Clinical Relevance of Physical Function Outcomes in Cancer Cachexia
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Cancer Cachexia
1.2. Establishing Clinically Meaningful Outcomes
1.3. Purpose of Review and Summary of Findings
2. Materials and Methods
3. Results
3.1. Functional Impairment from Cross-Sectional Comparisons
3.1.1. Objective Physical Function
3.1.2. Subjective Physical Function
3.2. Functional Changes from Interventional Studies
3.2.1. Interventions Targeting Skeletal Muscles
3.2.2. Interventions Targeting Appetite
3.2.3. Immunomodulators and Oral Supplements
4. Discussion
4.1. Functional Impairment at a Single Point in Time
4.2. Important Functional Change over Time
5. Limitations
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Amano, K.; Arakawa, S.; Hopkinson, J.B.; Baracos, V.E.; Oyamada, S.; Koshimoto, S.; Mori, N.; Ishiki, H.; Morita, T.; Takeuchi, T.; et al. Factors Associated with Practice of Multimodal Care for Cancer Cachexia Among Physicians and Nurses Engaging in Cancer Care. JCO Oncol. Pract. 2023, 19, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Gouldthorpe, C.; Power, J.; Taylor, A.; Davies, A. Specialist Palliative Care for Patients with Cancer: More Than End-of-Life Care. Cancers 2023, 15, 3551. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, B.R.; Temel, J.S.; Temin, S.; Smith, T.J. Integration of Palliative Care Into Standard Oncology Care: ASCO Clinical Practice Guideline Update Summary. J. Oncol. Pract. 2017, 13, 119–121. [Google Scholar] [CrossRef]
- Vagnildhaug, O.M.; Balstad, T.R.; Almberg, S.S.; Brunelli, C.; Knudsen, A.K.; Kaasa, S.; Thronaes, M.; Laird, B.; Solheim, T.S. A cross-sectional study examining the prevalence of cachexia and areas of unmet need in patients with cancer. Support. Care Cancer 2018, 26, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J.; Morley, J.E.; Argiles, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Harris, T.; Leveille, S.G.; Visser, M.; Foley, D.; Masaki, K.; Guralnik, J.M. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M168–M173. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2007, 36, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Fram, J.; Vail, C.; Roy, I. Assessment of Cancer-Associated Cachexia—How to Approach Physical Function Evaluation. Curr. Oncol. Rep. 2022, 24, 751–761. [Google Scholar] [CrossRef]
- Crawford, J.; Johnston, M.; Hancock, M.; Small, S.; Taylor, R.; Dalton, J.; Steiner, M. Enobosarm, a selective androgen receptor modulator (SARM) increases lean body mass (LBM) in advanced NSCLC patients: Updated results of two pivotal, international phase 3 trials. Support. Care Cancer 2014, 22, S30. [Google Scholar]
- Currow, D.; Temel, J.S.; Abernethy, A.; Milanowski, J.; Friend, J.; Fearon, K.C. ROMANA 3: A phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann. Oncol. 2017, 28, 1949–1956. [Google Scholar] [CrossRef]
- Madeddu, C.; Dessi, M.; Panzone, F.; Serpe, R.; Antoni, G.; Cau, M.C.; Montaldo, L.; Mela, Q.; Mura, M.; Astara, G.; et al. Randomized phase III clinical trial of a combined treatment with carnitine + celecoxib +/− megestrol acetate for patients with cancer-related anorexia/cachexia syndrome. Clin. Nutr. 2012, 31, 176–182. [Google Scholar] [CrossRef]
- Mantovani, G.; Maccio, A.; Madeddu, C.; Serpe, R.; Massa, E.; Dessi, M.; Panzone, F.; Contu, P. Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia. Oncologist 2010, 15, 200–211. [Google Scholar] [CrossRef]
- Temel, J.S.; Abernethy, A.P.; Currow, D.C.; Friend, J.; Duus, E.M.; Yan, Y.; Fearon, K.C. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): Results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016, 17, 519–531. [Google Scholar] [CrossRef]
- Garcia, J.M.; Boccia, R.V.; Graham, C.D.; Yan, Y.; Duus, E.M.; Allen, S.; Friend, J. Anamorelin for patients with cancer cachexia: An integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 2015, 16, 108–116. [Google Scholar] [CrossRef]
- McDonald, J.; Sayers, J.; Anker, S.D.; Arends, J.; Balstad, T.R.; Baracos, V.; Brown, L.; Bye, A.; Dajani, O.; Dolan, R.; et al. Physical function endpoints in cancer cachexia clinical trials: Systematic Review 1 of the cachexia endpoints series. J. Cachexia Sarcopenia Muscle 2023, 14, 1932–1948. [Google Scholar] [CrossRef]
- Duong, T.; Canbek, J.; Birkmeier, M.; Nelson, L.; Siener, C.; Fernandez-Fernandez, A.; Henricson, E.; McDonald, C.M.; Gordish-Dressman, H.; Investigators, C.-D. The Minimal Clinical Important Difference (MCID) in Annual Rate of Change of Timed Function Tests in Boys with DMD. J. Neuromuscul. Dis. 2021, 8, 939–948. [Google Scholar] [CrossRef]
- Koynova, D.; Luhmann, R.; Fischer, R. A Framework for Managing the Minimal Clinically Important Difference in Clinical Trials. Ther. Innov. Regul. Sci. 2013, 47, 447–454. [Google Scholar] [CrossRef]
- Ousmen, A.; Touraine, C.; Deliu, N.; Cottone, F.; Bonnetain, F.; Efficace, F.; Bredart, A.; Mollevi, C.; Anota, A. Distribution- and anchor-based methods to determine the minimally important difference on patient-reported outcome questionnaires in oncology: A structured review. Health Qual. Life Outcomes 2018, 16, 228. [Google Scholar] [CrossRef]
- Turner, D.; Schunemann, H.J.; Griffith, L.E.; Beaton, D.E.; Griffiths, A.M.; Critch, J.N.; Guyatt, G.H. The minimal detectable change cannot reliably replace the minimal important difference. J. Clin. Epidemiol. 2010, 63, 28–36. [Google Scholar] [CrossRef]
