The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy
Abstract
:Simple Summary
Abstract
1. Introduction: Cancer Growth and Metastasis
1.1. The Process of Cancer Cell Growth and Proliferation
1.2. The Process of Metastasis
2. Alpha-Fetoprotein Contains a Peptide Fragment That Can Suppress Cancer Growth and Metastasis
3. Membrane Ion Channels, Growth/Proliferation, and Metastasis: Cell Cycle Involvement
4. The Role of Calcium in Cation Channel Regulation
5. Properties of Chemokines concerning Metastasis
6. How Could GIP Treatment Impede the Metastatic Spread of Solid Tumors In Vivo? A Proposed Action
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell: An Overview of the Cell Cycle, 4th ed.; Garland Science Publishing: New York, NY, USA, 2002. [Google Scholar]
- Mizejewski, G.J. Breast cancer and cell cycle inhibitors (CCIs): Potential therapeutic strategies for CCI cell targeting and drug delivery. Curr. Adv. Oncol. Res. 2019, 2019, 1–8. [Google Scholar]
- Mizejewski, G.J.; Mirowski, M.; Garnuszek, P.; Maurin, M.; Cohen, B.D.; Poiesz, B.J.; Posypanova, G.A.; Makarov, V.A.; Severin, E.S.; Severin, S.E. Targeted delivery of anti-cancer growth inhibitory peptides derived from human alpha-fetoprotein: Review of an International Multi-Center Collaborative Study. J. Drug Target. 2010, 18, 575–588. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Mechanism of cancer growth suppression of alpha-fetoprotein derived growth inhibitory peptide (GIP) Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects. Cancer 2011, 3, 2709–2733. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Breast cancer, metastasis, and the microenvironment: Disabling the tumor cell-to-stroma communication network. J. Cancer Metastasis Treat. 2019, 5, 35. [Google Scholar] [CrossRef]
- Gupta, G.P.; Massague, J. Cancer metastasis: Building a framework. Cell 2006, 127, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Peinado, H.; Lavotshkin, S.; Lyden, D. The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin. Cancer Biol. 2011, 21, 139–146. [Google Scholar] [CrossRef]
- Welch, H.G.; Gorski, D.H.; Albertsen, P.C. Trends in Metastatic breast and prostate cancer- Lessons in Cancer dynamics. N. Engl. J. Med. 2015, 373, 1685–1687. [Google Scholar] [CrossRef] [PubMed]
- Gasic, G.J.; Gasic, T.B.; Galant, N.; Johnson, T.; Murphy, S. Platelet tumor cell interactions in mice, The role of platelets in the spread of malignant disease. Int. J. Cancer 1973, 11, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.J.; Hayward, J.A.; Huang, C.Z.E.H.; Sanchez, J. Mechanisms of regulation of the Cheokine-Receptor Network. Int. J. Mol. Sci. 2017, 18, 342. [Google Scholar] [CrossRef]
- Busillo, J.M.; Benovic, J.L. Regulations of CXCR4 signaling. Biochim. Biophys. Acta 2007, 1768, 952–963. [Google Scholar] [CrossRef]
- Zhao, B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget 2015, 6, 5022–5040. [Google Scholar] [CrossRef] [PubMed]
- Scala, S. Molecular Pathways: Targeting the CXCR4-CXCL12 axis- untapped potential in the tumor microenvironment. Clin. Cancer Res. 2015, 21, 4278–4285. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Physiology of alpha-fetoprotein as a biomarker for perinatal distress: Relevance to adverse pregnancy outcome. Exp. Biol. Med. 2007, 232, 993–1004. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Alpha-fetoprotein structure and function: Relevance to isoforms, epitopes, and conformation variants. Exp. Biol. Med. 2001, 226, 377–408. [Google Scholar] [CrossRef]
- Mizejewski, G.J. A Compendium of Lagands reported to bind Alpha-fetoprotein: A comprehensive review and meta-analysis. Cancer Ther. Oncol. 2022, 20, 556047. [Google Scholar]
