Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Regimens
2.3. Clinical and Laboratory Assessments
2.4. PBMCs
2.5. Flow Cytometry
2.6. Immunohistochemistry (IHC)
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Lower CD8+ Tnaïve and Higher CD8+ Teff Proportion at Baseline in HCC Patients Compared to Controls
3.3. Relationship between Patient Background Characteristics and T Cell Subpopulation
3.4. Higher CD8+ TCM Proportion before Treatment Prolongs PFS
3.5. Increase in CD8+ TEM Proportions and Decrease in CD8+ Teff Proportions in the First 3 Weeks in the Response Group
3.6. Patients with High CD8+ TCM Cell Proportions at Baseline and Increased CD8+ TEM Cell Proportions after Treatment Have Prolonged PFS
3.7. Patients with Increased CD8+ TEM Cell Proportions after Treatment Have Prolonged OS
3.8. Correlation between Intratumoral CD8+ T Cell Infiltration and the Proportions of Peripheral CD8+ T Cell Subpopulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.; Abbasoglu Ozgoren, A.; Abdalla, S.; Abd-Allah, F.; et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kang, B.; Ha, Y.; Lee, S.H.; Kim, I.; Kim, H.; Lee, W.S.; Kim, G.; Jung, S.; Rha, S.Y.; et al. High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep. 2023, 5, 100672. [Google Scholar] [CrossRef] [PubMed]
- Chon, Y.E.; Cheon, J.; Kim, H.; Kang, B.; Ha, Y.; Kim, D.Y.; Hwang, S.G.; Chon, H.J.; Kim, B.K. Predictive biomarkers of survival in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab treatment. Cancer Med. 2023, 12, 2731–2738. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Fulgenzi, C.A.M.; D’Alessio, A.; Cheon, J.; Nishida, N.; Saeed, A.; Wietharn, B.; Cammarota, A.; Pressiani, T.; Personeni, N.; et al. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Prognostic Biomarkers in Unresectable Hepatocellular Carcinoma Treated with Atezolizumab plus Bevacizumab. Cancers 2022, 14, 5834. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Chen, Y.Y.; Kee, K.M.; Wang, C.C.; Tsai, M.C.; Kuo, Y.H.; Hung, C.H.; Li, W.F.; Lai, H.L.; Chen, Y.H. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Patients with Hepatocellular Carcinoma Receiving Atezolizumab Plus Bevacizumab. Cancers 2022, 14, 343. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Y.I.; Duda, D.G.; Awiwi, M.O.; Lee, S.S.; Altameemi, L.; Xiao, L.; Morris, J.S.; Wolff, R.A.; Elsayes, K.M.; Hatia, R.I.; et al. Plasma growth hormone is a potential biomarker of response to atezolizumab and bevacizumab in advanced hepatocellular carcinoma patients. Oncotarget 2022, 13, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W.; et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy—Development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hiam-Galvez, K.J.; Allen, B.M.; Spitzer, M.H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359. [Google Scholar] [CrossRef]
- Nabet, B.Y.; Esfahani, M.S.; Moding, E.J.; Hamilton, E.G.; Chabon, J.J.; Rizvi, H.; Steen, C.B.; Chaudhuri, A.A.; Liu, C.L.; Hui, A.B.; et al. Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell 2020, 183, 363–376.e313. [Google Scholar] [CrossRef]
- Tietze, J.K.; Angelova, D.; Heppt, M.V.; Reinholz, M.; Murphy, W.J.; Spannagl, M.; Ruzicka, T.; Berking, C. The proportion of circulating CD45RO+CD8+ memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur. J. Cancer 2017, 75, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Manjarrez-Orduño, N.; Menard, L.C.; Kansal, S.; Fischer, P.; Kakrecha, B.; Jiang, C.; Cunningham, M.; Greenawalt, D.; Patel, V.; Yang, M.; et al. Circulating T Cell Subpopulations Correlate with Immune Responses at the Tumor Site and Clinical Response to PD1 Inhibition in Non-Small Cell Lung Cancer. Front. Immunol. 2018, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, B.P.; Taylor, C.A.; Watson, R.A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahé, E.A.; Cooper, R.; Woodcock, V.; Traill, Z.; et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 2020, 26, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Simonds, E.F.; Bendall, S.C.; Gibbs, K.D., Jr.; Bruggner, R.V.; Linderman, M.D.; Sachs, K.; Nolan, G.P.; Plevritis, S.K. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 2011, 29, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef]