- Gamper, E.M.; Musoro, J.Z.; Coens, C.; Stelmes, J.J.; Falato, C.; Groenvold, M.; Velikova, G.; Cocks, K.; Flechtner, H.H.; King, M.T.; et al. Minimally important differences for the EORTC QLQ-C30 in prostate cancer clinical trials. BMC Cancer 2021, 21, 1083. [Google Scholar] [CrossRef]
- Hong, F.; Bosco, J.L.; Bush, N.; Berry, D.L. Patient self-appraisal of change and minimal clinically important difference on the European organization for the research and treatment of cancer quality of life questionnaire core 30 before and during cancer therapy. BMC Cancer 2013, 13, 165. [Google Scholar] [CrossRef]
- Raman, S.; Ding, K.; Chow, E.; Meyer, R.M.; van der Linden, Y.M.; Roos, D.; Hartsell, W.F.; Hoskin, P.; Wu, J.S.Y.; Nabid, A.; et al. Minimal clinically important differences in the EORTC QLQ-C30 and brief pain inventory in patients undergoing re-irradiation for painful bone metastases. Qual. Life Res. 2018, 27, 1089–1098. [Google Scholar] [CrossRef]
- Bohannon, R.W. Minimal clinically important difference for grip strength: A systematic review. J. Phys. Ther. Sci. 2019, 31, 75–78. [Google Scholar] [CrossRef]
- Puhan, M.A.; Chandra, D.; Mosenifar, Z.; Ries, A.; Make, B.; Hansel, N.N.; Wise, R.A.; Sciurba, F.; For the National Emphysema Treatment Trial (NETT) Research Group. The minimal important difference of exercise tests in severe COPD. Eur. Respir. J. 2011, 37, 784–790. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Crouch, R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2017, 23, 377–381. [Google Scholar] [CrossRef]
- Crosby, R.D.; Kolotkin, R.L.; Williams, G.R. Defining clinically meaningful change in health-related quality of life. J. Clin. Epidemiol. 2003, 56, 395–407. [Google Scholar] [CrossRef]
- Lydick, E.; Epstein, R.S. Interpretation of quality of life changes. Qual. Life Res. 1993, 2, 221–226. [Google Scholar] [CrossRef]
- Wyrwich, K.W.; Tierney, W.M.; Wolinsky, F.D. Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J. Clin. Epidemiol. 1999, 52, 861–873. [Google Scholar] [CrossRef]
- McDonald, C.M.; Henricson, E.K.; Abresch, R.T.; Florence, J.; Eagle, M.; Gappmaier, E.; Glanzman, A.M.; PTC124-GD-007-DMD Study Group; Spiegel, R.; Barth, J.; et al. The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: Reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve 2013, 48, 357–368. [Google Scholar] [CrossRef]
- Benaim, C.; Blaser, S.; Leger, B.; Vuistiner, P.; Luthi, F. “Minimal clinically important difference” estimates of 6 commonly-used performance tests in patients with chronic musculoskeletal pain completing a work-related multidisciplinary rehabilitation program. BMC Musculoskelet. Disord. 2019, 20, 16. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Wynne, S.C.; Patel, S.; Barker, R.E.; Jones, S.E.; Walsh, J.A.; Kon, S.S.; Cairn, J.; Loebinger, M.R.; Wilson, R.; Man, W.D.; et al. Anxiety and depression in bronchiectasis: Response to pulmonary rehabilitation and minimal clinically important difference of the Hospital Anxiety and Depression Scale. Chron. Respir. Dis. 2020, 17, 1479973120933292. [Google Scholar] [CrossRef]
- Anderson, L.J.; Lee, J.; Mallen, M.C.; Migula, D.; Liu, H.; Wu, P.C.; Dash, A.; Garcia, J.M. Evaluation of physical function and its association with body composition, quality of life and biomarkers in cancer cachexia patients. Clin. Nutr. 2021, 40, 978–986. [Google Scholar] [CrossRef]
- Burney, B.O.; Hayes, T.G.; Smiechowska, J.; Cardwell, G.; Papusha, V.; Bhargava, P.; Konda, B.; Auchus, R.J.; Garcia, J.M. Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J. Clin. Endocrinol. Metab. 2012, 97, E700–E709. [Google Scholar] [CrossRef]
- Cong, M.; Song, C.; Xu, H.; Song, C.; Wang, C.; Fu, Z.; Ba, Y.; Wu, J.; Xie, C.; Chen, G.; et al. The patient-generated subjective global assessment is a promising screening tool for cancer cachexia. BMJ Support. Palliat. Care 2022, 12, e39–e46. [Google Scholar] [CrossRef]
- Dolin, T.G.; Mikkelsen, M.K.; Jakobsen, H.L.; Vinther, A.; Zerahn, B.; Nielsen, D.L.; Johansen, J.S.; Lund, C.M.; Suetta, C. The prevalence of sarcopenia and cachexia in older patients with localized colorectal cancer. J. Geriatr. Oncol. 2023, 14, 101402. [Google Scholar] [CrossRef]
- Hadzibegovic, S.; Porthun, J.; Lena, A.; Weinlander, P.; Luck, L.C.; Potthoff, S.K.; Rosnick, L.; Frohlich, A.K.; Ramer, L.V.; Sonntag, F.; et al. Hand grip strength in patients with advanced cancer: A prospective study. J. Cachexia Sarcopenia Muscle 2023, 14, 1682–1694. [Google Scholar] [CrossRef]
- Ohmae, N.; Yasui-Yamada, S.; Furumoto, T.; Wada, K.; Hayashi, H.; Kitao, M.; Yamanaka, A.; Kubo, M.; Matsuoka, M.; Kamimura, S.; et al. Muscle mass, quality, and strength; physical function and activity; and metabolic status in cachectic patients with head and neck cancer. Clin. Nutr. ESPEN 2023, 53, 113–119. [Google Scholar] [CrossRef]
- Stephens, N.A.; Gray, C.; MacDonald, A.J.; Tan, B.H.; Gallagher, I.J.; Skipworth, R.J.; Ross, J.A.; Fearon, K.C.; Greig, C.A. Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clin. Nutr. 2012, 31, 499–505. [Google Scholar] [CrossRef]
- Perera, S.; Mody, S.H.; Woodman, R.C.; Studenski, S.A. Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 2006, 54, 743–749. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Glenney, S.S. Minimal clinically important difference for change in comfortable gait speed of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2014, 20, 295–300. [Google Scholar] [CrossRef]
