From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist’s Dual Role in Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. GLP-1 Receptor: Influences on Cellular Proliferation, Apoptosis, and Angiogenesis
3. GLP-1 Receptor: Modulating Insulin Resistance, Inflammation, and Cancer Development
4. Impact of GLP-1 Receptor Agonists on Prostate Cancer Cells: Mechanisms and Signaling Pathways
5. GLP-1 Receptor Agonists and Their Impact on Prostate Cancer Cells: In Vitro Insights
6. Prostate Cancer and Metabolic Syndrome
7. Current Clinical Outcomes of GLP-1-RAs in Prostate Cancer Patients
8. Future Directions
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar]
- Guyton, J.; Jeon, M.; Brooks, A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am. J. Health-Syst. Pharm. 2019, 76, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Deacon, C.F.; Pridal, L.; Klarskov, L.; Olesen, M.; Holst, J.J. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am. J. Physiol.-Endocrinol. Metab. 1996, 271, E458–E464. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.J.; Nauck, M.A.; Kranz, D.; Holst, J.J.; Deacon, C.F.; Gaeckler, D.; Schmidt, W.E.; Gallwitz, B. Secretion, Degradation, and Elimination of Glucagon-Like Peptide 1 and Gastric Inhibitory Polypeptide in Patients with Chronic Renal Insufficiency and Healthy Control Subjects. Diabetes 2004, 53, 654–662. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ratner, R.E.; Han, J.; Kim, D.D.; Fineman, M.S.; Baron, A.D. Effects of Exenatide (Exendin-4) on Glycemic Control and Weight Over 30 Weeks in Metformin-Treated Patients With Type 2 Diabetes. Diabetes Care 2005, 28, 1092–1100. [Google Scholar] [CrossRef]
- Deng, Y.; Park, A.; Zhu, L.; Xie, W.; Pan, C.Q. Effect of liraglutide and liraglutide in individuals with obesity or overweight without diabetes: A systematic review. Ther. Adv. Chronic Dis. 2022, 13, 204062232211080. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, Y.; Yu, M.; Mei, M.; Xiang, L.; Zhao, S.; Li, R. GLP-1 receptor agonist-associated tumor adverse events: A real-world study from 2004 to 2021 based on FAERS. Front. Pharmacol. 2022, 13, 925377. [Google Scholar] [CrossRef]
- Bezin, J.; Gouverneur, A.; Pénichon, M.; Mathieu, C.; Garrel, R.; Hillaire-Buys, D.; Pariente, A.; Faillie, J.-L. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care 2023, 46, 384–390. [Google Scholar] [CrossRef]
- Shigeoka, T.; Nomiyama, T.; Kawanami, T.; Hamaguchi, Y.; Horikawa, T.; Tanaka, T.; Irie, S.; Motonaga, R.; Hamanoue, N.; Tanabe, M.; et al. Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression. J. Diabetes Investig. 2020, 11, 1137–1149. [Google Scholar] [CrossRef]
- Brubaker, P.L.; Drucker, D.J. Minireview: Glucagon-Like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas, Gut, and Central Nervous System. Endocrinology 2004, 145, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Buteau, J.; Spatz, M.L.; Accili, D. Transcription Factor FoxO1 Mediates Glucagon-Like Peptide-1 Effects on Pancreatic β-Cell Mass. Diabetes 2006, 55, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Buteau, J.; Roduit, R.; Susini, S.; Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999, 42, 856–864. [Google Scholar] [CrossRef]
- Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front. Endocrinol. 2018, 9, 420454. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, M.; Liu, Y. Protective Effects of Incretin Against Age-Related Diseases. Curr. Drug Deliv. 2019, 16, 793–806. [Google Scholar] [CrossRef]
- Kosowska, A.; Gallego-Colon, E.; Garczorz, W.; Kłych-Ratuszny, A.; Aghdam, M.R.F.; Niak, M.W.; Witek, A.; Wróblewska-Czech, A.; Cygal, A.; Wojnar, J.; et al. Exenatide modulates tumor–endothelial cell interactions in human ovarian cancer cells. Endocr. Connect. 2017, 6, 856–865. [Google Scholar] [CrossRef]