- Mizejewski, G.J. The different Biologically active forms of alpha-fetoprotein as functional biomarkers in pregnancy, disease, and cancer: A review and update. Adv. Biomark. Sci. Technol. 2023, 2, 1–11. [Google Scholar] [CrossRef]
- Mizejewski, G.J.; Butterstein, G. Survey of functional activities for alpha-fetoprotein growth inhibitory peptides: A review and prospects. Curr. Protein Pept. Sci. 2006, 7, 73–100. [Google Scholar] [CrossRef]
- Mizejewski, G.J.; Smith, G.; Butterstein, G. Review and Proposed action of alpha fetoprotein growth inhibitory peptides as estrogen and cytoskeleton associated factors. Cell Biol. Int. 2004, 28, 913–933. [Google Scholar] [CrossRef]
- Mizejewski, G.J.; MacColl, R. Alpha-fetoprotein growth inhibitory peptides: Potential leads for cancer therapeutics. Mol. Cancer Ther. 2003, 2, 1243–1255. [Google Scholar]
- Mizejewski, G.J. The alpha-fetoprotein (AFP) third domain: A search for AFP interaction sites of cell cycle proteins. Tumour Biol. 2016, 37, 12697–12711. [Google Scholar] [CrossRef] [PubMed]
- Muehlemann, M.; Miller, K.D.; Dauphinee, M.; Mizejewski, G.J. Review of growth inhibitory peptides as biotherapeutic agents for tumor growth, adhesion, and metastasis. Cancer Metastasis Rev. 2005, 24, 441–467. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J.; Muehlemann, M.; Dauphinee, M. Update of alpha-fetoprotein growth inhibitory peptides as biotherapeutic agents for tumor growth and metastasis. Chemotherapy 2006, 52, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J. Antimicrobial peptides and cancer: Potential use of antimicrobial-like peptides in chemotherapy. J. Cancer Biol. Therap. 2019, 5, 233–242. [Google Scholar]
- Mizejewski, G.J. Cell-penetrating versus antimicrobial peptides: Comparison of potential use as cancer therapeutics. J. Oncol. Res. Forecast. 2019, 2, 1013–1015. [Google Scholar]
- Mizejewski, G.J.; Eisele, L.; MacColl, R. Anticancer versus antigrowth activities of three analogs of the growth-inhibitory peptide: Relevance of physicochemical properties. Anticancer Res. 2006, 26, 3071–3076. [Google Scholar] [PubMed]
- MacColl, R.; Eisele, L.E.; Stack, R.F.; Hauer, C.; Vakharia, D.D.; Benno, A.; Kelly, W.C.; Mizejewski, G.J. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino acid peptide derived from alpha-fetoprotein. Biochim. Biophys. Acta 2001, 1528, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Eisele, L.E.; Mesfin, F.B.; Bennett, J.A.; Andersen, T.T.; Jacobsen, H.I.; Soldwedel, H.; MacColl, R.; Mizejewski, G.J. Studies on a growth-inhibitory peptide derived from alpha-fetoprotein and some analogs. J. Pept. Res. 2001, 57, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Butterstein, G.; Morrison, J.; Mizejewski, G.J. Effect of alpha-fetoprotein and derived peptides on insulin- and estrogen-induced fetotoxicity. Fetal Diagn. Ther. 2003, 18, 360–369. [Google Scholar] [CrossRef]
- Mizejewski, G.J. The third domain fragments of alpha-fetoprotein (AFP): Mapping AFP interactions with selective and non-selective cation channels. Curr. Top. Pept. Protein Res. 2016; in press. [Google Scholar]
- Wonderlin, W.F.; Strobl, J.S. Potassium channel, proliferation, and G1 progression. J. Membr. Biol. 1996, 154, 91–107. [Google Scholar] [CrossRef]
- Wonderlin, W.F.; Eoodfork, K.A.; Strobl, J.S. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J. Cell Physiol. 1995, 165, 177–185. [Google Scholar] [CrossRef]