- Dobs, A.S.; Boccia, R.V.; Croot, C.C.; Gabrail, N.Y.; Dalton, J.T.; Hancock, M.L.; Johnston, M.A.; Steiner, M.S. Effects of enobosarm on muscle wasting and physical function in patients with cancer: A double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013, 14, 335–345. [Google Scholar] [CrossRef]
- Solheim, T.S.; Laird, B.J.A.; Balstad, T.R.; Stene, G.B.; Bye, A.; Johns, N.; Pettersen, C.H.; Fallon, M.; Fayers, P.; Fearon, K.; et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 778–788. [Google Scholar] [CrossRef]
- Wright, T.J.; Dillon, E.L.; Durham, W.J.; Chamberlain, A.; Randolph, K.M.; Danesi, C.; Horstman, A.M.; Gilkison, C.R.; Willis, M.; Richardson, G.; et al. A randomized trial of adjunct testosterone for cancer-related muscle loss in men and women. J. Cachexia Sarcopenia Muscle 2018, 9, 482–496. [Google Scholar] [CrossRef]
- Maccio, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Floris, C.; Sanna, E.; Cau, M.C.; Panzone, F.; Mantovani, G. A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: Evaluating the impact on metabolic and inflammatory profiles and quality of life. Gynecol. Oncol. 2012, 124, 417–425. [Google Scholar] [CrossRef]
- Cereda, E.; Turri, A.; Klersy, C.; Cappello, S.; Ferrari, A.; Filippi, A.R.; Brugnatelli, S.; Caraccia, M.; Chiellino, S.; Borioli, V.; et al. Whey protein isolate supplementation improves body composition, muscle strength, and treatment tolerance in malnourished advanced cancer patients undergoing chemotherapy. Cancer Med. 2019, 8, 6923–6932. [Google Scholar] [CrossRef]
- Jatoi, A.; Steen, P.D.; Atherton, P.J.; Moore, D.F.; Rowland, K.M.; Le-Lindqwister, N.A.; Adonizio, C.S.; Jaslowski, A.J.; Sloan, J.; Loprinzi, C. A double-blind, placebo-controlled randomized trial of creatine for the cancer anorexia/weight loss syndrome (N02C4): An Alliance trial. Ann. Oncol. 2017, 28, 1957–1963. [Google Scholar] [CrossRef]
- Herodes, M.; Anderson, L.J.; Shober, S.; Schur, E.A.; Graf, S.A.; Ammer, N.; Salas, R.; Marcelli, M.; Garcia, J.M. Pilot clinical trial of macimorelin to assess safety and efficacy in patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 2023, 14, 835–846. [Google Scholar] [CrossRef]
- Kouchaki, B.; Janbabai, G.; Alipour, A.; Ala, S.; Borhani, S.; Salehifar, E. Randomized double-blind clinical trial of combined treatment with megestrol acetate plus celecoxib versus megestrol acetate alone in cachexia-anorexia syndrome induced by GI cancers. Support. Care Cancer 2018, 26, 2479–2489. [Google Scholar] [CrossRef]
- Wen, H.S.; Li, X.; Cao, Y.Z.; Zhang, C.C.; Yang, F.; Shi, Y.M.; Peng, L.M. Clinical studies on the treatment of cancer cachexia with megestrol acetate plus thalidomide. Chemotherapy 2012, 58, 461–467. [Google Scholar] [CrossRef]
- Hunter, C.N.; Abdel-Aal, H.H.; Elsherief, W.A.; Farag, D.E.; Riad, N.M.; Alsirafy, S.A. Mirtazapine in Cancer-Associated Anorexia and Cachexia: A Double-Blind Placebo-Controlled Randomized Trial. J. Pain. Symptom Manag. 2021, 62, 1207–1215. [Google Scholar] [CrossRef]
- Laviano, A.; Calder, P.C.; Schols, A.; Lonnqvist, F.; Bech, M.; Muscaritoli, M. Safety and Tolerability of Targeted Medical Nutrition for Cachexia in Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Controlled Pilot Trial. Nutr. Cancer 2020, 72, 439–450. [Google Scholar] [CrossRef]
- Wiedenmann, B.; Malfertheiner, P.; Friess, H.; Ritch, P.; Arseneau, J.; Mantovani, G.; Caprioni, F.; Van Cutsem, E.; Richel, D.; DeWitte, M.; et al. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J. Support. Oncol. 2008, 6, 18–25. [Google Scholar]
- Famil-Dardashti, A.; Hajigholami, A.; Badri, S.; Yekdaneh, A.; Moghaddas, A. The role of Trigonella, Cichorium, and Foeniculum herbal combination in the treatment of cancer-induced Anorexia/Cachexia: A quasi-experimental study. Int. J. Cancer Manag. 2020, 13, e102515. [Google Scholar] [CrossRef]
- Xie, M.; Chen, X.; Qin, S.; Bao, Y.; Bu, K.; Lu, Y. Clinical study on thalidomide combined with cinobufagin to treat lung cancer cachexia. J. Cancer Res. Ther. 2018, 14, 226–232. [Google Scholar] [CrossRef]
- Gordon, J.N.; Trebble, T.M.; Ellis, R.D.; Duncan, H.D.; Johns, T.; Goggin, P.M. Thalidomide in the treatment of cancer cachexia: A randomised placebo controlled trial. Gut 2005, 54, 540–545. [Google Scholar] [CrossRef]
- Fairman, C.M.; Kendall, K.L.; Hart, N.H.; Taaffe, D.R.; Galvao, D.A.; Newton, R.U. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit. Rev. Oncol. Hematol. 2019, 133, 46–57. [Google Scholar] [CrossRef]
- Dans, M.; Kutner, J.S.; Agarwal, R.; Baker, J.N.; Bauman, J.R.; Beck, A.C.; Campbell, T.C.; Carey, E.C.; Case, A.A.; Dalal, S.; et al. NCCN Guidelines(R) Insights: Palliative Care, Version 2.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 780–788. [Google Scholar] [CrossRef]
- Arrieta, O.; Cardenas-Fernandez, D.; Rodriguez-Mayoral, O.; Gutierrez-Torres, S.; Castanares, D.; Flores-Estrada, D.; Reyes, E.; Lopez, D.; Barragan, P.; Soberanis Pina, P.; et al. Mirtazapine as Appetite Stimulant in Patients With Non-Small Cell Lung Cancer and Anorexia: A Randomized Clinical Trial. JAMA Oncol. 2024, 10, 305–314. [Google Scholar] [CrossRef]