- Mao, D.; Cao, H.; Shi, M.; Wang, C.C.; Kwong, J.; Li, J.J.X.; Hou, Y.; Ming, X.; Lee, H.M.; Tian, X.Y.; et al. Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study. eBioMedicine 2021, 65, 103242. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yu, S.; Wang, L.; He, M.; Cao, X.; Li, Y.; Xiao, H. Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells. Mol. Cell. Endocrinol. 2016, 436, 240–249. [Google Scholar] [CrossRef]
- Nie, Z.-J.; Zhang, Y.-G.; Chang, Y.-H.; Li, Q.-Y.; Zhang, Y.-L. Exendin-4 inhibits glioma cell migration, invasion and epithelial-to-mesenchymal transition through GLP-1R/sirt3 pathway. Biomed. Pharmacother. 2018, 106, 1364–1369. [Google Scholar] [CrossRef]
- Kanda, R.; Hiraike, H.; Wada-Hiraike, O.; Ichinose, T.; Nagasaka, K.; Sasajima, Y.; Ryo, E.; Fujii, T.; Osuga, Y.; Ayabe, T. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer 2018, 18, 657. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wei, R.; Wang, L.; Tian, Q.; Tao, M.; Ke, J.; Liu, Y.; Hou, W.; Zhang, L.; Yang, J.; et al. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am. J. Physiol.-Endocrinol. Metab. 2014, 306, E1431–E1441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front. Endocrinol. 2021, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Scott, J.W.; Pan, D.A.; Hudson, E.R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-J.; Tseng, H.-C.; Liu, M.-W.; Chang, Y.-C.; Hsieh, M.-L.; Chuang, L.-M. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation. Sci. Rep. 2016, 6, 23403. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.E.; Egan, J.M. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 2007, 113, 546–593. [Google Scholar] [CrossRef] [PubMed]
- Nuamnaichati, N.; Parichatikanond, W.; Mangmool, S. Cardioprotective Effects of Glucagon-like Peptide-1 (9-36) Against Oxidative Injury in H9c2 Cardiomyoblasts: Potential Role of the PI3K/Akt/NOS Pathway. J. Cardiovasc. Pharmacol. 2022, 79, e50–e63. [Google Scholar] [CrossRef] [PubMed]
- Aronis, K.N.; Chamberland, J.P.; Mantzoros, C.S. GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism 2013, 62, 1279–1286. [Google Scholar] [CrossRef]
- Bednarz, K.; Kowalczyk, K.; Cwynar, M.; Czapla, D.; Czarkowski, W.; Kmita, D.; Nowak, A.; Madej, P. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 4334. [Google Scholar] [CrossRef]
- Laron, Z. Insulin—A growth hormone. Arch. Physiol. Biochem. 2008, 114, 11–16. [Google Scholar] [CrossRef]
- Guo, C.; Huang, T.; Chen, A.; Chen, X.; Wang, L.; Shen, F.; Gu, X. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz. J. Med. Biol. Res. 2016, 49, e5826. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Caini, S.; Gandini, S.; Dudas, M.; Bremer, V.; Severi, E.; Gherasim, A. Sexually transmitted infections and PCa risk: A systematic review and meta-analysis. Cancer Epidemiol. 2014, 38, 329–338. [Google Scholar] [CrossRef]
- Gorish, B.M.T.; Ournasseir, M.E.H.; Shammat, I.M. A correlation study of BK Polyoma Virus infection and PCa among Sudanese patients—Immunofluorescence and molecular based case-control study. Infect. Agents Cancer 2019, 14, 25. [Google Scholar] [CrossRef]
- Moghoofei, M.; Keshavarz, M.; Ghorbani, S.; Babaei, F.; Nahand, J.S.; Tavakoli, A.; Mortazavi, H.S.; Marjani, A.; Mostafaei, S.; Monavari, S.H. Association between human papillomavirus infection and PCa: A global systematic review and meta-analysis. Asia-Pac. J. Clin. Oncol. 2019, 15, e59–e67. [Google Scholar] [CrossRef]