- Nilius, B.; Droogmans, G.; Wondergem, R. Transient receptor potential channels in endothelium: Solving the calcium entry puzzle? Endothelium 2003, 10, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Wondergem, R.; Ecay, T.W.; Mahieu, F.; Owsianik, G.; Nilius, B. HGF/AF and menthol increase in human glioblastoma cell calcium and migration. Biochem. Biophys. Res. Commun. 2008, 372, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Vriens, J.; Janssens, A.; Wondergem, R.; Droogmans, G.; Milius, B. Modualtion of TRPV4 gating by intra and extracellular Ca2+. Cell Calcium J. 2003, 33, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Wondergem, R.; Bartley, J.W. Mentol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J. Biomed. Sci. 2009, 16, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J. The third domain ligand binding fragment of alpha-fetoprotein: Detection of metastasis-associated molecular targets. Cancer Ther. Oncol. 2017, 6, 555700. [Google Scholar] [CrossRef]
- Ding, Y.; Robbins, J.; Fraser, S.P.; Grimes, J.A.; Diamogoz, M.B. Comparative studies of intracellular Ca2+ in strongly and weakly metastatic rate prostate cancer cell lines. Int. J. Biochem. Cell Biol. 2006, 38, 366–375. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Breast cancer and transient receptor potential (TRP) cation channels: Is there a role for non-slective TRP channels as therapeutic cancer targets: A commentary. Int. J. Cancer Res. Dev. 2017, 2, 4–6. [Google Scholar]
- Liu, Q.; Xhang, H.; Jiang, X.; Qian, C.; Liu, Z.; Luo, D. Factors involved in cancer metastasis: A better understanding to “seed and soil” hypotheses. Mol. Cancer 2017, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Skolmik, G.; Nage, U.; Blomqvist, G.; Djarv, L.; Ahlman, H. The role of calcium channels and serotonin (5-HT2) receptors for tumour cell lodgment in the liver. Clin. Exp. Metastasis 1989, 7, 169–174. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Breast cancer, chemokines, and metastasis: A search for decoy ligands of eh CXCR4 receptor. J. Neoplasmas 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Woodfork, K.A.; Wonderlin, W.F.; Perterson, C.A.; Strobl, J.S. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J. Cell Physiol. 1995, 162, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Kllimatcheva, E.; Wonderlin, W.F. An ATP sensitive K(+) current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J. Membr. Biol. 1999, 171, 35–46. [Google Scholar] [CrossRef]
- Medeja, Z.; Master, A.; Michalik, M.; Sroka, J. Contact-mediated acceleration of migration of melanoma B16 cells depends on extracellular calcium ions. Folia Biol. 2001, 49, 113–124. [Google Scholar]
- Wonderlin, W.F. Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulum. Pflug. Arch. 2009, 457, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Wonderlin, W.F. The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J. Biol. Chem. 2003, 278, 4397–4403. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.L. The role of calcium ions in toxic cell injury. Environ. Health Perspect. 1990, 84, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Endo, M. Calcium ion as a second messenger with special reference to excitation-contraction coupling. Trends Pharmacol. Sci. 2006, 100, 519–552. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple levels of leukocyte migration control. Trends Immunol. 2004, 25, 75–84. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Ahmed, S.; Iwasaki, Y.; Ohba, K.; Toi, M.; Yamamoto, N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed. Pharmacother. 2006, 60, 273–276. [Google Scholar] [CrossRef]
- Pan, J.; Mestas, J.; Burdick, M.D.; Phillips, R.J.; Thomas, G.V.; Reckamp, K.; Belperio, J.A.; Strieter, R.M. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Cancer 2006, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, Y.; Liu, J.; Mok, S.C.; Xue, F.; Zhang, W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016, 35, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Zhao, J. The role of chemokine receptor CXCr4 in breast cancer metastasis. Am. J. Cancer Res. 2013, 3, 46–57. [Google Scholar] [PubMed]