- Kumar, N.; Barai, S.; Gambhir, S.; Rastogi, N. Effect of Mirtazapine on Gastric Emptying in Patients with Cancer-associated Anorexia. Indian. J. Palliat. Care 2017, 23, 335–337. [Google Scholar] [CrossRef]
- Laimer, M.; Kramer-Reinstadler, K.; Rauchenzauner, M.; Lechner-Schoner, T.; Strauss, R.; Engl, J.; Deisenhammer, E.A.; Hinterhuber, H.; Patsch, J.R.; Ebenbichler, C.F. Effect of mirtazapine treatment on body composition and metabolism. J. Clin. Psychiatry 2006, 67, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Smith, T.J.; Loprinzi, C.L.; Cancer Cachexia Expert Panel. Cancer Cachexia: ASCO Guideline Rapid Recommendation Update. J. Clin. Oncol. 2023, 41, 4178–4179. [Google Scholar] [CrossRef]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Bruera, E.; Del Fabbro, E.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of Cancer Cachexia: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef]
- Cella, D.; Hahn, E.A.; Dineen, K. Meaningful change in cancer-specific quality of life scores: Differences between improvement and worsening. Qual. Life Res. 2002, 11, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, T.; Sari, I.N.; Wijaya, Y.T.; Julianto, N.M.; Muhammad, J.A.; Lee, H.; Chae, J.H.; Kwon, H.Y. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol. 2023, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, A.; Ritter, H.L.; Dueck, A.; Nguyen, P.L.; Nikcevich, D.A.; Luyun, R.F.; Mattar, B.I.; Loprinzi, C.L. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 2010, 68, 234–239. [Google Scholar] [CrossRef]
- Alley, D.E.; Shardell, M.D.; Peters, K.W.; McLean, R.R.; Dam, T.T.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Grip strength cutpoints for the identification of clinically relevant weakness. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Guralnik, J.; Bandeen-Roche, K.; Bhasin, S.A.R.; Eremenco, S.; Landi, F.; Muscedere, J.; Perera, S.; Reginster, J.Y.; Woodhouse, L.; Vellas, B. Clinically Meaningful Change for Physical Performance: Perspectives of the ICFSR Task Force. J. Frailty Aging 2020, 9, 9–13. [Google Scholar] [CrossRef]
- Borg, J.J.; Anker, S.D.; Rosano, G.; Serracino-Inglott, A.; Strasser, F. Multimodal management as requirement for the clinical use of anticachexia drugs—A regulatory and a clinical perspective. Curr. Opin. Support. Palliat. Care 2015, 9, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Bachman, S.L.; Lyden, K.; Clay, I. Measuring What Is Meaningful in Cancer Cachexia Clinical Trials: A Path Forward With Digital Measures of Real-World Physical Behavior. JCO Clin. Cancer Inform. 2023, 7, e2300055. [Google Scholar] [CrossRef] [PubMed]
- Blum, D.; Vagnildhaug, O.M.; Stene, G.B.; Maddocks, M.; Sorensen, J.; Laird, B.J.A.; Prado, C.M.; Skeidsvoll Solheim, T.; Arends, J.; Hopkinson, J.; et al. Top Ten Tips Palliative Care Clinicians Should Know About Cachexia. J. Palliat. Med. 2023, 26, 1133–1138. [Google Scholar] [CrossRef]
- Garcia, J.M.; Dunne, R.F.; Santiago, K.; Martin, L.; Birnbaum, M.J.; Crawford, J.; Hendifar, A.E.; Kochanczyk, M.; Moravek, C.; Piccinin, D.; et al. Addressing unmet needs for people with cancer cachexia: Recommendations from a multistakeholder workshop. J. Cachexia Sarcopenia Muscle 2022, 13, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, J.B. Educational needs of self-care in cachectic cancer patients and caregivers. Curr. Opin. Oncol. 2023, 35, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobaus, N.; Reiss, J.; Schulzke, J.; Valentini, L.; Pirlich, M. Effect of sexual dimorphism on muscle strength in cachexia. J. Cachexia Sarcopenia Muscle 2012, 3, 111–116. [Google Scholar] [CrossRef]
- Wright, A.; Hannon, J.; Hegedus, E.J.; Kavchak, A.E. Clinimetrics corner: A closer look at the minimal clinically important difference (MCID). J. Man. Manip. Ther. 2012, 20, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Antoun, S.; Raynard, B. Muscle protein anabolism in advanced cancer patients: Response to protein and amino acids support, and to physical activity. Ann. Oncol. 2018, 29, ii10–ii17. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.T.; Barnette, K.G.; Bohl, C.E.; Hancock, M.L.; Rodriguez, D.; Dodson, S.T.; Morton, R.A.; Steiner, M.S. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: Results of a double-blind, placebo-controlled phase II trial. J. Cachexia Sarcopenia Muscle 2011, 2, 153–161. [Google Scholar] [CrossRef]
- Evans, M.; Guthrie, N.; Pezzullo, J.; Sanli, T.; Fielding, R.A.; Bellamine, A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: A randomized, double-blind placebo-controlled study. Nutr. Metab. 2017, 14, 7. [Google Scholar] [CrossRef]
- Ruiz-Garcia, V.; Lopez-Briz, E.; Carbonell-Sanchis, R.; Bort-Marti, S.; Gonzalvez-Perales, J.L. Megestrol acetate for cachexia-anorexia syndrome. A systematic review. J. Cachexia Sarcopenia Muscle 2018, 9, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.L.; Teoh, S.E.; Yaow, C.Y.L.; Lin, D.J.; Masuda, Y.; Han, M.X.; Yeo, W.S.; Ng, Q.X. A Systematic Review and Meta-Analysis of the Clinical Use of Megestrol Acetate for Cancer-Related Anorexia/Cachexia. J. Clin. Med. 2022, 11, 3756. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Uchino, J.; Yokoyama, T.; Naito, T.; Kondo, M.; Yamada, K.; Kitajima, H.; Yoshimori, K.; Sato, K.; Saito, H.; et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 2018, 124, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Katakami, N.; Yokoyama, T.; Atagi, S.; Yoshimori, K.; Kagamu, H.; Saito, H.; Takiguchi, Y.; Aoe, K.; Koyama, A.; et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: Results of a randomized phase 2 trial. Support. Care Cancer 2016, 24, 3495–3505. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.L.; Holland, A.E.; Gordon, I.R.; Denehy, L. Minimal important difference of the 6-minute walk distance in lung cancer. Chron. Respir. Dis. 2015, 12, 146–154. [Google Scholar] [CrossRef]