- Platz, E.A.; Kulac, I.; Barber, J.R.; Drake, C.G.; Joshu, C.E.; Nelson, W.G.; Lucia, M.S.; Klein, E.A.; Lippman, S.M.; Parnes, H.L.; et al. A Prospective Study of Chronic Inflammation in Benign Prostate Tissue and Risk of PCa: Linked PCPT and SELECT Cohorts. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Gurel, B.; Lucia, M.S.; Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Kristal, A.R.; Parnes, H.L.; Hoque, A.; Lippman, S.M.; Sutcliffe, S.; et al. Chronic Inflammation in Benign Prostate Tissue Is Associated with High-Grade PCa in the Placebo Arm of the PCa Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Bahmad, H.F.; Jalloul, M.; Azar, J.; Moubarak, M.M.; Samad, T.A.; Mukherji, D.; Al-Sayegh, M.; Abou-Kheir, W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front. Genet. 2021, 12, 652747. [Google Scholar] [CrossRef]
- Arcidiacono, B.; Iiritano, S.; Nocera, A.; Possidente, K.; Nevolo, M.T.; Ventura, V.; Foti, D.; Chiefari, E.; Brunetti, A. Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms. Exp. Diabetes Res. 2012, 2012, 789174. [Google Scholar] [CrossRef]
- De Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef]
- Nomiyama, T.; Kawanami, T.; Irie, S.; Hamaguchi, Y.; Terawaki, Y.; Murase, K.; Tsutsumi, Y.; Nagaishi, R.; Tanabe, M.; Morinaga, H.; et al. Exendin-4, a GLP-1 receptor agonist, attenuates PCa growth. Diabetes 2014, 63, 3891–3905. [Google Scholar] [CrossRef]
- He, W.; Li, J. Exendin-4 enhances radiation response of PCa. Prostate 2018, 78, 1125–1133. [Google Scholar] [CrossRef]
- Garza-Lombó, C.; Schroder, A.; Reyes-Reyes, E.M.; Franco, R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr. Opin. Toxicol. 2018, 8, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR Pathway and PCa: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef]
- Chiarle, R.; Pagano, M.; Inghirami, G. The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res. 2001, 3, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Macri, E.; Loda, M. Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev. 1998, 17, 337–344. [Google Scholar] [CrossRef]
- Phillips, A.H.; Ou, L.; Gay, A.; Besson, A.; Kriwacki, R.W. Mapping Interactions between p27 and RhoA that Stimulate Cell Migration. J. Mol. Biol. 2018, 430, 751–758. [Google Scholar] [CrossRef]
- Wenjing, H.; Shao, Y.; Yu, Y.; Huang, W.; Feng, G.; Li, J. Exendin-4 enhances the sensitivity of PCa to enzalutamide by targeting Akt activation. Prostate 2020, 80, 367–375. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Nomiyama, T.; Kawanami, T.; Hamaguchi, Y.; Terawaki, Y.; Tanaka, T.; Murase, K.; Motonaga, R.; Tanabe, M.; Yanase, T. Combined Treatment with Exendin-4 and Metformin Attenuates PCa Growth. PLoS ONE 2015, 10, e0139709. [Google Scholar] [CrossRef]
- Eftekhari, S.; Montazeri, H.; Tarighi, P. Synergistic anti-tumor effects of Liraglutide, a glucagon-like peptide-1 receptor agonist, along with Docetaxel on LNCaP PCa cell line. Eur. J. Pharmacol. 2020, 878, 173102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Bu, H.M.; Ma, X.H.; Lu, S.; Zhao, S.; Cui, Y.L.; Sun, J. Glucagon-like Peptide-1 Analogues Inhibit Proliferation and Increase Apoptosis of Human Prostate Cancer Cells in vitro. Exp. Clin. Endocrinol. Diabetes 2017, 125, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Role of Insulin Resistance in Human Disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Gacci, M.; Russo, G.I.; De Nunzio, C.; Sebastianelli, A.; Salvi, M.; Vignozzi, L.; Tubaro, A.; Morgia, G.; Serni, S. Meta-analysis of metabolic syndrome and PCa. PCa Prostatic Dis. 2017, 20, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Caffo, O.; Galli, L.; Maugeri, A.; Scarpi, E.; Maines, F.; Chiuri, V.E.; Lolli, C.; Kinspergher, S.; Schepisi, G.; et al. Association among metabolic syndrome, inflammation, and survival in PCa. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 240.e1–240.e11. [Google Scholar]