- Xu, C.; Zhai, H.; Chen, H.; Yai, Q. CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Des. Dev. Ther. 2015, 9, 4953–4964. [Google Scholar]
- Cavallaro, S. CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int. J. Mol. Sci. 2013, 14, 1713–1727. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J. Cancer, circulating tumor cells, and metastasis: Could protein-derived peptide fragments impede brain metastases? J. Cancer Metastasis Treat. 2018, 10, 205–225. [Google Scholar] [CrossRef]
- Atemezem, A.; Mbemba, E.; Marfaing, R.; Vaysse, J.; Pontet, M.; Saffar, L.; Charnaux, N.; Gattegno, L. Human alpha-fetoprotein binds to primary macrophages. Biochem. Biophys. Res. Commun. 2002, 296, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Garniszek, P.; Wiercioch, R.; Sztajer, H.; Karczmarczyk, U.; Mirowski, M. Uptake of radiolabeled modified fragment of human alpha-fetoprotein by experimental mammary adenocarcinoma: In vitro and in vivo studies. Nucl. Med. Rev. Cent. East. Eur. 2005, 8, 6–10. [Google Scholar]
- Mizejewski, G.J. An apparent dimerization motif in the third domain of alpha fetoprotein: Molecular mimicry of the steroid/thyroid nuclear receptor superfamily. Bioessays 1993, 15, 427–432. [Google Scholar] [CrossRef]
- Mizejewski, G.J. Alpha feto-protein binding proteins: Implications of transmembrane passage and subcellular localization. Life Sci. 1995, 56, 1–9. [Google Scholar] [CrossRef]
Gene Title | Fold Decrease | Cell Function |
---|---|---|
I. Cell Cycle Regulation | ||
1. Calpain (LOC 441200) | −32.5 | Cell cycle progression |
2. F-Boc/Wd40, Domain-10 (FBXW10) | −14.9 | P27 degradation pathway |
3. Serine/Threonine Kinase-33 (STK33) | −9.2 | SH3 protein kinase |
4. Establishment of Cohesion-1, Homolog (ESC02) | −9.2 | DNA replication |
5. Checkpoint Suppressor-1 (CHES1) (FOXN3) | −9.2 | S-phase checkpoint |
6. Cyclin-E | −4.6 | Regulates G-S transition |
7. SKP2 ** | −4.3 | Mediates p27 degradation |
8. Transcription Dp-1 (TFDP1) | −4.3 | Binds E2F-1; G1 to S |
9. CDC20 Cell Division Homolog | −4.3 | Activates ubiquitin |
10. Triple Function Domain (TRIO) | −3.7 | Actin remodeling |
11. Histone-1, H4g (HIST1H4G) | −3.2 | DNA repair/replication |
12. Fanconi Anemia-D2 (FRANCD2) | −2.0 | DNA repair/synthesis |
II. Channel Associated Proteins | ||
1. Potassium Voltage-gated Channel (KCNB2) | −8.0 | Shab ion channel |
2. Transmembrane Channel-Like 5 (TMC5) | −5.2 | Ion transporter |
3. Potassium Voltage-gated Channel, KQT-like (KCNQ3) | −4.0 | Cation signaling |
4. Calcium Channel, Voltage dependent of 2 (CACNA2D4) | −2.0 | Calcium signaling |
5. Calcium/Calmodulin-dependent Kinase (CAMK2B) | −1.9 | Calcium regulation |
6. Calcineurin A gamma (PPP3CC) | −1.8 | Calcium phosphate 3 protein |
7. Calcium Channel, Voltage Dependent (CACNC6) | −1.8 | Calcium transport |
% Identity/Similarity | % Total | ||
---|---|---|---|
Hum GIP #445 | L S E D K L L A C G E G A A D I I I G H L C I R H E M T P V N P G V G N | 100/100 | 100 |
Fragment GIP | GIPa GIPb GIPc | ||
Hum Na, Glu COTR (#163) | L S G H V L R S C I H P A G S X G L E H L C L R H | 42/38 | 80 |
Xen Na/K ATPase (#252) | L S C T R L I A C C Y G N C T G A I X H L C X X T N L S S I | 36/23 | 59 |
Hum Actinin, α (#958) | L S E Q R L L P R G E G | 62/23 | 85 |
Na Chanel Protein (#55) | Y V Q D Q L Q A C G E G | 58/25 | 83 |
Hum CoFilin (#40) | L S E D K K N | 71/0 | 71 |
Hum Calmodulin (#27) | L S E I E L L | 71/0 | 71 |
Xen Ache R, δ (#362) | L S G D K L L S I | 66/33 | 99 |
Yeast MDRP ($735) | L S E N K L L S P S | 60/30 | 90 |
Mus Entactin (#1935) | K L L S C G E H | 63/25 | 88 |
Rab Ca Channel-P (#32) | G L L P C A E G | 63/25 | 88 |
Hum Nic- AcheR α (#440) | C G E V L R D V V F G L W C I R D K A T G G G S G | 40/20 | 60 |
Rat Musc AcheR (#588) | C G N G P S R R I R A L D C L R L G R K S G A S G V G | 33/41 | 74 |