- Holland, A.E.; Hill, C.J.; Rasekaba, T.; Lee, A.; Naughton, M.T.; McDonald, C.F. Updating the minimal important difference for six-minute walk distance in patients with chronic obstructive pulmonary disease. Arch. Phys. Med. Rehabil. 2010, 91, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Tager, T.; Hanholz, W.; Cebola, R.; Frohlich, H.; Franke, J.; Doesch, A.; Katus, H.A.; Wians, F.H., Jr.; Frankenstein, L. Minimal important difference for 6-minute walk test distances among patients with chronic heart failure. Int. J. Cardiol. 2014, 176, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Mathai, S.C.; Puhan, M.A.; Lam, D.; Wise, R.A. The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 428–433. [Google Scholar] [CrossRef]
- Smith, S.M.; Dworkin, R.H.; Turk, D.C.; McDermott, M.P.; Eccleston, C.; Farrar, J.T.; Rowbotham, M.C.; Bhagwagar, Z.; Burke, L.B.; Cowan, P.; et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020, 161, 2446–2461. [Google Scholar] [CrossRef]
Study Design and Outcomes | Outcome Averages by Group A | MID Estimates B | |
---|---|---|---|
Anderson et al., 2021 [34] | Cohort: Solid tumors (mostly gastrointestinal and genitourinary) Cachexia: Fearon et al., 2011 [5] Arms: CC (48M), CNC (48M); also, non-cancer control, not included here Objective Function: HGS (mean of max of both hands), SCP, and 1-RM C Subjective Function: KPS, ECOG, and FACIT-F PR-QOL: ASAS and FACIT-F D 1°: Functional performance ○ROC analyses were performed to identify objective function criteria for characterizing cachexia | Objective Physical Function | Objective Physical Function |
* SCP (W): 280 (CC) vs. 430 (CNC); −150 | SCP: 68.2 (ROC: 336W, AUC = 0.80) | ||
HGS (kg): 34 (CC) vs. 37 (CNC); −3 | HGS: 3.2 | ||
* ChPr (kg): 29 (CC) vs. 45 (CNC); −16 | ChPr: 5.4 (ROC: 38.5 kg, AUC = 0.75) | ||
UpBa (kg): 40 (CC) vs. 52 (CNC); −12 | UpBa: 4.6 (ROC: 46 kg, AUC = 0.72) | ||
LaPu (kg): 40 (CC) vs. 51 (CNC); −11 | LaPu: 5.0 (ROC: 46.5 kg, AUC = 0.71) | ||
KnFl (kg): 50 (CC) vs. 60 (CNC); −10 | KnFl: 6.3 | ||
KnEx (kg): 51 (CC) vs. 65 (CNC); −14 | KnEx: 6.1 | ||
HipEx (kg): 28 (CC) vs. 25 (CNC); +3 | HipEx: 3.9 | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
* ECOG: 1.0 (CC) vs. 0.0 (CNC); +1.0 | ECOG: 0.2 | ||
KPS: 90 (CC) vs. 100 (CNC); −10 | KPS: 2.3 | ||
FACIT Fatigue: 37.5 (CC) vs. 38.0 (CNC); −0.5 | FACIT Fatigue: 4.1 | ||
FACIT Function: 18.3 (CC) vs. 21.0 (CNC); −2.7 | FACIT Function: 2.4 | ||
FACIT-F Total: 107.3 (CC) vs. 118.3 (CNC); −11 | FACIT-F Total: 8.0 | ||
ASAS Total: 74.5 (CC) vs. 81.0 (CNC); −6.5 | ASAS Total: 5.7 | ||
Burney et al., 2012 [35] | Cohort: Various tumor types Cachexia: WL > 5% in prior 6 mos Arms: CC (45M), CNC (50M); also, non-cancer control, not included here Objective Function: HGS (sum of both hands), TPPT, and GGT Subjective Function: KPS and ECOG PR-QOL: ASAS and FACIT-F 1°: Relationship between testosterone, inflammation, and symptom burden | Objective Physical Function | Objective Physical Function |
HGS (kg): n/a (sum of both hands) | HGS: n/a | ||
TPPT (s): 37 (CC) vs. 38 (CNC); −1 | TPPT: 0.6 | ||
GGT (s): 8.2 (CC) vs. 8.5 (CNC); −0.3 | GGT: 0.13 | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
KPS: 87 (CC) vs. 89 (CNC); −2 | KPS: 3.3 | ||
ECOG: 0.8 (CC) vs. 0.9 (CNC); −0.1 | ECOG: 0.2 | ||
FACIT F-Total: 103.7 (CC) vs. 107.0 (CNC); −3.3 | FACIT-F Total: 11.3 | ||
ASAS Total: 70 (CC) vs. 62.6 (CNC); +7.4 | ASAS Total: 5.9 | ||
Cong et al., 2022 [36] | Cohort: Various tumor types Cachexia: WL > 5% in 12 mos and ≥3: low strength, fatigue, anorexia, low muscle, and abnormal labs Arms: CC (351) and CNC (3380) sex unreported Sex-/Age-matched: CC (347) and CNC (347) Objective Function: HGS (undefined) Subjective Function: KPS and PG-SGA PR-QOL: PG-SGA 1°: PG-SGA prediction of cachexia (ROC) | Objective Physical Function | Objective Physical Function |
* HGS (kg): 18.8 (CC) vs. 24.8 (CNC); −6 | HGS: 3.2 | ||
○* Matched groups: 18.9 (CC) vs. 23.9 (CNC); −5 | Matched: 2.8 | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
* KPS: 79.2 (CC) vs. 88.9 (CNC); −9.7 | KPS: 3.4 | ||
○* Matched groups: 79.6 (CC) vs. 87.1 (CNC); −7.5 | Matched: 3.4 | ||
* PG-SGA: 10.9 (CC) vs. 4.7 (CNC); +6.2 | PG-SGA: 1.2 | ||
○* Matched groups: 10.8 (CC) vs. 6.2 (CNC); +4.6 | Matched: 1.3 (ROC: 6.5; AUC = 0.85) | ||
Dolin et al., 2023 [37] | Cohort: Colorectal cancer Cachexia: Fearon et al., 2011 [5] Arms: CC (7M/16F) and CNC (5M/36F) Objective Function: HGS (max of dominant hand), 5STS, normal gait speed, and 6MWT Subjective Function and PR-QOL: n/a 1°: Preoperative sarcopenia and cachexia | Objective Physical Function | Objective Physical Function |
HGS (kg): M: 41.0 (CC) vs. 34.6 (CNC); +6.4 F: 21.7 (CC) vs. 21.0 (CNC); +0.7 | HGS: only HGS reported by gender; M: 3.6, F: 1.6 | ||
5STS (s): 10.0 (CC) vs. 10.4 (CNC); −0.4 [median reported for 5STS] | 5STS: unable to derive | ||
