after radical prostatectomy? Investig. Clin. Urol. 2022, 63, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.; Roberts, M.J.; Klotz, L.; Higano, C.S.; Papa, N.; Sengupta, S.; Bolton, D.; Lawrentschuk, N. Intermittent versus continuous androgen deprivation therapy for advanced prostate cancer. Nat. Rev. Urol. 2020, 17, 469–481. [Google Scholar] [CrossRef]
- Fukagai, T.; Namiki, T.S.; Carlile, R.G.; Yoshida, H.; Namiki, M. Comparison of the clinical outcome after hormonal therapy for prostate cancer between Japanese and Caucasian men. BJU Int. 2006, 97, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- Alibhai, S.M.; Duong-Hua, M.; Sutradhar, R.; Fleshner, N.E.; Warde, P.; Cheung, A.M.; Paszat, L.F. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J. Clin. Oncol. 2009, 27, 3452–3458. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Bosnyak, Z.; Malmberg, A.; Adolfsson, J.; Keating, N.L.; Van Hemelrijck, M. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: A meta-analysis. Eur. Urol. 2015, 68, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.T.; Pfeiffer, R.M.; Philips, G.K.; Barac, A.; Fu, A.Z.; Penson, D.F.; Zhou, Y.; Potosky, A.L. Risks of Serious Toxicities from Intermittent versus Continuous Androgen Deprivation Therapy for Advanced Prostate Cancer: A Population Based Study. J. Urol. 2017, 197, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Shelley, M.; Harrison, C.; Coles, B.; Wilt, T.J.; Mason, M.D. Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst. Rev. 2006, 2006, Cd006019. [Google Scholar] [CrossRef] [PubMed]
- Yokomizo, A.; Wakabayashi, M.; Satoh, T.; Hashine, K.; Inoue, T.; Fujimoto, K.; Egawa, S.; Habuchi, T.; Kawashima, K.; Ishizuka, O.; et al. Salvage Radiotherapy Versus Hormone Therapy for Prostate-specific Antigen Failure After Radical Prostatectomy: A Randomised, Multicentre, Open-label, Phase 3 Trial (JCOG0401). Eur. Urol. 2020, 77, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, N.; Shiota, M.; Tomisaki, I.; Minato, A. Gene Polymorphism-related Individual and Interracial Differences in the Outcomes of Androgen Deprivation Therapy for Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, 337–342. [Google Scholar] [CrossRef]
- Shiota, M.; Akamatsu, S.; Narita, S.; Terada, N.; Fujimoto, N.; Eto, M. Genetic Polymorphisms and Pharmacotherapy for Prostate Cancer. JMA J. 2021, 4, 99–111. [Google Scholar] [CrossRef]
- Crook, J.M.; O’Callaghan, C.J.; Duncan, G.; Dearnaley, D.P.; Higano, C.S.; Horwitz, E.M.; Frymire, E.; Malone, S.; Chin, J.; Nabid, A.; et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 2012, 367, 895–903. [Google Scholar] [CrossRef]
- Salciccia, S.; Frisenda, M.; Tufano, A.; Di Pierro, G.; Bevilacqua, G.; Rosati, D.; Gobbi, L.; Basile, G.; Moriconi, M.; Mariotti, G.; et al. Intermittent Versus Continuous Androgen Deprivation Therapy for Biochemical Progression After Primary Therapy in Hormone-Sensitive Nonmetastatic Prostate Cancer: Comparative Analysis in Terms of CRPC-M0 Progression. Clin. Genitourin. Cancer 2024, 22, 74–83. [Google Scholar] [CrossRef] [PubMed]