- De Nunzio, C.; Simone, G.; Brassetti, A.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Tubaro, A. Metabolic syndrome is associated with advanced PCa in patients treated with radical retropubic prostatectomy: Results from a multicentre prospective study. BMC Cancer 2016, 16, 407. [Google Scholar] [CrossRef] [PubMed]
- Karzai, F.H.; Madan, R.A.; Dahut, W.L. Metabolic syndrome in PCa: Impact on risk and outcomes. Future Oncol. 2016, 12, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Bhindi, B.; Locke, J.; Alibhai, S.M.H.; Kulkarni, G.S.; Margel, D.S.; Hamilton, R.J.; Finelli, A.; Trachtenberg, J.; Zlotta, A.R.; Toi, A.; et al. Dissecting the Association Between Metabolic Syndrome and PCa Risk: Analysis of a Large Clinical Cohort. Eur. Urol. 2015, 67, 64–70. [Google Scholar] [CrossRef]
- Perlmutter, M.A.; Lepor, H. Androgen deprivation therapy in the treatment of advanced PCa. Rev. Urol. 2007, 9 (Suppl. S1), S3–S8. [Google Scholar]
- Swaby, J.; Aggarwal, A.; Batra, A.; Jain, A.; Seth, L.; Stabellini, N.; Bittencourt, M.S.; Leong, D.; Klaassen, Z.; Barata, P.; et al. Association of Androgen Deprivation Therapy with Metabolic Disease in PCa Patients: An Updated Meta-Analysis. Clin. Genitourin. Cancer 2023, 21, e182–e189. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, Y.; Yang, S.; He, G.; Jiang, Z.; Gang, X.; Wang, G. Antidiabetic medications and the risk of PCa in patients with diabetes mellitus: A systematic review and meta-analysis. Pharmacol. Res. 2022, 177, 106094. [Google Scholar] [CrossRef] [PubMed]
- Roobol, M.J. Active surveillance for PCa—Will the discoveries of the last 5 years change the future? Transl. Androl. Urol. 2021, 10, 2828–2831. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Tilling, K.; Martin, R.M.; Athene Lane, J.; Hamdy, F.C.; Holmberg, L.; Neal, D.E.; Metcalfe, C.; Donovan, J.L. Systematic Review and Meta-analysis of Factors Determining Change to Radical Treatment in Active Surveillance for Localized PCa. Eur. Urol. 2015, 67, 993–1005. [Google Scholar] [CrossRef]
- Ghoreifi, A.; Kaneko, M.; Peretsman, S.; Iwata, A.; Brooks, J.; Shakir, A.; Sugano, D.; Cai, J.; Cacciamani, G.; Park, D.; et al. Patient-reported Satisfaction and Regret Following Focal Therapy for Prostate Cancer: A Prospective Multicenter Evaluation. Eur. Urol. Open Sci. 2023, 50, 10–16. [Google Scholar] [CrossRef]
Author | Cell Linage | Drug | Tumor Response |
---|---|---|---|
Nomiyama T. et al. (2014) [41] | LNCap human androgen-sensitive PCa cell line, and the PC3 and DU145 human androgen-independent PCa cell. | Ex-4 | Tumor volume: after 12 weeks Control group: around 550 mm3 Low dose Ex-4 = around 200 mm3 High dose Ex-4 = around 200 mm3 |
He W. et al. (2018) [42] | LNCap, Du145, PC3, ArCaP, and ALVA-41 | Ex-4 and IR | Tumor volume: after 4 weeks Control: around 1850 mm3 IR: around 900 mm3 Ex-4: around 1400 mm3 IR + Ex-4: around 500 mm3 |
Shigeoka T. et al. (2020) [11] | ALVA-41 and ALVA-41 cells induced GLP-1-R | Ex-4 | Tumor volume: after NA ALVA-41 without Ex-4: around 2200 mm3 ALVA-41 with Ex-4: around 1500 mm3 ALVA-41 induced GLP-1-R without Ex-4: around 1000 mm3 ALVA-41 induced GLP-1-R with Ex-4: around 600 mm3 |
Tsutsumi Y. et al. (2015) [50] | LNCaP, PC3, and DU145 cells | Ex-4 and Metformin | Tumor volume: after 12 weeks Control: around 490 mm3 Ex-4: around 190 mm3 Metformin: around 180 mm3 Ex-4 + Metformin: around 85 mm3 |