Carp Ca Channel-P (#333) | L C G E G A A G L | 33/11 | 44 |
Piso ATP-syn A (31165) | A A N L T A G H L L | 45/45 | 90 |
Hum Calcitonin R (#210) | N S M I I I I H L C | 50/30 | 80 |
Pig Calcitonin R (#195) | N S I I I I I H L V | 50/30 | 80 |
Rat Calcitonin R (#195) | N S I I I I I H L V | 50/30 | 70 |
Hum calreticulin (#3692) | I Q S I I V G H L G | 50/20 | 70 |
Yeast Calmodulin (#21635) | N R I G Q L C I R | 66/11 | 77 |
Pig Na/Glu COTR (#1150) | I I L S Q L C I R | 56/33 | 89 |
Hum Calcitonin (#1550) | L C I R H S F T P A | 60/30 | 90 |
Mus K-Chanel P (#18) | L C I R G T L T P R | 60/20 | 80 |
Bov ATP-channel (P) (#385) | C I Q F E L P P V N | 50/30 | 80 |
Rat Ca/ATPase (#660) | C I H N Q M Q P V H | 60/40 | 100 |
Rat Ca/Calm Kin-α (#118) | C I H Q I L E S V N | 40/50 | 90 |
Rat Ca/Calm Kin-D (#118) | C I Q Q I L E S V N | 40/50 | 90 |
Rat Na/GLN/ASNtR (#228) | R I R E E M V P V P G S V | 54/38 | 92 |
Caeel Mech-Sen (#332) | C I K H E H A A M V L N L W E | 27/47 | 74 |
Pig Na/Glu COTR (#510) | T A Y K P S I G N | 56/22 | 78 |
% Identity/Similarity | % Total | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFP Peptide GIP | L | S | E | D | K | L | L | A | C | G | E | G | A | A | D | I | I | I | G | H | L | C | I | R | H | E | M | T | P | V | N | P | G | V | 100/0 | 100 |
Fragments of GIP | G | I | P | a | G | I | P | b | G | I | P | c | ||||||||||||||||||||||||
Mus IL-1b | Q | E | D | R | L | V | L | C | L | X | G | A | X | D | V | P | V | G | E | L | C | R | L | K | 42/25 | 67 | ||||||||||
Mus Thy 1.2 | L | S | T | D | K | L | V | K | C | G | G | I | S | 54/15 | 69 | |||||||||||||||||||||
RatThy-1 | L | S | T | D | K | L | V | K | C | G | G | I | S | 54/15 | 69 | |||||||||||||||||||||
Rab CD1-1 | K | L | L | P | C | G | L | S | 63/13 | 76 | ||||||||||||||||||||||||||
Mus IL-2 Receptor | L | A | S | X | G | L | L | I | P | E | G | H | L | C | I | L | N | D | 50/11 | 61 | ||||||||||||||||
Hum IFN α/β | I | Q | S | I | I | V | G | H | L | G | 50/20 | 70 | ||||||||||||||||||||||||
Hum IL-2 | I | X | S | I | I | V | G | H | L | L | G | 50/10 | 60 | |||||||||||||||||||||||
Hum CD-1 | I | Q | S | I | I | V | G | H | L | G | 50/20 | 70 | ||||||||||||||||||||||||
Mus C5S | R | V | T | I | G | P | L | C | I | R | 60/20 | 80 | ||||||||||||||||||||||||
Mus pro-C5 | R | V | T | I | G | P | L | C | T | R | 60/20 | 80 | ||||||||||||||||||||||||
Mus C5D | R | V | T | I | G | P | L | C | T | R | 60/20 | 80 | ||||||||||||||||||||||||
Hum IFN-γ | C | I | S | I | S | N | Q | P | V | N | P | 56/9 | 65 | |||||||||||||||||||||||
Hum Leuc CD-9 | C | I | Q | R | Q | V | P | P | V | X | P | 45/27 | 72 | |||||||||||||||||||||||
Mus t-cell receptor | C | I | R | D | N | K | T | P | S | T | 50/20 | 70 | ||||||||||||||||||||||||
Hum IgG H-chain | C | I | H | H | S | L | T | P | P | D | 50/30 | 80 | ||||||||||||||||||||||||
SDF-1α | V | N | K | L | K | I | L | N | C | C | I | K | W | E | Y | K | L | N | K | 33/50 | 83 |
List of Properties | Chemokines | Growth Inhibitory Peptide |
---|---|---|
(1) Amino acid length | 60–90 Amino acids | 34-amino acid (⅓ to ½’ the size) |
(2) Molecular weight (Daltons) | 8 to 10,000 Daltons | 3573 Daltons |
(3) Type of protein | Largely cationic and anionic fragment | Amphipathic |
(4) Oligomer formation | Dimers, tetramers, monomers | Monomer, dimer, trimer, hexamers |
(5) Effective concentration range | Nanomolar to low micromolar | Nanomolar to low micromolar |
(6) Secondary structure | Antiparallel B strands; α helix at c terminal Random coil at NH2 COOH terminals | B strands and turns (45%); α helical only 10%, 45% random coil |
(7) Receptor binding | Micromolar range | Micromolar range |
(8) Hydrophobicity | Surface hydrophobicity; central hydrophobicity | Surface hydrophobicity (mod piece) |