- van Dessel, L.F.; Reuvers, S.H.M.; Bangma, C.H.; Aluwini, S. Salvage radiotherapy after radical prostatectomy: Long-term results of urinary incontinence, toxicity and treatment outcomes. Clin. Transl. Radiat. Oncol. 2018, 11, 26–32. [Google Scholar] [CrossRef]
- Akaza, H. Future prospects for luteinizing hormone-releasing hormone analogues in prostate cancer treatment. Pharmacology 2010, 85, 110–120. [Google Scholar] [CrossRef]
- Wang, L.H.; Liu, C.K.; Chen, C.H.; Kao, L.T.; Lin, H.C.; Huang, C.Y. No increased risk of coronary heart disease for patients receiving androgen deprivation therapy for prostate cancer in Chinese/Taiwanese men. Andrology 2016, 4, 128–132. [Google Scholar] [CrossRef]
- Niu, Y.; Altuwaijri, S.; Lai, K.P.; Wu, C.T.; Ricke, W.A.; Messing, E.M.; Yao, J.; Yeh, S.; Chang, C. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 12182–12187. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, B.E.; Leong, K.G.; Yue, P.; Li, L.; Jhunjhunwala, S.; Chen, D.; Seo, K.; Modrusan, Z.; Gao, W.Q.; et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Res. 2012, 72, 527–536. [Google Scholar] [CrossRef]
- Kano, H.; Izumi, K.; Hiratsuka, K.; Toriumi, R.; Nakagawa, R.; Aoyama, S.; Kamijima, T.; Shimada, T.; Naito, R.; Kadomoto, S.; et al. Suppression of androgen receptor signaling induces prostate cancer migration via activation of the CCL20-CCR6 axis. Cancer Sci. 2022, 114, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Kano, H.; Izumi, K.; Nakagawa, R.; Toriumi, R.; Aoyama, S.; Kamijima, T.; Makino, T.; Naito, R.; Iwamoto, H.; Yaegashi, H.; et al. Bone Turnover Markers, n-Terminal Propeptide of Type I Procollagen and Tartrate-Resistant Acid Phosphatase Type 5b, for Predicting Castration Resistance in Prostate Cancer. Biomedicines 2024, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Kano, H.; Izumi, K.; Nakagawa, R.; Toriumi, R.; Aoyama, S.; Kamijima, T.; Shimada, T.; Naito, R.; Kadomoto, S.; Iwamoto, H.; et al. Role of Positive Biopsy Core Ratio in Prostate Cancer Patients. Anticancer. Res. 2023, 43, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Suzuki, K.; Arai, S.; Miyoshi, Y.; Umemoto, S.; Masumori, N.; Kamiya, N.; Ichikawa, T.; Kitagawa, Y.; Mizokami, A.; et al. Impact of pre-treatment prostate tissue androgen content on the prediction of castration-resistant prostate cancer development in patients treated with primary androgen deprivation therapy. Andrology 2013, 1, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Perachino, M.; Cavalli, V.; Bravi, F. Testosterone levels in patients with metastatic prostate cancer treated with luteinizing hormone-releasing hormone therapy: Prognostic significance? BJU Int. 2010, 105, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.; O’Callaghan, C.; Ding, K.; Toren, P.; Dearnaley, D.; Higano, C.S.; Horwitz, E.; Malone, S.; Goldenberg, L.; Gospodarowicz, M.; et al. Nadir testosterone within first year of androgen-deprivation therapy (ADT) predicts for time to castration-resistant progression: A secondary analysis of the PR-7 trial of intermittent versus continuous ADT. J. Clin. Oncol. 