- Himmelsbach, V.; Pinter, M.; Scheiner, B.; Venerito, M.; Sinner, F.; Zimpel, C.; Marquardt, J.U.; Trojan, J.; Waidmann, O.; Finkelmeier, F. Efficacy and Safety of Atezolizumab and Bevacizumab in the Real-World Treatment of Advanced Hepatocellular Carcinoma: Experience from Four Tertiary Centers. Cancers 2022, 14, 1722. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Sakakura, K.; Mito, I.; Ida, S.; Chikamatsu, K. Dynamic changes in immune cell profile in head and neck squamous cell carcinoma: Immunomodulatory effects of chemotherapy. Cancer Sci. 2016, 107, 1065–1071. [Google Scholar] [CrossRef]
- Manjarrez-Orduño, N.; Menard, L.C.; Carman, J.A.; Suchard, S.J.; Casano, F.; Lee, D.; Daouti, S.; Habte, S.; Kansal, S.; Jiang, C.; et al. A Systemic Lupus Erythematosus Endophenotype Characterized by Increased CD8 Cytotoxic Signature Associates with Renal Involvement. ImmunoHorizons 2017, 1, 124–132. [Google Scholar] [CrossRef]
- Berger, C.; Jensen, M.C.; Lansdorp, P.M.; Gough, M.; Elliott, C.; Riddell, S.R. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 2008, 118, 294–305. [Google Scholar] [CrossRef]
- Wherry, E.J.; Teichgräber, V.; Becker, T.C.; Masopust, D.; Kaech, S.M.; Antia, R.; von Andrian, U.H.; Ahmed, R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 2003, 4, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Khatwani, N.; Searles, T.G.; Turk, M.J.; Angeles, C.V. Memory CD8+ T cell responses to cancer. Semin. Immunol. 2020, 49, 101435. [Google Scholar] [CrossRef]
- Motz, G.T.; Santoro, S.P.; Wang, L.P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 2014, 20, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wallin, J.J.; Bendell, J.C.; Funke, R.; Sznol, M.; Korski, K.; Jones, S.; Hernandez, G.; Mier, J.; He, X.; Hodi, F.S.; et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 7, 12624. [Google Scholar] [CrossRef]
- Das, R.; Verma, R.; Sznol, M.; Boddupalli, C.S.; Gettinger, S.N.; Kluger, H.; Callahan, M.; Wolchok, J.D.; Halaban, R.; Dhodapkar, M.V.; et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J. Immunol. 2015, 194, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Kim, Y.H.; Shevach, E.M. Control of Memory Phenotype T Lymphocyte Homeostasis: Role of Costimulation. J. Immunol. 2022, 208, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Felix, J.; Lambert, J.; Roelens, M.; Maubec, E.; Guermouche, H.; Pages, C.; Sidina, I.; Cordeiro, D.J.; Maki, G.; Chasset, F.; et al. Ipilimumab reshapes T cell memory subsets in melanoma patients with clinical response. Oncoimmunology 2016, 5, 1136045. [Google Scholar] [CrossRef]
- Zhang, P.; Côté, A.L.; de Vries, V.C.; Usherwood, E.J.; Turk, M.J. Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor. Cancer Res. 2007, 67, 6468–6476. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Pinter, M.; Pinato, D.J.; Ramadori, P.; Heikenwalder, M. NASH and Hepatocellular Carcinoma: Immunology and Immunotherapy. Clin. Cancer Res. 2023, 29, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Nouso, K.; Fujioka, S.I.; Kariyama, K.; Kobashi, H.; Uematsu, S.; Moriya, A.; Hagihara, H.; Takabatake, H.; Nakamura, S.; et al. The prediction of early progressive disease in patients with hepatocellular carcinoma receiving atezolizumab plus bevacizumab. Cancer Med. 2023, 12, 17559–17568. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Mamtani, R.; Gimotty, P.A.; Karasic, T.B.; Yang, Y.X. Outcomes of hepatocellular carcinoma by etiology with first-line atezolizumab and bevacizumab: A real-world analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Selection of Systemic Treatment Regimen for Unresectable Hepatocellular Carcinoma: Does Etiology Matter? Liver Cancer 2022, 11, 283–289. [Google Scholar] [CrossRef]
- Aoki, H.; Tsunoda, M.; Ogiwara, H.; Shimizu, H.; Abe, H.; Ogawa, T.; Abe, T.; Shichino, S.; Matsushima, K.; Ueha, S. Clonal Spreading of Tumor-Infiltrating T Cells Underlies the Robust Antitumor Immune Responses. Cancer Immunol. Res. 2023, 11, 847–862. [Google Scholar] [CrossRef]