Gait (m/s): 1.1 (CC) vs. 1.0 (CNC); +0.01 | Gait: 0.10 | ||
6MWT (m): 390 (CC) vs. 349 (CNC); +41 | 6MWT: 44 | ||
Hadzibegovic et al., 2023 [38] | Cohort: Mostly advanced solid tumors Cachexia: Fearon et al., 2011 [5] Arms: CC (70M/78F), CNC (93M/92F), and non-cancer control, not included here Objective Function: HGS (max of either hand), normal gait speed, and 6MWT Subjective Function: KPS and ECOG PR-QOL: EQ-5D-5L 1°: HGS | Objective Physical Function | Objective Physical Function |
* HGS (kg): 28.3 (CC) vs. 33.6 (CNC); −5.3 | HGS: 4.1 | ||
* Gait (m/s): 1.0 (CC) vs. 1.2 (CNC); −0.2 | Gait: 0.13 | ||
6MWT (m): 419 (CC) vs. 450 (CNC); −31 | 6MWT: 31.3 | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
* ECOG: 2.1 (CC) vs. 1.4 (CNC); +0.7 | ECOG: 0.4 | ||
* KPS: 65 (CC) vs. 79 (CNC); −14 | KPS: 7.3 | ||
* EQ-5D-5L: 0.66 (CC) vs. 0.73 (CNC); −0.07 | EQ-5D-5L: 0.09 | ||
Ohmae et al., 2023 [39] | Cohort: Recent head and neck diagnosis Cachexia: Fearon et al., 2011 [5] Arms: CC (16M/7F) and CNC (35M/6F) Objective Function: HGS (max of either hand), IKEF, gait speed (normal and max), 5STS, steps/d, and activity time Subjective Function and PR-QOL: n/a 1°: Muscle mass and quality, physical function, and activity | Objective Physical Function | Objective Physical Function |
* HGS (kg): 26.7 (CC) vs. 33.2 (CNC); −6.6 | HGS: 1.9 | ||
* IKEF (%BW): 44.5 (CC) vs. 58.2 (CNC); −13.7 | IKEF: 2.8 | ||
* Gait (m/s): 1.04 (CC) vs. 1.21 (CNC); −0.17 | Gait: 0.06 | ||
* Gait-Max (m/s): 1.56 (CC) vs. 1.77 (CNC); −0.21 | Gait-max: 0.07 | ||
* 5STS (s): 10 (CC) vs. 8.1 (CNC); +1.9 | 5STS: 0.53 | ||
Steps/d: 2975 (CC) vs. 3210 (CNC); −235 | Steps/d: 601 | ||
Activity time (mins/d): | Activity time: | ||
○Total: 828 (CC) vs. 829 (CNC); −1 | ○Total: 58 | ||
○<3 METs: 807 (CC) vs. 781 (CNC); +26 | ○<3 METs: 47.2 | ||
○* >3 METs: 19 (CC) vs. 29 (CNC); −10 | ○≥3 METs: 4.7 | ||
Stephens et al., 2012 [40] | Cohort: Gastrointestinal cancer at any stage Cachexia: WL ≥ 10% pre-morbid weight Arms: CC (15M/9F), CNC (20M/10F); also, non-cancer control, not included here Objective Function: HGS, IKEF, and LLEP Subjective Function: KPS and EORTC QLQ-C30 physical function PR-QOL: EORTC QLQ-C30 fatigue 1°: Relationship between cachexia, QOL, muscle mass, and function | Objective Physical Function | Objective Physical Function |
HGS (kg): M: 38 (CC) vs. 38 (CNC); 0 | HGS (kg): M: 3.3, F: 3.3 | ||
F: 22 (CC) vs. 27 (CNC); −5 | |||
IKEF (N): M: 243 (CC) vs. 288 (CNC); −45 | IKEF (N): M: 30, F: 23.3 | ||
* F: 159 (CC) vs. 252 (CNC); −93 | |||
IKEF (N/kg): M: 3.2 (CC) vs. 3.7 (CNC); −0.5 | IKEF (N/kg): M: 0.4, F: 0.3 | ||
F: 2.7 (CC) vs. 3.9 (CNC); −1.2 | |||
LLEP (W): M: 98 (CC) vs. 123 (CNC); −25 | LLEP (W): M: 19.3, F: 4.7 | ||
F: 59 (CC) vs. 63 (CNC); −4 | |||
LLEP (W/kg): M: 1.3 (CC) vs. 1.5 (CNC); −0.2 | LLEP (W/kg): M: 0.17, F: 0.07 | ||
F: 1.0 (CC) vs. 1.0 (CNC); 0 | |||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
KPS: M: 79 (CC) vs. 84 (CNC); −5 | KPS: M: 3.7, F: 4 | ||
* F: 77 (CC) vs. 90 (CNC); −13 | |||
QLQ-C30 Function: M: 60 (CC) vs. 83 (CNC); −23 | QLQ-C30 Function: M: 7, F: 8 | ||
F: 73 (CC) vs. 86 (CNC); −13 | |||
QLQ-C30 Fatigue: M: 56 (CC) vs. 27 (CNC); +29 | QLQ-C30 Fatigue: M: 7.7, F: 11.3 | ||
F: 44 (CC) vs. 26 (CNC); +18 |
Cohort and Design | Within-Group Mean Changes A | MIC Estimates B | |
---|---|---|---|
Muscle-Targeting Anabolic Interventions | |||
Dobs et al., 2013 [43] | Cohort: Various cancer types Cachexia: ≥2% WL in prior 6 mos Arms: EXP: 1 mg/d (16M/16F) or 3 mg/d (21M/13F) enobosarm, CON: placebo (21M/13F) ●16 wks; 1°: Lean body mass | Objective Physical Function (median change) | Objective Physical Function |
HGS (kg): 1 mg: 2.0, 3 mg: 0.0, CON: 0.1; + 1.9 (1 mg), −0.1 (3 mg) | HGS: MIC-2 (0.3) | ||
SCP (W): * 1 mg: 19.9, * 3 mg: 12.8, CON: 11.3; +8.6 (1 mg), +1.5 (3 mg) | SCP: MIC-2 (13.1) | ||
Gait-habitual (m/s): 1 mg: −0.40, 3 mg: 0, CON: −0.04; −0.36 (1 mg), +0.04 (3 mg) | Gait: MIC-2 (0.53) | ||
Patient-Reported Outcomes (mean change) | Patient-Reported Outcomes | ||
FAACT Total: * 1 mg: 9.5, 3 mg: 4.1, CON: 2.3; +7.2 (1 mg), +1.8 (3 mg) | FAACT Total: MIC-2 (5.5) | ||
FACIT-F Total: * 1 mg: 9.4, 3 mg: 1.0, CON: 1.6; +7.8 (1 mg). −0.6 (3 mg) | FACIT-F Total: MIC-2 (5.9) | ||
FAACT-Anorexia/Cachexia: * 1 mg: 7.0, 3 mg: 3.1, CON: 2.3; +4.7 (1 mg), +0.8 (3 mg) | FAACT-Anorexia/Cachexia: MIC-2 (3.2) | ||
MIC-1 n/a (SD or IRQ NR) | |||
Solheim et al., 2017 [44] Pre-MENAC Study | Cohort: Stage III/IV NSCLC or inoperable pancreatic Cachexia: <20% WL in prior 6 mos (~50% per arm had >5% WL in 6 mos) Arms: EXP: 300 mg/d celecoxib + oral nutritional supplement + nutrition counseling + exercise (15M/10F), CON: usual care (11M/10F) ●6 wks; 1°: Feasibility | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: −0.4, CON: −0.7; +0.3 | HGS: MIC-1 (4.2), MIC-2 (1.7) | ||
6MWT (m): EXP: 0.1, CON: 20.3; −20.2 | 6MWT: MIC-1 (29.1), MIC-2 (18.0) | ||
Activity (steps/d): EXP: −536, CON: 981; −1517 | Activity: MIC-1 (870), MIC-2 (564) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
PG-SGA: EXP: −0.8, CON: 0.1; −0.9 | PG-SGA: MIC-1 (2.1), MIC-2 (2.2) | ||
Fatigue Severity Scale: EXP: 0.7, CON: 0.2; +0.5 | Fatigue: MIC-1 (0.5), MIC-2 (0.6) | ||