2015, 33, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Yonese, J.; Kawakami, S.; Ohkubo, Y.; Tatokoro, M.; Komai, Y.; Takeshita, H.; Ishikawa, Y.; Fukui, I. Preoperative serum testosterone level as an independent predictor of treatment failure following radical prostatectomy. Eur. Urol. 2007, 52, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Boorjian, S.A.; Inman, B.; Bagniewski, S.; Bergstralh, E.J.; Blute, M.L. Timing of androgen deprivation therapy and its impact on survival after radical prostatectomy: A matched cohort study. J. Urol. 2008, 179, 1830–1837; discussion 1837. [Google Scholar] [CrossRef] [PubMed]
- Cotter, S.E.; Chen, M.H.; Moul, J.W.; Lee, W.R.; Koontz, B.F.; Anscher, M.S.; Robertson, C.N.; Walther, P.J.; Polascik, T.J.; D’Amico, A.V. Salvage radiation in men after prostate-specific antigen failure and the risk of death. Cancer 2011, 117, 3925–3932. [Google Scholar] [CrossRef]
Characteristics | All Cases | Intermittent ADT Group * | |||
---|---|---|---|---|---|
No. patients | 85 | 69 | |||
Median age, year (IQR) | 69 | (65–73) | 68 | (64–73) | |
Median follow up, months (IQR) | 47 | (26–68) | 52 | (35–73) | |
Median PSA before RARP, ng/mL (IQR) | 7.8 | (5.6–12.1) | 8.5 | (5.6–12.8) | |
Biopsy Gleason grade group, n (%) | 1 | 13 | (15) | 11 | (16) |
2 | 22 | (26) | 19 | (28) | |
3 | 15 | (18) | 12 | (17) | |
4 | 25 | (29) | 20 | (29) | |
5 | 10 | (12) | 7 | (10) | |
Clinical T stage, n (%) | T2 | 79 | (93) | 65 | (94) |
T3 | 6 | (7) | 4 | (6) | |
Neoadjuvant ADT, n (%) | No | 66 | (78) | 53 | (77) |
Yes | 19 | (22) | 16 | (23) | |
Surgical margin, n (%) | Negative | 52 | (61) | 44 | (64) |
Positive | 33 | (39) | 25 | (36) | |
Surgical Gleason grade group, n (%) | 1 | 7 | (8) | 6 | (9) |
2 | 23 | (27) | 18 | (26) | |
3 | 26 | (31) | 22 | (32) | |
4 | 10 | (12) | 8 | (12) | |
5 | 9 | (10) | 5 | (7) | |
Not valued | 10 | (12) | 10 | (14) | |
Pathological T stage, n (%) | ≤2 | 47 | (55) | 39 | (57) |
≥3 | 38 | (45) | 30 | (43) | |
Pathological N stage, n (%) | N0 | 48 | (56) | 38 | (55) |
N1 | 5 | (6) | 4 | (6) | |
Nx | 32 | (38) | 27 | (39) | |
PSA nadir after RARP, ng/mL | <0.008 | 37 | (44) | 28 | (41) |
≥0.008 | 48 | (56) | 41 | (59) | |
PSA at treatment start, ng/mL (IQR) | 0.269 | (0.241–0.330) | 0.265 | (0.242–0.323) | |
Time from RARP to PSA failure, months (IQR) | 19 | (9–40) | 17 | (9–33) | |
Median PSA doubling time, months (IQR) | 7 | (4–12) | 7 | (4–11) | |
Metastasis at treatment start (%), n | No | 80 | (94) | 65 | (94) |
Yes | 3 | (4) | 2 | (3) | |
Missing data | 2 | (2) | 2 | (3) | |
Median testosterone level at the end of the first ADT, ng/mL | 0.07 | (0.03–0.13) | |||
Patients who progressed to CRPC, n | 5 | 1 | |||
All-cause death, n | 4 | 1 | |||
Prostate cancer-specific death, n | 2 | 0 |
Variables | Univariate Analyses | ||
---|---|---|---|
HR | 95% CI | p Value | |
Age | |||
<70 vs. ≥70, years | 6.75 | 0.75–61.14 | 0.089 |
PSA | |||
<10 vs. ≥10, ng/mL | 0.02 | 0.00–48.55 | 0.333 |
cT stage | |||