Eftekhari S. et al. (2020) [51] | LNCaP | Liraglutide and Docetaxel | Tumor volume: no data % of apoptotic cells: Control: around 5% Liraglutide: around 7% Docetaxel: around 12% * Docetaxel + Liraglutide: around 17% ** |
Author | Drug | Explanation |
---|---|---|
Eftekhari S. et al. (2020) [51] | Liraglutide and Docetaxel | Significant arrest of G2/M with significant decrease in BCL-2 mRNA and increase in BAX expression shown when both treatments were combined compared to when they were used alone. Docetaxel with Liraglutide showed a significant increase in the phosphorylation of ERK1/2 and AKT compared to other groups. |
Tsutsumi Y. et al. (2015) [50] | Exendin–4 and Metformin | P504S dramatically decreased with Ex-4, Metformin, and the combined treatment. No change was observed in AR expression after Ex-4 and Metformin treatment in the PCa tumor. Ex-4 and Metformin treatment alone for 24 h significantly decreased DNA synthesis. |
Shigeoka T. et al. (2020) [11] | Exendin–4 and Metformin | Ex-4 slowed cell growth by using two pathways, GLP-1-R and cAMP-protein kinase A. It made the ERK pathway slower, reducing proteins that fuel cell division. It boosted P27, a cell regulator, by inhibiting protein from the SKP2 gene and decreased the expression of the gene, ultimately inhibiting conversion from the Phase G1-S phase. |
Li X.N. et al. (2017) [52] | Exendin and Liraglutide | Exenatide concentration was associated with an increase in prostate cancer cell apoptosis due to an increase in the ratio of Bax to Bcl-2 proteins in a dose-dependent manner. Regarding the liraglutide, there was no statistical difference in apoptosis between the control group and the 1 nmol/L liraglutide group, with no significant difference between the 10 nmol/L and 100 nmol/L liraglutide groups. Treatment activated a signaling pathway called p38-MAPK, as indicated by an increase in the ratio of phosphor-p38 to total p38. |
He W. et al. (2018) [42] | Exendin | Ex-4 increased AMPK phosphorylation and decreased the levels of p-mTOR and cyclin B, which inhibit the proliferation. |
Nomiyama T. et al. [41] | Ex-4 | Increased cAMP led to decreased extracellular-signal-regulated kinase (ERK) and mitogen-activated protein kinase (MAPK) phosphorylation in PCa cells. |
Wenjing H. et al. (2020) [49] | Exendin-4 enhances enzalutamide | The combination of treatments significantly reduced Akt and mTOR levels, which were triggered by enzalutamide administration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhajahjeh, A.; Al-Faouri, R.; Bahmad, H.F.; Bader, T.; Dobbs, R.W.; Abdulelah, A.A.; Abou-Kheir, W.; Davicioni, E.; Lee, D.I.; Shahait, M. From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist’s Dual Role in Prostate Cancer. Cancers 2024, 16, 1538. https://doi.org/10.3390/cancers16081538
Alhajahjeh A, Al-Faouri R, Bahmad HF, Bader T, Dobbs RW, Abdulelah AA, Abou-Kheir W, Davicioni E, Lee DI, Shahait M. From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist’s Dual Role in Prostate Cancer. Cancers. 2024; 16(8):1538. https://doi.org/10.3390/cancers16081538
Chicago/Turabian StyleAlhajahjeh, Abdulrahman, Raad Al-Faouri, Hisham F. Bahmad, Taima’ Bader, Ryan W. Dobbs, Ahmed A. Abdulelah, Wassim Abou-Kheir, Elai Davicioni, David I. Lee, and Mohammed Shahait. 2024. "From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist’s Dual Role in Prostate Cancer" Cancers 16, no. 8: 1538. https://doi.org/10.3390/cancers16081538
APA StyleAlhajahjeh, A., Al-Faouri, R., Bahmad, H. F., Bader, T., Dobbs, R. W., Abdulelah, A. A., Abou-Kheir, W., Davicioni, E., Lee, D. I., & Shahait, M. (2024). From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist’s Dual Role in Prostate Cancer. Cancers, 16(8), 1538. https://doi.org/10.3390/cancers16081538