Wright et al., 2018 [45] | Cohort: Cervical or head and neck Cachexia: ≥5% WL in prior 12 mos Arms: EXP: 100 mg/d testosterone enanthate (3M/6F), CON: placebo (7M/5F) ●7 wks; 1°: Lean body mass | Objective Physical Function Leg torque (units undefined): EXP: 6.3%, CON: 2.9%; +3.4 Leg power (units undefined): EXP: 7.0%, CON: 3.8%; +3.2 SPPB Total: EXP: 1.4, CON: 0.3; +1.1 Patient-Reported Outcomes FACT-G Function: EXP: 1.2, CON: −2.0; +3.2 FACT-G Total: EXP: 4.5, CON: −3.1; +7.6 | MIC-1 and -2 n/a (SD or IRQ NR) |
Maccio et al., 2012 [46] | Cohort: Gynecological cancer Cachexia: ≥5% WL in prior 3 mos Arms: EXP: 4 g/d carnitine + 300 mg/d celecoxib + 600 mg/d lipoic acid + 2.7 g/d carbocysteine + 320 mg/d megestrol acetate (61F), CON: 320 mg/d megestrol acetate (63F) ●16 wks; 1°: Lean body mass, resting energy expenditure, fatigue, and QOL | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: 3.0, CON: −1.1; +4.1 | HGS: MIC-1 (2.7) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
ECOG: * EXP: −0.6, * CON: −0.5; −0.1 | ECOG: MIC-1 (0.3) | ||
#Fatigue (MFSI-SF): EXP: −6.4, CON: 0.9; −7.3 | Fatigue: MIC-1 (5.3) | ||
#EORTC QLQ-C30: * EXP: 7.5, CON: 4.1; +3.4 | EORTC QLQ-C30: MIC-1 (4.3) | ||
MIC-2 n/a (SD or IRQ NR) | |||
Cereda et al., 2019 [47] | Cohort: Advanced cancer Cachexia: ≥10% WL in prior 6 mos Arms: EXP: nutrition counseling + whey protein (35F/47M), CON: nutrition counseling (31F/53M) ●3 mos; 1°: Phase angle | Objective Physical Function | Objective Physical Function |
#HGS (kg): EXP: 1.4, CON: −0.9; +2.3 | HGS: MIC-1 (2.9), MIC-2 (1.5) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
EORTC QLQ-C30 Global QOL: EXP: 2.9, CON: 0.5; +2.4 | EORTC QLQ-C30 Global QOL: MIC-1 (6.8), MIC-2 (5.5) | ||
Jatoi et al., 2017 [48] | Cohort: Incurable malignancy Cachexia: ≥5 pounds WL in prior 2 mos Arms: EXP: creatine 20 g/d for 5 days then 2 g/d (51F/83M), CON: placebo (49F/80M) ●Median duration: EXP: 54.5 days, CON: 64 days; 1°: Weight | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: −0.2, CON: −0.8; +0.6 | HGS: MIC-1 (3.3), MIC-2 (2.4) | ||
Appetite Stimulants | |||
Currow et al., 2017 [11] ROMANA3 | Cohort: Unresectable III/IV NSCLC Cachexia: WL > 5% in prior 6 mos or BMI < 20 kg/m2 Arms: EXP: 100 mg/d anamorelin (262M/83F), CON: placebo (125M/43F) ●ROMANA ½ plus 12 wks (24 wks total); 1°: Safety/Tolerability | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: −0.8, CON: −0.6; −0.2 | HGS: MIC-1 (3.8), MIC-2 (0.3) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
FAACT-Anorexia/Cachexia: EXP: 4.5, CON: 3.2; +1.3 | FAACT-Anorexia/Cachexia: MIC-1 (2.8), MIC-2 (0.3) | ||
Madeddu et al., 2012 [12] | Cohort: Advanced cancer of any site Cachexia: ≥5% WL in prior 6 mos Arms: EXP: 4 g/d carnitine + 300 mg/d celecoxib + 320 mg/d megestrol acetate (16M/11F), CON: carnitine + celecoxib (17M/12F) ●4 mos; 1°: Lean body mass and activity | Objective Physical Function HGS-D (kg): EXP: 1.7, CON: 3.8; −2.1 6MWT (m): * EXP: 53, * CON: 45; +8 Activity (steps/d): EXP: 1328, CON: 390; +938 Patient-Reported Outcomes ECOG: * EXP: −0.3, * CON: −0.4; +0.1 Fatigue (MFSI-SF): * EXP: −8.8, * CON: −7.4; −1.4 | MIC-1 and -2 n/a (SD or IRQ NR) |
Temel et al., 2016 [14] ROMANA 1 and 2 | Cohort: Unresectable III/IV NSCLC Cachexia: WL ≥5% in prior 6 mos or BMI < 20 kg/m2 Arms: EXP: 100 mg/d anamorelin, CON: placebo ●ROMANA 1 “R1” (EXP: 247M/76F, CON: 121M/40F) and 2 “R2” (EXP: 240M/90F, CON: 122M/43F) ●12 wks; 1°: Lean body mass and HGS | Objective Physical Function | Objective Physical Function |
HGS-ND (kg): median change | HGS-ND: | ||
●R1: EXP: −1.1, CON: −1.6; +0.5 | ●R1: MIC-1 (4.7), MIC-2 (0.5) | ||
●R2: EXP: −1.6, CON: −1.0; −0.6 | ●R2: MIC-1 (4.1), MIC-2 (0.4) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
FACIT-Fatigue: | FACIT-Fatigue: | ||
●R1: EXP: 0.3, CON: −1.9; +2.2 | ●R1: MIC-1 (3.6), MIC-2 (0.5) | ||
●R2: EXP: 1.4, CON: 1.2; +0.2 | ●R2: MIC-1 (3.6), MIC-2 (0.4) | ||
FAACT-Anorexia/Cachexia: | FAACT-Anorexia/Cachexia: | ||
●#R1: EXP: 4.1, CON: 1.9; +2.2 | ●R1: MIC-1 (2.9), MIC-2 (0.3) | ||
●#R2: EXP: 3.5, CON: 1.3; +2.2 | ●R2: MIC-1 (2.9), MIC-2 (0.3) | ||
Garcia et al., 2015 [15] C | Cohort: Incurable malignancy Cachexia: WL ≥5% in prior 6 mos Arms: EXP: 50 mg/d anamorelin (28M/16F), CON: placebo (23M/15F) ●12 wks; 1°: Lean body mass | Objective Physical Function | Objective Physical Function |
HGS-ND (kg): EXP: 1.6, CON: 0.7; +0.9 | HGS-ND: MIC-1 (3.6), MIC-2 (1.9) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
ASAS Fatigue: EXP: 0.6, CON: −0.4; +1 | ASAS Fatigue: MIC-1 (0.9), MIC-2 (1.2) | ||
#ASAS Total: EXP: 3.6, CON: 0.06; +3.5 | ASAS Total: MIC-1 (5.7), MIC-2 (6.7) | ||
Herodes et al., 2023 [49] C | Cohort: Active malignancy Cachexia: WL ≥5% in prior 6 mos, ≥10% in prior 12 mos, or ≥2% in prior 6 mos with BMI < 20 kg/m2 Arms: EXP: 0.25 – 0.5 mg/kg/d macimorelin (10M), CON: placebo (4M/1F) ●7 days; 1°: Weight, insulin-like growth factor-1, QOL, and safety ●HGS was reported as an average of both hands | Objective Physical Function (medians) | Objective Physical Function |
HGS (kg): EXP: −1.3, CON: 1.4; −2.7 | HGS: MIC-1 (2.3), MIC-2 (0.3) | ||
SCP (W): EXP: −5.1, CON: −5.9; +0.8 | SCP: MIC-1 (11.4), MIC-2 (3.5) | ||
Patient-Reported Outcomes (medians) | Patient-Reported Outcomes | ||
ECOG: EXP: 0, CON: 0; 0 | ECOG: MIC-1 (0.2), MIC-2 (0) | ||
KPS: EXP: 0, CON: 0; 0 | KPS: MIC-1 (1.8), MIC-2 (0) | ||
FACIT-Fatigue: EXP: −1.0, CON: 3.0; −4 | FACIT-Fatigue: MIC-1 (2.1), MIC-2 (2.0) | ||