≤T2 vs. ≥T3 | 10.28 | 1.45–73.04 | 0.020 |
Biopsy GGG | |||
≤4 vs. 5 | 20.98 | 2.32–189.76 | 0.007 |
Neoadjuvant ADT | |||
No vs. Yes | 1.34 | 0.21–8.65 | 0.757 |
pT stage | |||
≤T2 vs. ≥T3 | 1.3 | 0.18–9.23 | 0.794 |
Surgical GGG | |||
≤4 vs. 5 | 27.49 | 2.91–260.00 | 0.004 |
Surgical margin | |||
Negative vs. Positive | 1.81 | 0.26–12.92 | 0.552 |
PSA nadir | |||
<0.008 vs. ≥0.008, ng/mL | 2.72 | 0.30–24.35 | 0.371 |
PSA at treatment start | |||
≤0.5 vs. >0.5, ng/mL | 9.27 | 1.53–56.05 | 0.015 |
PSA failure | |||
<10 vs. ≤10, months | 5.37 | 0.57–50.36 | 0.141 |
PSA doubling time | |||
>6 vs. ≤6, months | 0.02 | 0.00–22.76 | 0.264 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | ||||||
<70 vs. ≥70, years | 1.27 | 0.53–3.08 | 0.591 | |||
PSA | ||||||
<10 vs. ≥10, ng/mL | 1.29 | 0.54–3.07 | 0.572 | |||
cT stage | ||||||
≤T2 vs. ≥T3 | 0.49 | 0.07–3.68 | 0.489 | |||
Biopsy GGG | ||||||
≤4 vs. 5 | 0.75 | 0.17–3.24 | 0.700 | 1.21 | 0.15–9.85 | 0.857 |
Neoadjuvant ADT | ||||||
No vs. Yes | 1.49 | 0.60–3.72 | 0.393 | |||
pT stage | ||||||
≤T2 vs. ≥T3 | 0.87 | 0.37–2.09 | 0.763 | |||
Surgical GGG | ||||||
≤4 vs. 5 | 2.26 | 0.51–10.07 | 0.287 | |||
Surgical margin | ||||||
Negative vs. Positive | 1.66 | 0.70–3.96 | 0.251 | |||
PSA nadir | ||||||
<0.008 vs. ≥0.008, ng/mL | 0.75 | 0.31–1.78 | 0.513 | |||
PSA at treatment start | ||||||
≤0.5 vs. >0.5, ng/mL | 1.59 | 0.47–5.40 | 0.461 | |||
PSA failure | ||||||
>10 vs. ≤10, months | 1.01 | 0.42–2.46 | 0.977 | |||
PSA doubling time | ||||||
>6 vs. ≤6, months | 0.80 | 0.33–1.93 | 0.617 | 0.82 | 0.27–2.52 | 0.731 |
Testosterone | ||||||
≤0.03 vs. >0.03, ng/mL | 4.76 | 1.06–21.37 | 0.041 | 5.10 | 1.10–23.59 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kano, H.; Kadono, Y.; Naito, R.; Makino, T.; Iwamoto, H.; Yaegashi, H.; Kawaguchi, S.; Nohara, T.; Shigehara, K.; Izumi, K.; et al. Salvage Androgen Deprivation Therapy as Potential Treatment for Recurrence after Robot-Assisted Radical Prostatectomy. Cancers 2024, 16, 1304. https://doi.org/10.3390/cancers16071304
Kano H, Kadono Y, Naito R, Makino T, Iwamoto H, Yaegashi H, Kawaguchi S, Nohara T, Shigehara K, Izumi K, et al. Salvage Androgen Deprivation Therapy as Potential Treatment for Recurrence after Robot-Assisted Radical Prostatectomy. Cancers. 2024; 16(7):1304. https://doi.org/10.3390/cancers16071304
Chicago/Turabian StyleKano, Hiroshi, Yoshifumi Kadono, Renato Naito, Tomoyuki Makino, Hiroaki Iwamoto, Hiroshi Yaegashi, Shohei Kawaguchi, Takahiro Nohara, Kazuyoshi Shigehara, Kouji Izumi, and et al. 2024. "Salvage Androgen Deprivation Therapy as Potential Treatment for Recurrence after Robot-Assisted Radical Prostatectomy" Cancers 16, no. 7: 1304. https://doi.org/10.3390/cancers16071304
APA StyleKano, H., Kadono, Y., Naito, R., Makino, T., Iwamoto, H., Yaegashi, H., Kawaguchi, S., Nohara, T., Shigehara, K., Izumi, K., & Mizokami, A. (2024). Salvage Androgen Deprivation Therapy as Potential Treatment for Recurrence after Robot-Assisted Radical Prostatectomy. Cancers, 16(7), 1304. https://doi.org/10.3390/cancers16071304