- Jia, Q.; Zhou, J.; Chen, G.; Shi, Y.; Yu, H.; Guan, P.; Lin, R.; Jiang, N.; Yu, P.; Li, Q.J.; et al. Diversity index of mucosal resident T lymphocyte repertoire predicts clinical prognosis in gastric cancer. Oncoimmunology 2015, 4, e1001230. [Google Scholar] [CrossRef]
- Yamauchi, M.; Ono, A.; Amioka, K.; Fujii, Y.; Nakahara, H.; Teraoka, Y.; Uchikawa, S.; Fujino, H.; Nakahara, T.; Murakami, E.; et al. Lenvatinib activates anti-tumor immunity by suppressing immunoinhibitory infiltrates in the tumor microenvironment of advanced hepatocellular carcinoma. Commun. Med. 2023, 3, 152. [Google Scholar] [CrossRef]
Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|
p Value | HR (95% CI) | p Value | |
Age (<74 vs. ≥74 years) | 0.33 | ||
Sex (Male vs. Female) | 0.32 | ||
Etiology (HBV vs HCV vs. NBNC) | 0.07 | ||
CD4+ Tnaïve * (<30.28 vs. ≥30.28) | 0.49 | ||
CD4+ TCM * (<29.37 vs. ≥29.37) | 0.3 | ||
CD4+ TEM * (<26.15 vs. ≥26.15) | 0.15 | ||
CD4+ Teff* (<4.50 vs. ≥4.50) | 0.74 | ||
Treg * (<4.09 vs. ≥4.09) | 0.07 | ||
CD8+ Tnaïve * (<9.95 vs. ≥9.95) | 0.05 | ||
CD8+ TCM * (<5.72 vs. ≥5.72) | 0.005 | 0.44 (0.24–0.79) | 0.006 |
CD8+ TEM * (<19.34 vs. ≥19.34) | 0.71 | ||
CD8+ Teff * (<60.59 vs. ≥60.59) | 0.04 | 1.28 (0.67–2.44) | 0.46 |
Child–Pugh score ** (B vs A) | 0.53 | 1.65 (0.83–3.26) | 0.15 |
mALBI grade (1 vs. 2a/vs. b) | 0.28 | ||
Serum AFP value (<36.2 vs. ≥36.2), ng/mL | 0.54 | ||
Serum DCP value (≥328.5 vs. <328.5), mAU/mL | 0.99 | ||
Up-to-seven criteria (out vs. in) | 0.8 | ||
History of systemic treatment (with vs. without) | 0.36 | ||
History of TACE treatment (yes vs. no) | 0.76 | ||
Metastasis (yes vs. no) | 0.29 |
Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|
p Value | HR (95% CI) | p Value | |
Age (<74 vs. ≥74 years) | 0.19 | ||
Sex (Male vs. Female) | 0.49 | ||
Etiology (HBV vs. HCV vs. NBNC) | 0.15 | ||
CD4+ Tnaïve * (<30.28 vs. ≥30.28) | 0.88 | ||
CD4+ TCM * (<29.37 vs. ≥29.37) | 0.19 | ||
CD4+ TEM * (<26.15 vs. ≥26.15) | 0.7 | ||
CD4+ Teff * (<4.50 vs. ≥4.50) | 0.85 | ||
Treg * (<4.09 vs. ≥4.09) | 0.31 | ||
CD8+ Tnaïve * (<9.95 vs. ≥9.95) | 0.97 | ||
CD8+ TCM * (<5.72 vs. ≥5.72) | 0.74 | ||
CD8+ TEM * (<19.34 vs. ≥19.34) | 0.1 | ||
CD8+ Teff * (<60.59 vs. ≥60.59) | 0.28 | ||
Post-Pre CD8+ TEM (Increased vs. decreased) | 0.002 | 0.26 (0.10–0.67) | 0.006 |
Child–Pugh score (B vs. A) | 0.01 | 2.56 (1.09–6.02) | 0.03 |
mALBI grade (1 vs. 2a vs. 2b) | 0.14 | ||
Serum AFP value (<36.2 vs. ≥36.2), ng/mL | 0.12 | ||
Serum DCP value (≥328.5 vs. <328.5), mAU/mL | 0.02 | 1.15 (0.47–2.82) | 0.75 |
Up-to-seven criteria (out vs. in) | 0.01 | 2.4 (0.89–6.50) | 0.08 |
History of systemic treatment (with vs. without) | 0.58 | ||
History of TACE treatment (yes vs. no) | 0.79 | ||
Metastasis (yes vs. no) | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirane, Y.; Fujii, Y.; Ono, A.; Nakahara, H.; Hayes, C.N.; Miura, R.; Murakami, S.; Sakamoto, N.; Uchikawa, S.; Fujino, H.; et al. Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma. Cancers 2024, 16, 1328. https://doi.org/10.3390/cancers16071328
Shirane Y, Fujii Y, Ono A, Nakahara H, Hayes CN, Miura R, Murakami S, Sakamoto N, Uchikawa S, Fujino H, et al. Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma. Cancers. 2024; 16(7):1328. https://doi.org/10.3390/cancers16071328
Chicago/Turabian StyleShirane, Yuki, Yasutoshi Fujii, Atsushi Ono, Hikaru Nakahara, Clair Nelson Hayes, Ryoichi Miura, Serami Murakami, Naoya Sakamoto, Shinsuke Uchikawa, Hatsue Fujino, and et al. 2024. "Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma" Cancers 16, no. 7: 1328. https://doi.org/10.3390/cancers16071328
APA StyleShirane, Y., Fujii, Y., Ono, A., Nakahara, H., Hayes, C. N., Miura, R., Murakami, S., Sakamoto, N., Uchikawa, S., Fujino, H., Nakahara, T., Murakami, E., Yamauchi, M., Miki, D., Kawaoka, T., Arihiro, K., Tsuge, M., & Oka, S. (2024). Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma. Cancers, 16(7), 1328. https://doi.org/10.3390/cancers16071328