(9) Integrin response | Integrin activation and signaling | Integrin interaction and signaling |
(10) Calcium (Ca2+) responsiveness | Induces Ca2+ mobilization | Sensitive Ca2+ responsiveness (CD and bioassay) |
(11) Microtubule response | Induces actin polymerization | Induces tubulin polymerization |
(12) Cancer growth | Inhibits growth of cancer without toxicity | Inhibits growth of cancer without toxicity |
(13) Mouse model of diabetes (NOD) | Induces early onset of diabetes at high doses | Induces early onset of diabetes at high doses |
(14) Species specificity | Present and reactive in rabbit, human, mouse, chicken, and frog (xenopus) | Present and reactive in human, mouse, chicken, rat, frog, and brine shrimp |
(15) Tissue localization (SDF-1 as ligand) | Heart, brain, pancreas, placenta, lung, liver, muscle, kidney, spleen, thymus, prostate, testis, ovary, small intestine. Colon | Active against colon, ovary, breast, prostate, NSC lung, skin, central nervous system (brain, kidney, leukocytes, lymphocytes, and uterine tissues) |
(16) Receptor type | G-coupled receptors CCR5, CXCR4 | CCR5, CXCR4 |
(17) Platelet aggregation | Regulation of platelet aggregation | Inhibits platelet aggregation |
(18) Cell migration | Regulates and modulates cell migration | Inhibits cell migration |
(19) Cell adhesion | Inhibits/enhances cell adhesion | Inhibits/enhances cell adhesion |
(20) Apoptosis, programmed cell death | Regulation of apoptosis (inhibition/enhancement) | Inhibits apoptosis; enhances α-irradiated apoptosis |
(21) Angiogenesis; neovascularization | Regulation of angiogenesis (inhibition/enhancement) | Inhibits angiogenesis |
(22) Increased vascular permeability; basement membrane disruption | Induces and modulates vascular permeability; induces ascites formation | Inhibits vascular permeability in ascites tumors |
(23) Cell proliferation, tumor growth | Regulates cellular proliferation, cancer (enhancement/inhibition) | Inhibits cell proliferation of prostate/breast cancer and 9 tumor types |
(24) Cellular differentiation | Regulates cellular differentiation, myelogenesis, lymphogenesis | Inhibits frog metamorphosis and fetal chick development |
(25) Estrogen-regulated (induced) molecules | Chemokine CXCL12 (SDF-1) is estrogen-sensitive (induced) molecule | GIP-midpiece (p232) binds estradiol |
(26) Estrogen (E2)-induced mitogenic activity | SDF-1 mediates proliferative action of (E2) estradiol | GIP suppresses proliferative action of (E2) estradiol |
(27) Estrogen regulation mediated by estrogen receptor (Erα) | SDF-1 induction is mediated through Erα | GIP binds Erα (receptor) |
(28) MAP kinase-mediated pathways | SDF-1 is upstream effector of MAP kinase | MAP kinase is down-regulated by GIP |
(29) Use of chemokine CXCR4 receptor | CXCR4 is sole receptor of SDF-1 | CXCR4 modulates growth in ovary and breast cancer which GIP suppresses |
(30) Use of CCR5 chemokine receptor in HIV and use of CCR6 | HIV binds to CCR5 co-receptor and to CD4 receptor, CCL28 binds CCR6 | Human AFP (full-length) binds to CCR5 receptor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizejewski, G.J. The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy. Cancers 2024, 16, 1531. https://doi.org/10.3390/cancers16081531
Mizejewski GJ. The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy. Cancers. 2024; 16(8):1531. https://doi.org/10.3390/cancers16081531
Chicago/Turabian StyleMizejewski, Gerald J. 2024. "The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy" Cancers 16, no. 8: 1531. https://doi.org/10.3390/cancers16081531
APA StyleMizejewski, G. J. (2024). The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy. Cancers, 16(8), 1531. https://doi.org/10.3390/cancers16081531