FACT-G Function: EXP: 1.0, CON: −0.5; +1.5 | FACT-G Function: MIC-1 (1.4), MIC-2 (0.7) | ||
Kouchaki et al., 2018 [50] | Cohort: GI cancer Cachexia: ≥5% WL in prior 6 mos or BMI < 20 kg/m2 Arms: EXP: 320 mg/d megestrol acetate + 200 mg/d celecoxib (17F/28M), CON: megestrol acetate (17F/28M) ●2 mos; 1°: Weight | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: 3.9, * CON: 6.8; −2.9 | HGS: MIC-1 (2.8) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
ECOG: EXP: −0.6, * CON: −0.8; +0.2 | ECOG: MIC-1 (0.3) | ||
EORTC QLQ-C30: * EXP: 15.7, * CON: 19.8; −4.1 | EORTC QLQ-C30: MIC-1 (4.5) | ||
MIC-2 n/a (SD or IRQ NR) | |||
Wen et al., 2012 [51] D | Cohort: Advanced cancer of any site Cachexia: WL > 5% in prior 3 mos Arms: EXP: 320 mg/d megestrol acetate + 100 mg/d thalidomide (28M/18F), CON: megestrol acetate (27M/20F) ● 2 mos; 1°: Weight, fatigue, and QOL | Objective Physical Function | Objective Physical Function |
#HGS (kg): * EXP: 1.1, CON: 0.6; +0.5 | HGS: MIC-1 (3.9), MIC-2 (0.4) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
#ECOG: * EXP: −0.4, CON: −0.1; −0.3 | ECOG: MIC-1 (0.2), MIC-2 (0.1) | ||
#Fatigue (MFSI-SF): * EXP: −2.6, CON: 0.2; −2.8 | Fatigue: MIC-1 (7.2), MIC-2 (1.8) | ||
Hunter et al., 2021 [52] | Cohort: Solid tumors Cachexia: Fearon et al., 2011 [5] Arms: EXP: 15 mg/d mirtazapine (26F/34M), CON: placebo (30F/30M) ●28 days; 1°: Appetite | Objective Physical Function | Objective Physical Function |
HGS (kg): EXP: −0.8, CON: 0; −0.8 | HGS: MIC-1 (2.1), MIC-2 (0.2) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
FAACT-Total: EXP: 2.2, CON: 0.6; +1.6 | FAACT-Total: MIC-1 (5.7), MIC-2 (3.6) | ||
Immunomodulators and Oral Supplements | |||
Laviano et al., 2020 [53] | Cohort: NSCLC starting chemotherapy Cachexia: Various WL/BMI ranges Arms: EXP: oral nutritional supplement (9F/17M, 38.5% CC), CON: isocaloric match (8F/21M, 48.3% CC) ●12 wks; 1°: Safety and tolerability ●%CC reported by Fearon criteria [5] | Objective Physical Function | Objective Physical Function |
HGS-D (kg): EXP: 0.2, CON: −3.1; +3.3 | HGS-D: MIC-2 (4.3) | ||
HGS-ND (kg): EXP: 0.7, CON: −1.6; +2.3 | HGS-ND: MIC-2 (1.5) | ||
Activity (steps/d): EXP: 647, CON: −202; +849 | Activity: MIC-2 (768) | ||
MIC-1 n/a (SD or IRQ NR) | |||
Wiedenmann et al., 2008 [54] | Cohort: Pancreatic cancer Cachexia: WL ≥10% of pre-morbid weight or ≥5% in the prior 90 days Arms: EXP: 3 mg/kg/d (13M/17F) or 5 mg/kg/d (15M/14F) infliximab, CON: placebo (20M/10F) ●8 wks; 1°: Lean body mass | Objective Physical Function | Objective Physical Function |
6MWT (m): 3 mg: −157.5, 5 mg: −87.8, CON: −114.1; −43.4 (3 mg), +26.3 (5 mg) | 6MWT: MIC-2 (62.3) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
FACIT-F Total: 3 mg: −3.7, 5 mg: 2.3, CON: −3.5; −0.2 (3 mg), +5.8 (5 mg) | FACIT-F Total: MIC-2 (2.8) | ||
FAACT Total: 3 mg: −0.8, 5 mg: 3.4, CON: 0.2; −1 (3 mg), +3.2 (5 mg) | FAACT Total: MIC-2 (3.3) | ||
SF-36 Physical Function: 3 mg: −3.4, 5 mg: 0.5, CON: 0.1; −3.5 (3 mg), +0.4 (5 mg) | SF-36 Physical Function: MIC-2 (2.2) | ||
MIC-1 n/a (SD or IRQ NR) | |||
Famil-Dardashti et al., 2020 [55] | Cohort: Advanced solid tumors Cachexia: ≥5% WL in prior 2 mos Arms: EXP: herbal supplements (9F/16M), CON: placebo (9F/13M) ●2 mos; 1°: Weight gain | Objective Physical Function | Objective Physical Function |
#HGS (kg): EXP: 2.4, CON: −0.5; +2.9 | HGS: MIC-1 and -2 n/a (SD or IRQ NR) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
ESAS Fatigue: EXP: −0.1, CON: 0.2; −0.3 | ESAS Fatigue: MIC-1 (0.1), MIC-2 (0.03) | ||
Xie et al., 2018 [56] | Cohort: Stage IV SCLC Cachexia: Fearon et al., 2011 [5] Arms: EXP: 150 mg/d thalidomide and 2700 mg/d cinobufagin (5F/22M), CON: cinobufagin (7F/20M) ●2 mos; 1°: Weight gain | Objective Physical Function | Objective Physical Function |
#HGS (kg): EXP: 0.9, CON: −0.2; +1.1 | HGS: MIC-1 (0.9), MIC-2 (0.3) | ||
Patient-Reported Outcomes | Patient-Reported Outcomes | ||
#EORTC QLQ-C30: EXP: −8.1, CON: −0.5; −7.6 | EORTC QLQ-C30: MIC-1 (1.8), MIC-2 (1.0) | ||
Gordon et al., 2005 [57] | Cohort: Inoperable pancreatic cancer Cachexia: >10% WL in prior 6 mos Arms: EXP: 200 mg/d thalidomide (13M/11F), CON: placebo (12M/11F) ●24 wks (HGS assessed at 8 wks); 1°: Weight | Objective Physical Function HGS-ND (kg): EXP: −2.5, CON: −1.0; −1.5 | MIC-1 and -2 n/a (SD or IRQ NR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caeiro, L.; Jaramillo Quiroz, S.; Hegarty, J.S.; Grewe, E.; Garcia, J.M.; Anderson, L.J. Clinical Relevance of Physical Function Outcomes in Cancer Cachexia. Cancers 2024, 16, 1395. https://doi.org/10.3390/cancers16071395
Caeiro L, Jaramillo Quiroz S, Hegarty JS, Grewe E, Garcia JM, Anderson LJ. Clinical Relevance of Physical Function Outcomes in Cancer Cachexia. Cancers. 2024; 16(7):1395. https://doi.org/10.3390/cancers16071395
Chicago/Turabian StyleCaeiro, Lucas, Sofia Jaramillo Quiroz, Jenna S. Hegarty, Ellen Grewe, Jose M. Garcia, and Lindsey J. Anderson. 2024. "Clinical Relevance of Physical Function Outcomes in Cancer Cachexia" Cancers 16, no. 7: 1395. https://doi.org/10.3390/cancers16071395
APA StyleCaeiro, L., Jaramillo Quiroz, S., Hegarty, J. S., Grewe, E., Garcia, J. M., & Anderson, L. J. (2024). Clinical Relevance of Physical Function Outcomes in Cancer Cachexia. Cancers, 16(7), 1395. https://doi.org/10.3390/cancers16071395